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Transformation of Random Variables 

 

Whenever we define a random variable, it is a function from a sample space (S) to the real 

numbers (R). However, it is not just any function; it is a measurable function. This means 

that if X is a random variable, it is a measurable function from the sample space S to R. 

For any element s belonging to the sample space S, the value of X(s) will be a real number. 

Moreover, if you consider a Borel set, the inverse of that set under the function X must 

belong to the sigma field of the sample space. 

The sigma field consists of a class of subsets of S, ensuring that X is a measurable function. 

Now, consider another function g, which maps real numbers to real numbers (i.e., g : R → 

R). If we apply this function to the random variable X, then g(X(s)) will be a value in the 

real numbers. This is a composite function, where g is applied to the outcome of the random 

variable X. To put it simply, if X maps a sample space element s to a real number, then 

g(X(s)) gives us another value in the real numbers. 

The composite function, denoted as g ∘ X, is a function from the sample space S to R, 

where for any element s in S, the value of g(X(s)) is a real number. If the function g is 

measurable, meaning it satisfies the conditions for measurability, then the composite 

function g ∘ X will also be a measurable function. In particular, if g is continuous, it will 

be a measurable function, and the composite function will be measurable as well. This 

composite function g ∘ X represents another random variable. Let Y = g(X). 



 

 

 

This means that Y is a random variable, and it is a measurable function from the sample 

space S to the real numbers (R), defined by Y(s) = g(X(s)). This defines a new random 

variable. We have already used this concept to find the expected values of Y by using the 

probability distribution function of X. However, if we are interested in finding the expected 

value or variance of Y with respect to its own probability distribution (either the probability 

mass function for discrete variables or the probability density function for continuous 

variables), we need to focus on the distribution of Y itself. So, to find this, suppose X is a 

random variable with the cumulative distribution function (CDF) F_X(x). 

This is known. Let g be a measurable function from R to R. The goal is to determine the 

cumulative distribution function (CDF) of Y. To find the CDF of Y, we need to compute 

the probability that Y is less than or equal to a certain value y. The CDF of Y, denoted 

F_Y(y), is given by the probability that Y ≤ y. 

We can express this as: F_Y(y) = P(Y ≤ y) = P(g(X) ≤ y). This can be rewritten as the 

probability that X belongs to the set D(y), where D(y) is defined as all the elements in the 

sample space S such that g(X(s)) ≤ y. So, the set D(y) consists of all s in the sample space 

for which g(X(s)) is less than or equal to y. At this point, we are interested in understanding 

the relationship between the CDF of Y and the set D(y), but we do not explicitly know the 

distribution of Y yet. 



 

 

We can find the probability, but in certain cases, we need to consider examples to illustrate 

how to compute it. Let's discuss one such example. Suppose we are tossing a coin, and we 

define the sample space S as either heads or tails. So, the sample space consists of "head" 

or "tail." Now, let's define a random variable X such that X("head") = 1 and X("tail") = 0. 

 If we consider a transformation function g(X), where g is a function from R to R, we can 

calculate the new probability distribution. In this case, the random variable X is a discrete 

random variable, and we can represent it using a probability mass function. For example, 

the probability that X = 1 ("heads") is p, where p ∈ [0, 1], and the probability that X = 0 

("tails") is 1 - p. So, the probability mass function is given by: P(X = 1) = p, P(X = 0) = 1 

- p. 

 

Next, we introduce a transformation. Let's consider the transformation g: R → R, defined 

by g(X) = X + 2. This is a simple transformation where we add 2 to the value of X. Now, 

we define a new random variable Y as Y = X + 2. We want to find the probability mass 

function of Y.  

To do so, we first need to determine the range of Y. So, what are the possible values that 

Y can take? The sample space consists of "head" and "tail," and each outcome is mapped 

to a real number. Under the random variable X, the value for "head" is 1 and for "tail," it 

is 0. 

