
PROBABILITY THEORY FOR DATA SCIENCE 

Prof. Ishapathik Das 

Department of Mathematics and Statistics 

Indian Institute of Technology Tirupati 

Week - 10 

Lecture - 52 

Multinomial Distribution and Multivariate Normal Distribution 

 

Let us discuss one of the important distributions, known as the multinomial distribution. 

This is a discrete distribution, and discrete multivariate random variables follow a 

multinomial distribution under certain conditions. Suppose you are collecting responses 

that fall into more than two categories. For binomial cases, we discussed that the 

multinomial distribution is an extension of the binomial distribution. When considering 

responses with more than two categories, for example, different types of fish in a pond, the 

situation extends beyond binomial responses. 

 

 

 

Suppose the fish are categorized by color, such as red, yellow, blue, or white. This 

hypothetical scenario can also apply to other objects, like colored balls. If there are only 

two categories, for instance, red and black, the responses are called binomial responses. A 



simple example of this is tossing a coin, where there are two possible outcomes: heads or 

tails. This is a classic case of binomial responses. 

However, if there are more than two categories for each observation, the responses involve 

multiple categories. For example, in a pond with four types of fish (red, black, blue, and 

white), the observations can be classified into these four categories. Suppose you consider 

a total of "n" fish, and let n₁, n₂, n₃, and n₄ represent the number of red, black, blue, and 

white fish, respectively. These counts are random variables. Define Y₁, Y₂, Y₃, and Y₄ as 

random variables corresponding to the categories: 

Y₁ = 1 if a red fish is observed; otherwise, Y₁ = 0. 

Y₂ = 1 if a black fish is observed; otherwise, Y₂ = 0. 

Similarly, Y₃ and Y₄ represent blue and white fish, respectively. These variables define the 

outcomes. Note that they may not be independent because the total number of fish is fixed, 

making the counts dependent. 

For instance, observing one type of fish reduces the probability of observing other types in 

the same sample. In general, consider an experiment with K mutually exclusive outcomes 

labeled A₁, A₂, ..., Aₖ. For example, the four outcomes in the fish scenario are red, black, 

blue, and white. Mutually exclusive means that if one outcome occurs, such as observing 

a red fish, none of the others can occur simultaneously. Each outcome has a probability of 

occurrence denoted by p₁, p₂, ..., pₖ, with the condition that the sum of all probabilities 

equals 1: 

p₁ + p₂ + ... + pₖ = 1 

For instance: 

The probability that Y₁ equals 1 (observing a red fish) is p₁. 

The probability that Y₂ equals 1 (observing a black fish) is p₂, and so on. 

These probabilities are either known or estimated from data. 

 



 

 

Provided that Y₄ = 1, this corresponds to p₄, while p₃ corresponds to Y₃ = 1. These 

probabilities cover the four possibilities: red, black, blue, and white fish. Since any fish 

caught must belong to one of these categories, the probabilities are mutually exclusive and 

exhaustive. Thus, the sum of these probabilities satisfies: 

p₁ + p₂ + p₃ + p₄ = 1 

If the experiment is repeated n times, for example, drawing n fish sequentially, let Xᵢ 

represent the number of occurrences of outcome Aᵢ (e.g., the number of fish of color i). 

Previously, we used Yᵢ, but here we use X₁, X₂, X₃, X₄ for consistency. The choice of 

notation does not affect the results, but clarity is important. The sum of probabilities 

remains: 

p₁ + p₂ + p₃ + p₄ = 1 

The random variable X, comprising the components X₁, X₂, X₃, X₄, is referred to as a 

multinomial random variable. It is characterized by the parameters n (the number of trials) 

and p₁, p₂, p₃, p₄ (the probabilities of each outcome). 

Thus, X = (X₁, X₂, X₃, X₄) is a four-dimensional random vector following a multinomial 

distribution with parameters n, p₁, p₂, p₃, p₄. The task is to determine its probability mass 

function (PMF). 

Recall that for the binomial distribution, the PMF specifies the probabilities of each 

possible outcome based on the given parameters. Similarly, the multinomial distribution 

has a specific PMF, which generalizes the binomial case to multiple categories. In the 

binomial distribution, each trial is a random experiment repeated n times, with only two 

possible categories for each trial. For example, we may have a "yes" or "no" outcome, or 

categories like "blue" or "black." 



 

 

Let’s assume that Y₁ represents the first time you draw, and for simplicity, Y is the random 

variable. The probability of Y being "yes" (1) is p, and the probability of Y being "no" (0) 

is 1 - p. If you repeat this experiment n times, what would be the probability of observing 

a certain number of "yes" outcomes? For each trial, Y is a Bernoulli random variable. We 

define the random variable Y to represent how many times "yes" occurs. 

