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Examples of Transformation of Bivariate Random Variables 

 

Let X be a bivariate continuous random variable with a joint probability density function 

where both variables, x₁ and x₂, are greater than 0, and the function is 0 otherwise. We 

define a transformation by introducing two new variables. The first new variable, u₁, is the 

distance from the origin in a two-dimensional space, calculated as √(x₁² + x₂²). The second 

new variable, u₂, is simply equal to x₂. From this transformation, we know that u₁ represents 

the distance between the point (x₁, x₂) and the origin, and u₂ is directly equal to x₂. 

This allows us to express x₁ in terms of u₁ and u₂, where x₁ = √(u₁² - u₂²). The original 

density function is non-zero only when both x₁ and x₂ are greater than 0. This means that 

for the transformed variables, u₂ must also be greater than 0 and less than ∞. Additionally, 

since u₁ is the square root of the sum of the squares of x₁ and x₂, u₁ must also be greater 

than 0 and less than ∞. Moreover, since u₁ is the result of adding x₁² and x₂², we can 

conclude that u₁ must always be greater than u₂. 

To calculate the Jacobian of this transformation, we need to look at how the original 

variables x₁ and x₂ change with respect to the new variables u₁ and u₂. This involves 

calculating the partial derivatives of x₁ and x₂ with respect to u₁ and u₂. The derivative of 

x₁ with respect to u₁ is proportional to u₁ / √(u₁² - u₂²). The derivative of x₁ with respect to 

u₂ is proportional to -u₂ / √(u₁² - u₂²). The derivative of x₂ with respect to u₁ is 0, while the 

derivative of x₂ with respect to u₂ is 1. 

The Jacobian is the determinant of a matrix of these partial derivatives. After performing 

the necessary calculations, we find that the Jacobian is equal to u₁ / √(u₁² - u₂²). Since u₁ is 

always positive in the range of the transformed variables, the Jacobian is always positive. 

Therefore, the Jacobian is u₁ / √(u₁² - u₂²). We can find the joint probability density function 

using the theorem. 



 

 

 

The joint probability density function of Y is given by the vector U, which consists of U₁ 

and U₂. This is expressed as |J| * f, where J is the Jacobian and f represents the joint 

probability density function of the original variables. This is f(x). We can write it as f(x₁, 

x₂), or for simplified notation, we use f(x). This is the inverse of y. 

The Jacobian, which we know, is equal to the ratio of u₁ to the square root of the difference 

between the square of u₁ and the square of u₂. Therefore, the Jacobian is u₁ / √(u₁² - u₂²). 

Next, we need to determine the values of x₁ and x₂. When transforming in this region, we 

have 4 * x₁ * x₂. To clarify, x₁ is the square root of the difference between u₁² and u₂². 

Therefore, x₁ = √(u₁² - u₂²), and x₂ = u₂. Then, we apply the inverse transformation for Y. 

The expression becomes 4 * x₁ * x₂, which is the product of √(u₁² - u₂²) and u₂. Then, we 

have the exponential term, e^(-x₁² - x₂²). Since the sum of x₁² and x₂² is equivalent to u₁², 

this simplifies to e^(-u₁²). 

This value holds true when 0 < u₂ < u₁ < ∞. For any other values, the result will be 0. Now, 

if we simplify the expression, we can cancel out terms. We will then obtain 4 * u₁ * u₂ * 

e^(-u₁²), valid when 0 < u₂ < u₁ < ∞. For any other values, the result will be 0. 

It is important to note that u₁ and u₂ are dependent on each other in this range. Therefore, 

they are dependent random variables. You can verify this by examining their marginal 

distributions. We will now find the marginal probability density function of U₁, as the 

question asks for it. Since we have already found the joint probability density function, the 

marginal probability density function of U₁ is determined by integrating the joint density 



function with respect to U₂. The marginal probability density function of U₁, denoted as 

f_U₁(u₁), is equal to the integral of u₁ * u₂ with respect to u₂, over the range from 0 to u₁. 