 



 

 

When we apply the transformation function g(X), which is defined as g(X) = X + 2, we 

can find the corresponding values for Y. For instance, if X = 1 (head), then g(1) = 1 + 2 = 

3. If X = 0 (tail), then g(0) = 0 + 2 = 2. Therefore, for the random variable Y, we have: 

Y(head) = g(X(head)) = g(1) = 3 

Y(tail) = g(X(tail)) = g(0) = 2 

The probability of getting "head" is p, and the probability of getting "tail" is 1 - p. For the 

new random variable Y, we have: 

P(Y = 3) = P(X = 1) = p (because X = 1 corresponds to "head") 

P(Y = 2) = P(X = 0) = 1 - p (because X = 0 corresponds to "tail") 

Therefore, the probability mass function of Y is: 

P(Y = 3) = p 

P(Y = 2) = 1 - p 

Thus, the transformation has changed the probability mass function. From here, we can 

also calculate the cumulative distribution function (CDF) of Y, if needed. This is a simple 

example to illustrate how transformations affect the probability mass function of a random 

variable. 

In more general cases, similar methods can be applied to find the distribution of 

transformed random variables. So, for example, for continuous cases, we need to do this 

kind of indication. So, how we will do that? Let us discuss some of the examples. For 

continuous cases, we need to follow this kind of procedure. It is similar to what we 

discussed earlier. 



 

 

 

 

Let X be a random variable with a cumulative distribution function (CDF), and let g: R → 

R be a function defined as g(x) = x + a, where a is a fixed value belonging to the real 

numbers. For example, a could be 2, 3, or 0. If a is 0, the function becomes the identity 

function, g(x) = x, meaning no transformation occurs, and the distribution of X remains 



unchanged. However, for any non-zero transformation, we need to find the cumulative 

distribution function (CDF) of the transformed random variable Y, where Y = g(X). 

The CDF of Y, denoted as F_Y(y), is the probability that Y is less than or equal to y. Since 

Y = g(X), this probability can be written as the probability that g(X) is less than or equal 

to y. Since g(x) = x + a, this becomes the probability that x + a is less than or equal to y. 

Rearranging this inequality, we get x ≤ y - a. Now, using the CDF of X, which is F_X(x), 

we know that F_X(x) is the probability that X is less than or equal to x. 

Therefore, we can express the CDF of Y as F_X(y - a). This is the general approach to 

finding the CDF of a transformed random variable Y. Let’s consider an example. Let X be 

an exponential random variable with a parameter of 1. The task is to find the probability 

density function (PDF) of Y = 3X + 5. To solve this, start by determining the cumulative 

distribution function (CDF). For X, which follows an exponential distribution, the CDF is 

zero for values less than or equal to zero. 

 

 

 



 

For values greater than 0, the CDF is obtained by integrating the exponential PDF from 0 

to a given value. Next, consider the transformation Y = 3X + 5. To find the CDF of Y, 

rewrite the inequality "Y ≤ y" in terms of X, which gives "X ≤ (y - 5) / 3." For values of Y 

≤ 5, the CDF is 0 because there is no density in this range. For values of Y > 5, the CDF of 

Y corresponds to the CDF of X evaluated at (y - 5) / 3. 

Finally, the PDF of Y is obtained by differentiating its CDF with respect to Y. For Y ≤ 5, 

the PDF is 0. For Y > 5, the PDF is derived from the transformation, resulting in a scaled 

exponential decay function. This completes the derivation of the PDF for Y = 3X + 5. Let 

us first go through this example, and then we will discuss how we can utilize this concept. 

 

 

 

 



Consider the random variable X with a given probability density function. In this example, 

let X be a random variable with a probability density function between 0 and 1, where it is 

2x, and 0 otherwise. The task is to find the probability density function. In this case, the 

result is as follows: 0 if y ≤ 5, and 1 - e^(...) if y > 5. Now, to find the probability density 

function, we need to note that since this is a continuous random variable, the probability 

density function can be found by differentiating the cumulative distribution function. 

Thus, the probability density function of Y is given by the following: it is 0 when y ≤ 5. 

When differentiating the cumulative function, it gives a value of (1 / 3) * e^(...) when y > 

5. This is the probability density function of Y. This illustrates the method of finding the 

probability density function. It is important to note that if X is a continuous random 

variable, we aim to find its probability density function. 

For X, the probability density function is defined. Now, if we apply a transformation to X, 

we must first find the cumulative distribution function of X, apply the transformation, and 

then differentiate to find the probability density function of the transformed variable Y. 

This is the method we used. While it works, it can be a little complicated. If there were a 

direct way to find the probability density function of Y from the known density function 

of X, it would save us the extra steps. 