This follows a binomial distribution with parameters n (the number of trials) and p (the 

probability of a "yes"). The probability mass function (PMF) for this binomial distribution 

is given by: 

P(Y = y) = nCy * p^y * (1 - p)^(n - y) 

Here, y can take values from 0 to n, where y represents the number of "yes" outcomes, and 

n - y represents the number of "no" outcomes. Let’s now denote the random variable for 

"yes" outcomes by Y₁ and for "no" outcomes by Y₂, such that Y₁ + Y₂ = n. 

This notation simplifies understanding, as it clearly separates the outcomes of "yes" (Y₁) 

and "no" (Y₂). The probability that Y equals y is equivalent to the probability that Y₁ equals 

y₁ and Y₂ equals y₂. For one trial, if Y₁ represents "yes," the probability is p₁, and for Y₂ 

representing "no," the probability is p₂. This is analogous to the binomial case, where p₁ is 

p and p₂ is 1 - p. 

Now, for n trials, the probability that there are y₁ "yes" outcomes (Y₁ = y₁) and y₂ "no" 

outcomes (Y₂ = y₂) is represented by: 

P(Y₁ = y₁, Y₂ = y₂) = nCy₁ * p₁^y₁ * p₂^y₂ 



Where y₁ and y₂ are values between 0 and n such that y₁ + y₂ = n. This is the same PMF as 

in the binomial case, just expressed with more specific notation for clarity. 

Now, we generalize this for the multinomial distribution. The binomial case is a special 

case where there are only two categories. However, when dealing with more than two 

categories, we need to generalize the binomial distribution to the multinomial distribution. 

This involves adjusting the probability mass function to account for multiple categories, 

where each category has its own probability and each trial can result in one of the multiple 

categories. Let's now discuss how the multinomial distribution's probability mass function 

is derived. 

In the case of multinomial distributions, we have more than two categories. 

 

 

 

For example, suppose there are q categories. Let’s consider the notation for k categories, 

labeled 1, 2, ..., k. For each category, there is a corresponding random variable: Y₁ for 

category 1, Y₂ for category 2, and so on, up to Yk for category k. The probability for each 

category is denoted as p₁ for category 1, p₂ for category 2, and pk for category k. The sum 

of all these probabilities must equal 1: 

p₁ + p₂ + ... + pk = 1 

Now, suppose we repeat the trial n times. We want to find the probability that the number 

of occurrences of each category is y₁ for category 1, y₂ for category 2, and so on, up to yk 

for category k. This means, if we draw n fishes from the pond, we want to know how many 



will belong to each category, such as how many fishes are red, blue, or black. The total 

number of occurrences must add up to n: 

y₁ + y₂ + ... + yk = n 

The probability of this outcome can be obtained by extending the binomial distribution to 

the multinomial case. The formula for the probability is: 

P(Y₁ = y₁, Y₂ = y₂, ..., Yk = yk) = n! / (y₁! * y₂! * ... * yk!) * p₁^y₁ * p₂^y₂ * ... * pk^yk 

Where: n! is the factorial of n, representing the total number of ways the trials can be 

arranged. y₁!, y₂!, ..., yk! are the factorials of y₁, y₂, ..., yk, representing the number of ways 

to arrange the outcomes for each category. p₁^y₁, p₂^y₂, ..., pk^yk are the probabilities 

raised to the power of the occurrences for each category. 

The values of y₁, y₂, ..., yk must satisfy the equation: 

y₁ + y₂ + ... + yk = n 

If this condition is not met, the probability is 0. This is the probability mass function for a 

multinomial distribution. It generalizes the binomial distribution, which applies only to two 

categories, to cases with more than two categories. We extended to the k categories, which 

is known as a multinomial random variable. 

The probability mass function of the multinomial random variable X is given by: 

P(x₁, x₂, ..., xk) = (n! / (x₁! * x₂! * ... * xk!)) * p₁^x₁ * p₂^x₂ * ... * pk^xk. 

 

 



 

 

 

This represents the probability of observing x₁ outcomes in category 1, x₂ outcomes in 

category 2, and so on, out of n total trials. Such that the summation of xᵢ should be equal 

to n: 

x₁ + x₂ + ... + xk = n 

x₁, x₂, ..., xk can take any value between 0 and n, but the summation of all xᵢ must equal n. 

This is known as the multinomial distribution function. Since this is a multivariate case, it 

can be a bit more complicated. We won't go into further details right now, but we will 

discuss it more in the future whenever it's needed. 