This function is non-zero when the condition is satisfied. Now, we need to determine the 

range for U₂. For any given value of U₁, U₂ ranges from 0 to U₁. Additionally, U₁ can take 

any value between 0 and ∞, as U₁ cannot be negative. The probability density function of 

U₁ is given by the integral over the range of U₂, which is from 0 to U₁. For any other case, 

the value will be 0. Therefore, the function becomes 4 * u₁ * u₂ * e^(-u₁²), integrated with 

respect to u₂. 

The expression 4 * u₁ * e^(-u₁²) will be taken outside the integral. Then, the integral 

becomes from 0 to u₁, with respect to u₂, resulting in u₂ du₂. The integral of u₂ with respect 

to u₂ is (u₂²) / 2. Using the limits, this gives (u₁²) / 2. Therefore, the expression becomes 4 

* u₁ * e^(-u₁²) * (u₁² / 2). 

The 2s cancel out, resulting in 2 * u₁ * e^(-u₁²). This holds for values of u₁ between 0 and 

∞. For any other value, the result is 0. Finally, we can write the marginal probability density 

function. This is the marginal density function of U₁. 

 

 

 

The marginal probability density function of U₁ is given by 2 * U₁ * e^(-U₁²). This is valid 

for U₁ values ranging from 0 to ∞. The expression is derived from the fact that U₁ = √(x₁² 

+ x₂²). The joint probability density function is expressed as 2 * U₁³ * e^(-U₁²). This is valid 

when U₁ > 0 and U₁ < ∞. Outside this range, the probability density is 0. For the function 

to be a valid probability density, the total probability must equal 1. This is checked by 



integrating the function from 0 to ∞. If the result of the integration is 1, then the function 

is valid. If not, the function would need to be adjusted to ensure the total probability equals 

1. This is the density function. 

I just wanted to verify whether the calculations are correct. To do this, we need to check if 

the total probability integrates to 1. Specifically, the integral of the probability density 

function from 0 to ∞ should be equal to 1. The function we are working with is non-zero 

between 0 and ∞. 

The integral involves the expression where U₁ is raised to the power of 3 and multiplied by 

e^(-U₁²). To solve this integral, we can apply a transformation using the gamma function, 

which is a well-known mathematical function used to evaluate integrals of this type. We 

will apply a transformation where we set U₁² = Z. In this case, we have the relationship 2 

* U₁ * dU₁ = dZ. The limits of Z will range from 0 to ∞. Now, we can express the 

probability density function in terms of Z. 

The function becomes Z * e^(-Z), and we substitute 2 * U₁ * dU₁ with dZ. The equation 

simplifies to Z * e^(-Z) * dZ. This integral has the form of an expression from 0 to ∞, 

where Z is raised to the power of 1, which is derived from subtracting 1 from 2. This 

expression is then multiplied by the exponential function e^(-Z). This type of integral is a 

standard form and is known to be equal to the gamma function evaluated at 2. 

The gamma function for the value 2 is equivalent to 1 factorial, which is simply 1. As a 

result, the value of this integral is 1, which confirms that the function is a valid probability 

density function. So, I was trying to verify the calculations and I realized there was a 

mistake in the computation. After correcting that, I arrived at the final value. This shows 

that by using the transformation concept in the theorem, we were able to determine the 

marginal probability density function of U₁. 

Additionally, we also found the joint probability density function of U₁ and U₂. Next, let’s 

discuss another example. Here, we are given that X and Y are two independent continuous 

random variables with their respective probability density functions, denoted as fₓ(x) and 

fᵧ(y). Since X and Y are independent, we can determine their joint probability density 

function. The probability density function of U, where U = X + Y, can be found using the 

transformation method. 

 



 

 

The formula for the probability density function of U is given. Let’s write down this 

formula and then work through how it is derived. Let X and Y be two independent 

continuous random variables, with their respective probability density functions, denoted 

as fₓ(x) and fᵧ(y). The probability density function of U, where U = X + Y, is given by the 

following expression. 

