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Transformation of Multivariate Random Variables 

 

Now we will discuss the case of transforming a random variable into a multivariate random 

variable. We have completed some examples for univariate random variables. Now, we 

will discuss multivariate random variables and how similar concepts may be applied. 

Let's revisit the univariate case. Whenever we have a random variable X with a probability 

density function f(X), which is a continuous random variable, and we want to find the 

transformation of the random variable Y = g(X), where g is a bijective function from R to 

R, and it is strictly increasing or strictly decreasing, we assume that g has an inverse. 

 

 

 

 

If we consider g: R → R and it is strictly monotone (increasing or decreasing), then the 

inverse function h = g^(-1) exists. Under these conditions, if X is a continuous random 



variable with probability density function f(X), we can find the probability density function 

of Y, denoted as f_Y(y). This can be calculated using the formula: f_Y(y) = |d/dy h(y)| 

f_X(h(y)). Here, h(y) is the inverse function of g, where y = g(x) and x = g^(-1)(y). 

This is why we sometimes write dx/dy f_X(h(y)). 

Now, the question arises: is this applicable to cases where we consider multivariate random 

variables? Let's simplify the case and consider a bivariate random variable. Let X1 and X2 

be a bivariate continuous random variable, and we denote it as X. Let X1 and X2 be a 

bivariate continuous random variable, and we denote it as X. Let X be a continuous 

bivariate random variable with the joint probability density function f(X). 

 

 

 

This function is known. In general, we write f(X), and in specific examples, we know the 

form of the density function. Let g: R² → R². Since X is a bivariate random variable, it is 

a measurable function from the sample space S to R². Earlier, we discussed a composite 

function from S to R, where the function was measurable from R to R. 

Now, since it is a bivariate random variable, we need to consider the case where X is from 

S to R². Some values will be taken here, and then the point under g will transform into 

g(Xs). This is a composite function, which we refer to as y(s). This transformation y will 

be a vector because Y is a vector, as it is a bivariate random variable. Therefore, g is a 

multivariate (specifically, bivariate) function. 

We can write it as g tilde. This represents the function g(X₁, X₂), where g₁(X₁, X₂) and 

g₂(X₁, X₂) are the components of the vector. Both g₁ and g₂ are functions from R² to R, 



making g a function from R² to R². However, this function has properties that we need, 

similar to what we discussed in the univariate case. Specifically, we assume that the 

function is strictly increasing, interpretable, and either strictly increasing or decreasing 

(monotone). 

 

 

 

 

Let g be a function such that g is a bivariate function, meaning it maps from R² to R². For 

any x belonging to R², where x is a vector (x₁, x₂), the vector y = g(x) also belongs to R². 

We take g₁(x) and g₂(x), which are components of this vector, satisfying the condition that 

the inverse of g exists. The inverse is denoted as h, so we can write x = g⁻¹(y) = h(y). In the 

univariate case, we discussed the derivative being either strictly greater than 0 or strictly 

less than 0. 

However, since g is a bivariate function, we need to consider the derivatives in terms of 

both x₁ and x₂. This is where the Jacobian comes into play. The Jacobian is a matrix of 

partial derivatives, and its determinant is denoted as the Jacobian determinant. The 

Jacobian matrix is defined as: 

∂x₁/∂y₁  ∂x₁/∂y₂ 

∂x₂/∂y₁  ∂x₂/∂y₂ 

This matrix is used to calculate the determinant, which will indicate whether the function 

is invertible. The determinant of the Jacobian matrix will be either positive or negative for 



all values of y belonging to R² (or for the subset of R² that corresponds to the range of Y). 

It cannot be both positive and negative. 

Now, if the function g satisfies these conditions, we have the following theorem: 

Theorem: Let X be a continuous bivariate random variable with the joint probability 

density function f_X(x), and let g: R² → R² be a measurable function with an inverse h = 

g⁻¹. Let the determinant of the Jacobian matrix, denoted as J, be either positive or negative 

for all y belonging to R². Then, the probability density function of Y, denoted f_Y(y), is 

given by: 

f_Y(y) = |det(J)| * f_X(h(y)) 

This is the theorem. 

 

 

This theorem can be extended. I have just discussed it for a function of two variables in the 

case of bivariate random variables, but it can be extended to n variables. Let X = (x₁, x₂, ..., 

xᵣ) be a continuous multivariate random variable with the probability density function 

f_X(x). Suppose Y = g(X) exists such that X = g⁻¹(Y) and the determinant of the Jacobian 

matrix is either positive or negative for all Y. Then, the joint probability density function 

of Y is given by: 

f_Y(y) = |det(J)| f_X(g⁻¹(y)). This theorem can be extended to n random variables. Let X 

= (x₁, x₂, ..., xₙ) be a multivariate random variable with the probability density function 

f_X(x). Let g: Rⁿ → Rⁿ be a measurable function such that g⁻¹ exists, meaning X = g⁻¹(Y) 

= h(Y) exists for all Y. The determinant of the Jacobian matrix J is given by: 



J = | ∂x₁/∂y₁, ∂x₁/∂y₂, ..., ∂x₁/∂yₙ | | ∂x₂/∂y₁, ∂x₂/∂y₂, ..., ∂x₂/∂yₙ | | ... | | ∂xₙ/∂y₁, ∂xₙ/∂y₂, ..., 

∂xₙ/∂yₙ | The determinant of this Jacobian matrix is either positive or negative for all Y. 

Therefore, the joint probability density function of Y is given by: f_Y(y) = |det(J)| 

f_X(h(y)), where h(Y) is the vector function representing the inverse transformation.  

This is the theorem. We have already proven this theorem for the univariate case. The proof 

for multivariate cases will be a little more complicated, but we will discuss it. We have 

already discussed the univariate case, so now we will go over some numerical examples 

for multivariate transformations. Let us consider one example. To better understand this 

concept, let's consider a simple example. 