Now, let's discuss the applications of multinomial random variables. One of the 

applications of multinomial random variables is in clinical trials. When there is more than 

one category in the responses, for example, when a disease can be classified based on its 

severity, multinomial distributions are used to analyze and model the different levels or 



categories of severity. The presence or absence of a disease can be categorized as 0 or 1. 

However, diseases like cancer can be classified into stages: no cancer, stage 1, stage 2, or 

stage 3. 

 

 

 

In this way, multiple categories can be defined. For example, when administering 

medicine, there may be adverse effects or toxicity. These can be categorized as either no 

adverse effect or a side effect, but they can also be classified into more than two categories, 

such as mild, severe, or even death. In this case, we would use the multinomial distribution. 

Multinomial distribution is also used in predicting game outcomes or in opinion polls 

during elections. 

In opinion polls, there are more than two candidates or different posts to consider. If there 

are only two categories, it is a binomial distribution. However, if there are more than two, 

we apply the multinomial distribution, as it involves multiple categories. In summary, the 

multinomial distribution is an extension of the binomial distribution, used when dealing 

with more than two categories. 

Next, we will discuss multivariate random variables in the case of continuous data, 

specifically the multivariate normal distribution. 

A q-variate random variable X is called a q-variate normal random variable if its joint 

probability density function can be represented in a certain way. Although it may look 

complicated, let's first review the univariate normal distribution to help understand the 

concept. Let X be a univariate random variable. For a univariate normal distribution, X is 

a normally distributed random variable with mean (μ) and variance (σ²), where σ² > 0. The 

mean (μ) can be any real number. 



 

 

 

The probability density function (PDF) of X is given by: 

f_X(x) = 1 / (√(2πσ²)) * e^(-(x - μ)² / (2σ²)), 

 

where x ranges from negative infinity to positive infinity, and the PDF is 0 otherwise. This 

is the probability density function of a univariate random variable. Here, μ is the mean or 

expected value of X, and σ² is the variance, which is the expected value of (X - μ)². 

These are the two key parameters of the univariate normal distribution. 

Now, consider a multivariate random variable. Let X be a q-dimensional random variable, 

represented as X = (X₁, X₂, ..., Xq). To extend this to q dimensions, we need to define the 

parameters for a q-dimensional random variable. The expected value of X in q dimensions 

is defined as the expected values of the vector X = (X₁, X₂, ..., Xq). 

Since each Xᵢ is a random variable, this defines the expected value for each component of 

the vector. We can define the expected values of X₁, X₂, ..., Xq. These are all real numbers, 

and we denote the expected values of X₁, X₂, ..., Xq as μ₁, μ₂, ..., μq. This can be represented 

as a vector, denoted as μ, which belongs to ℝᵖ. 

Next, we consider the variance. In the univariate case, variance is just a single number: (X 

- μ)². 

 



 

 

However, in the multivariate case, we need to consider covariance. The covariance of the 

random variables X₁, X₂, ..., Xq is defined by considering all possible combinations of 

covariances between pairs of random variables. This results in a matrix, where each 

element represents the covariance between a pair of random variables. The covariance 

matrix will contain the covariance between X₁ and X₁, which is the variance of X₁ 

(Var(X₁)), the covariance between X₁ and X₂, X₁ and Xq, and so on. Similarly, the 

covariance between X₂ and X₁, X₂ and X₂, X₂ and Xq, and so on. The matrix will be 

symmetric. 

We denote this covariance matrix as Σ. For any covariance between Xᵢ and Xⱼ, we define it 

as the expected value of the product of (Xᵢ - μᵢ)(Xⱼ - μⱼ), which simplifies to Cov(Xᵢ, Xⱼ) = 

E[(Xᵢ - μᵢ)(Xⱼ - μⱼ)] = E[Xᵢ * Xⱼ] - μᵢ * μⱼ. If i equals j, the covariance between Xᵢ and Xᵢ is 

simply the variance of Xᵢ, Cov(Xᵢ, Xᵢ) = Var(Xᵢ). 

Thus, the covariance matrix Σ is a square matrix with dimensions equal to the number of 

random variables (q). The diagonal elements represent the variances of each random 

variable, and the off-diagonal elements represent the covariances between pairs of random 

variables. 

 



 

 

Certainly, here is the text with all mathematical words converted into symbols or equations, 

as per your request: 

So, you can write the covariance matrix as follows: the first row will be the variance of X₁ 

(denoted as σ₁²), followed by the covariances between X₁ and X₂, X₁ and Xq, and so on. 