You can observe that the formula is written as the integral of the product of fₓ(b) and fᵧ(u - 

b), integrated over b. Mathematically, this operation is called the convolution of two 

functions. In this case, we are convolving the two functions, fₓ and fᵧ, to find the probability 

density function for the sum of two independent random variables. Let us now examine 

how this works in detail. Since X and Y are independent random variables, the joint 

probability density function of the vector (X, Y) is given by fₓᵧ(x, y). 

 

 

 



Since X and Y are independent, this is equal to the product of their marginal probability 

density functions, meaning fₓᵧ(x, y) = fₓ(x) * fᵧ(y), where (x, y) ∈ ℝ². Now, we will consider 

the transformation where U = X + Y. Since we do not have a pre-existing formula for this 

transformation, Now, we will consider the transformation where U = X + Y. Since we do 

not have a pre-existing formula for this transformation, For this transformation, we are 

considering a change from ℝ² to ℝ, but we need a transformation from ℝ² to ℝ² in order to 

use the previous theorem. 

To achieve this, we introduce another function. Let’s define a new variable, V, which is 

simply equal to X. So, we now have two new variables: U = X + Y, and V = X. From these 

equations, we can solve for the inverse relationships: X = V, and Y = U - V. Thus, the 

transformation is represented by the pair of variables U and V, where U = X + Y and V = 

X. 

The inverse transformation is then given by X = V and Y = U - V. Therefore, the 

transformation from (X, Y) to (U, V) can be expressed as the function g(X, Y) = (X + Y, 

X), and the inverse transformation, g⁻¹(U, V) = (V, U - V), gives us the corresponding 

values for X and Y. Since the inverse transformation exists, we now need to check the 

Jacobian. The Jacobian is defined as the determinant of the matrix formed by the partial 

derivatives of the transformed variables with respect to the original variables, and we 

denote this determinant by J. For the transformation from U and V to X and Y, we calculate 

the following partial derivatives: the partial derivative of X with respect to U, the partial 

derivative of X with respect to V, the partial derivative of Y with respect to U, and the 

partial derivative of Y with respect to V. 

This gives us a matrix of partial derivatives, and the determinant of this matrix is the 

Jacobian. The values are as follows: Since X = V, the partial derivative of X with respect 

to U is 0, and the partial derivative of X with respect to V is 1. For Y, which is equal to U 

- V, the partial derivative of Y with respect to U is 1, and the partial derivative of Y with 

respect to V is -1. Therefore, the determinant of the Jacobian matrix is -1 for all values of 

U and V in ℝ². Thus, the determinant is -1. 

The joint probability density function of the vector (U, V) is given by the absolute value of 

the Jacobian determinant multiplied by the joint probability density function of X and Y, 

evaluated at the inverse transformation. Since the Jacobian determinant is 1, the joint 

probability density function simplifies to the product of the individual marginal probability 

density functions of X and Y. Because X and Y are independent, the joint probability 



density function is the product of the densities of X and Y, evaluated at the transformed 

variables. Specifically, for h₁(U, V) = V and h₂(U, V) = U - V, the joint probability density 

function becomes the product of fₓ(V) and fᵧ(U - V). This is the joint probability density 

function for the transformed variables (U, V). 

 

 

 

Hence, the joint probability density function of u and v is given by f(u, v). This is equal to 

what we found earlier, which is f(x, v) multiplied by f(y, u - v). Now, when we know the 

joint probability density function, we can find the marginal probability density function of 

u, which is equal to x + y. The marginal probability density function of u is given by the 

integral of the joint probability density function over the variable v. Specifically, it is 

defined as the integral from -∞ to ∞ of f(u, v) with respect to v. 

This is equal to the integral from -∞ to ∞ of f(x, v) and f(y, u - v) with respect to v. This is 

the theorem we used. You can observe that when x and y are two independent continuous 

random variables with probability density functions f(x) and f(y) respectively, the 

probability density function of u, which is the sum of x and y, is given by the formula: f(u) 

= the integral from -∞ to ∞ of f(x, v) and f(y, u - v) with respect to v. I hope this explanation 

clarifies the concept. 

If it's still unclear, you can review it again. Additionally, we will discuss numerical 

examples based on this theorem, where we consider specific distributions for X and Y and 

determine the resulting distribution for U. 

 