 

 

 



 

 

 

Let X be a continuous bivariate random variable with the probability density function f(X), 

which is given by: f(X) = e^(-x₁ - x₂), where x₁ > 0 and x₂ > 0, and 0 otherwise. This is the 

density function. Note that we are using the following notation repeatedly: capital X₁ and 

X₂ for random variables, and small x̃ = (x₁, x₂, ..., xn) for real numbers. This function is 

defined from the sample space S to Rⁿ, which is the notation we are following. 

Thus, when we write x̃, it refers to the vector (x₁, x₂) because we are working with a 

bivariate random variable. Consider the transformation Y = g(X), where g is a 

transformation from R² to R² defined by: Y₁ = X₁ + X₂, Y₂ = X₁. Now we will check whether 

these satisfy the conditions. This transformation results in the equations: 

Y₁ = x₁ + x₂, Y₂ = x₁. To find the inverse transformation, we solve for x₁ and x₂: x₁ = y₂, x₂ 

= y₁ - y₂. 

Thus, the inverse of g, denoted as g⁻¹(Y), is: x = g⁻¹(y) = (x₁, x₂) = (y₂, y₁ - y₂). Next, we 

need to compute the Jacobian for this transformation. The next step is to find the probability 

density function of Y = (Y₁, Y₂), and also the marginal probability density function of Y₁. 

In this case, we are interested in finding the probability density function of X₁ + X₂. 

While the transformation might not always be explicitly given as R² to R², we are always 

interested in finding the probability density function for X₁ + X₂. According to the theorem, 

the transformation should be from R² to R². Therefore, we can consider a bivariate random 

variable transformation from R² to R² and then integrate out Y₂ from the bivariate 



distribution to find the marginal probability density function of Y₁. In this example, we 

found that: Y₁ = X₁ + X₂, Y₂ = X₁. 

Y₂ = X₁. From here, we have found the inverse, x = g⁻¹(y), which is h(y), and this is y₂, y₁ 

- y₂. Now, we want to find the Jacobian. The inverse is given by x₁ = y₂ and x₂ = y₁ - y₂. 

 

 

 

 

Next, we calculate the Jacobian. The Jacobian J is given by the partial derivatives: 

J = [∂x₁/∂y₁ ∂x₁/∂y₂] [∂x₂/∂y₁ ∂x₂/∂y₂] 

From the transformation, we find the following values: 

∂x₁/∂y₁ = 0, ∂x₁/∂y₂ = 1, ∂x₂/∂y₁ = 1, ∂x₂/∂y₂ = -1. 

Thus, the Jacobian matrix becomes: 

J = [0 1] [1 -1] 

The determinant of this Jacobian matrix is -1, which is less than 0 for all values of y, 

satisfying the condition. Hence, the joint probability density function of y is given by: 

f(y) = |J| * f(x, h(y)). 

Since the determinant of the Jacobian is -1, its absolute value is 1. Now we need to 

determine f(x). From the given probability density function: 



f(x) = e^(-(x₁ + x₂)) for 0 < x₁ < ∞ and 0 < x₂ < ∞. 

This can be written as e^(-y₁) because x₁ + x₂ = y₁, where y₁ > 0. 

Also, we know that x₁ = y₂ and x₂ = y₁ - y₂. Therefore, both y₂ and y₁ - y₂ must be greater 

than 0 and less than infinity. This implies that 0 < y₂ < y₁ < ∞. 

Now, we can simplify the expression: 

f(y) = e^(-y₁), where 0 < y₂ < y₁ < ∞. 

This is the joint probability density function of Y. Next, we are interested in the marginal 

probability density function of y₁. The marginal probability density function of y₁ is given 

by: 

f(y₁) = ∫[0 to y₁] f(y₁, y₂) dy₂. 

Thus, the marginal probability density function of y₁ is obtained by integrating over y₂. 

 

 

 

By definition, since we know the joint probability density function for y₁ and y₂, integrating 

with respect to y₂ will give us the marginal probability density function. The notation for 

the joint probability density function is the same as f(y₁, y₂), but we simplify it for 

convenience. Note that when integrating, the density is non-zero within certain conditions. 

Specifically, we need to find the range of y₂ where it is non-zero. For this case, the range 

of y₂ is between 0 and y₁. 



Therefore, the marginal probability density function is given by the integral: 

∫₀ᵧ¹ e^(-y₁) dy₂. 

Since the integrand is independent of y₂, we can factor out e^(-y₁): 

e^(-y₁) ∫₀ᵧ¹ dy₂. 

The integral of dy₂ from 0 to y₁ is simply y₁. Thus, we have: 

y₁ e^(-y₁). 

This is valid when y₁ is greater than 0 and less than infinity. If y₁ is negative, the density 

function is 0. Therefore, the marginal probability density function of y₁ is: 

f(y₁) = y₁ e^(-y₁) for 0 < y₁ < ∞, and 0 otherwise. 

This is the desired density function. Hopefully, you have understood the concept of how to 

use transformations of random variables to find the joint probability density function for a 

transformed random variable. We will explore more numerical examples to understand it 

better. Let's consider a slightly more complicated example that requires some computation. 

In this case, we are given a joint density function for a two-dimensional continuous random 

variable. 

 

 

 

Let x₁ and x₂ be the two random variables, with the joint probability density function given 

by: f(x₁, x₂) = 4x₁x₂ e^(-x₁² + x₂²). The task is to find the joint probability density function 



of a transformed random variable, where the transformation is given by: u₁ = f(x₁, x₂) and 

u₂ = g(x₁, x₂). Then, we are to find the marginal probability density function of u₁. Let's 

now proceed to solve that. 

 