In most cases, we are more interested in the probability density function of continuous 

random variables rather than their cumulative distribution function. Therefore, a direct 

method would be helpful because it would eliminate the need to find the cumulative 

distribution function during the transformation process. Let us look at another example to 

understand this concept further. So let us first do this example and then we will discuss 

how we can utilize this concept. Let us start with this example and then discuss how we 

can utilize this concept. 

 

 



Consider a random variable X with a given probability density function. In this example, 

X is a random variable with a probability density function defined as 2x for values between 

0 and 1, and 0 otherwise. The task is to find the probability density function of Y, where Y 

is defined as 3x + 1. To solve this, we use the method involving the transformation of 

random variables. First, we need to find the cumulative distribution function of X. 

X is a continuous random variable, and its probability density function is given as 2x for 

values between 0 and 1, and 0 otherwise. To find the cumulative distribution function of 

X, denoted by F(x), we calculate the probability that X ≤ x. Since the density is nonzero 

only between 0 and 1, we can determine the cumulative distribution function as follows: 

F(x) = 0 for X ≤ 0, as there is no density for negative values. For values of X between 0 

and 1, the cumulative distribution function is the integral from 0 to x of the density function, 

which is the integral of 2t dt. 

Solving this gives t², so F(x) = x² in this range. For X > 1, the cumulative distribution 

function is 1, as the total probability is 1. Thus, the cumulative distribution function of X 

is: F(x) = 0 if X ≤ 0, F(x) = x² if 0 < X ≤ 1, and F(x) = 1 if X > 1. 

Now, using the cumulative distribution function of X, we find the cumulative distribution 

function of Y. Here, Y is defined as Y = 3X + 1. This is given as F_Y(y), which is the 

probability that Y ≤ y. Since Y = g(X), this is the probability that 3X + 1 ≤ y. Subtracting 

1 from both sides, we have 3X ≤ y - 1. 

 

 

 



Dividing by 3, we get X ≤ (y - 1) / 3. This is equivalent to F_Y(y) = F_X((y - 1) / 3), 

where F_X(x) is the cumulative distribution function of X.  

The definition of F_X(x) is: 

F_X(x) = 0 if x ≤ 0. 

F_X(x) = x² if 0 < x ≤ 1. 

F_X(x) = 1 if x > 1. 

Substituting (y - 1) / 3 into F_X(x): 

F_Y(y) = 0 if (y - 1) / 3 ≤ 0, meaning y ≤ 1. 

F_Y(y) = ((y - 1) / 3)² if (y - 1) / 3 > 0 and (y - 1) / 3 ≤ 1, meaning 1 < y ≤ 4. 

F_Y(y) = 1 if (y - 1) / 3 > 1, meaning y > 4. 

Simplifying this, the cumulative distribution function of Y is: 

F_Y(y) = 0 if y ≤ 1. 

F_Y(y) = ((y - 1) / 3)² if 1 < y ≤ 4. 

F_Y(y) = 1 if y > 4. 

But it is asked that we first find the probability density function (PDF) of Y, where Y = 3X 

+ 1. 

 

 

 

So, how do we find that? Now, we will differentiate with respect to y to get the probability 

density function of Y, denoted as f_Y(y). Since the cumulative distribution function (CDF) 

is 0 when y ≤ 1, we know that the PDF in this range is 0. So, for y ≤ 1, the probability 



density function is 0. For 1 < y ≤ 4, we have the term (y - 1) / 3, squared. Taking the 

derivative of this with respect to y: 

First, the constant 1/9 remains. The derivative of (y - 1)² is 2(y - 1). So, the probability 

density function is (2/9) * (y - 1) for 1 < y ≤ 4. Now, for y > 4, the probability density 

function is constant, so its derivative will be 0. Thus, the probability density function can 

be written as: 

f_Y(y) = (2/9) * (y - 1) for 1 ≤ y ≤ 4. 

f_Y(y) = 0 for y < 1 or y > 4. 

By verifying this with the integration from 1 to 4, we find that the total probability equals 

1, confirming that the calculations are correct. In this process, we first found the CDF of X 

and then used it to find the CDF of Y. After differentiating the CDF of Y, we obtained the 

PDF of Y. 

However, there is a more direct method for finding the PDF of Y if we know the PDF of 

X. We will discuss this method in the next section using a theorem that allows us to avoid 

the steps we just followed. This method we just used is the general method, but it may not 

be applicable to all cases. In specific cases, the method we will discuss can be more 

efficient. Let's move on to that now. 

 

 

 