The second row will start with the covariance between X₂ and X₁, then the variance of X₂ 

(σ₂²), followed by the covariance between X₂ and Xq, and so on. Similarly, the last row 

will contain the covariances between Xq and each of the other variables, ending with the 

variance of Xq (σq²). This forms the variance-covariance matrix, which is denoted as Σ. 

The variance-covariance matrix of the multivariate random variable X, which consists of 

X₁, X₂, ..., Xq, is represented by Σ. 

This matrix captures both the variances of the individual variables and the covariances 

between them. In the univariate case, we have the mean and variance. For a multivariate 

random variable, the mean is represented as a vector μ, and the covariance is represented 

by the matrix Σ. The covariance matrix is positive definite, meaning that its eigenvalues 

are positive. The vector of means μ can be any real number or vector in ℝᵠ. 

The covariance matrix Σ is assumed to be positive definite. In the univariate case, the mean 

μ can be any real number, ranging from -∞ to +∞, and the variance σ² must be greater than 

0. However, in the multivariate case, the covariance matrix Σ needs to be positive definite 

for the distribution to be well-defined. This ensures that the random variable has 

meaningful relationships (covariances) between its components. The covariance matrix, Σ, 

must be a positive definite matrix, which is essential for the variance-covariance matrix. 

 



 

 

Now, let's return to the probability density function (PDF) for univariate cases. When X 

has a normal distribution with mean μ and variance σ², the PDF of X is given by: f(x) = (1 

/ √(2πσ²)) * e^(-(x - μ)² / 2σ²). This can be represented as: f(x) = (1 / √(2π)) * (1 / √(σ²)) * 

e^(-(x - μ)² / 2σ²). 

We can further simplify this, as (x - μ) is a real number and can be treated as a 1x1 matrix, 

which allows us to write it in matrix form. Now, let's generalize this for multivariate 

random variables. The joint probability density function (PDF) of a multivariate normal 

distribution, or a q-variate normal distribution, is represented as follows: f(X) = (1 / 

(√(2π))^q) * (1 / (|Σ|^1/2)) * e^(-(1/2) * (X - μ)ᵀ Σ⁻¹ (X - μ)). Here, X is the vector of 

random variables (X₁, X₂, ..., Xq), μ is the mean vector, Σ is the variance-covariance matrix, 

and |Σ| denotes the determinant of Σ. 

Since Σ is positive definite, its determinant is always greater than 0. In this formula, we 

take the determinant of Σ (which is always positive), and the matrix (X - μ) represents the 

difference between the observed value and the mean. The term Σ⁻¹ represents the inverse 

of the covariance matrix, and (X - μ)ᵀ denotes the transpose of the vector (X - μ). The result 

of this operation is a real number. Thus, this is the joint probability density function for a 

multivariate normal distribution. 

The significance of the parameters is that μ represents the expected values of the random 

variables Xᵢ (for i = 1 to q), and Σ is the variance-covariance matrix of X. We have already 

discussed random variables like X₁, X₂, ..., Xq. We won't go into more detail about the 

multivariate normal distribution here because it is more complicated, given that we are 



considering multivariate random variables. It's not as simple as univariate cases. However, 

just remember that for univariate distributions, the density function looks like this. 

 

 

 

 

For multivariate cases, it is not as simple and can be represented in a more complex way. 

To understand this concept, imagine a hill or a peak, where the distribution increases 

towards the peak and then decreases. At the peak, you will find the mean (μ), mode, and 

median of the normal distribution. This distribution is symmetric on both sides. Similar 

properties apply in multivariate cases as well. 

The applications of multivariate random variables are numerous. For instance, when you 

consider multiple parameters or variables and multiple responses, multivariate random 

variables are used. In a study, data was collected from a sample of 183 females, measuring 

variables like height (X₁), weight (X₂), cholesterol (X₃), albumin (X₄), calcium (X₅), and 



uric acid (X₆). These are seven variables, so q = 7. Each variable could be considered as a 

univariate normal distribution, with most being normally distributed random variables. 

However, if we consider them together as a vector, they may not be independent. For 

example, age (X₁) and height (X₂) might be correlated, as well as weight (X₃) and height 

(X₂), or cholesterol (X₄) and weight (X₅). Since these variables are not independent, we 

cannot treat them as univariate random variables and simply multiply them to find the 

multivariate distribution function or density function. Instead, we need to account for their 

correlations, and that's where the multivariate normal distribution comes in. 

In summary, we have discussed some examples of multivariate random variables, including 

the multinomial distribution in discrete cases and the multivariate normal distribution in 

continuous cases. Hopefully, you have followed the explanation. Next, we will discuss a 

different topic: the transformation of random variables, which is an important topic to 

cover. 

 


