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Transformation of Discrete Random Variables 

 

So, I hope you have followed and understood this concept of transforming random 

variables. However, note that all of these theorems apply only to continuous random 

variables. These concepts will also be applicable in the case of convolution. In the discrete 

case, we cannot use this theorem because we cannot apply the derivative approach. 

 

 

 

To demonstrate this, let’s go through an example. We need to find the probability mass 

function of Z, where Z = X + Y. We previously studied this example, but for the purpose 

of understanding the transformation of random variables, let’s go through it again. Suppose 

X and Y are independent Poisson random variables with parameters λ₁ and λ₂, respectively. 

Since X and Y are discrete random variables, we cannot use the theorem here. Instead, we 

will directly find the probability without using the theorem. Let X₁ and X₂ be independent 

Poisson random variables with parameters λ₁ and λ₂, respectively. We want to find the 



probability mass function of Z, where Z = X₁ + X₂. Since this involves discrete random 

variables, we cannot use the theorem from earlier. Instead, we will directly compute it. 

 

 

 

To start, since X₁ has a Poisson distribution with parameter λ₁, the range of X₁ will be 0, 1, 

2, and so on. The probability mass function of X₁ can be written as P(X₁ = x) = e^(-λ₁) * 

λ₁^(X₁) / X₁!, for X₁ = 0, 1, 2, and so on. For other values, P(X₁ = x) = 0. 

Similarly, X₂ follows a Poisson distribution with parameter λ₂. The range of X₂ will also 

be the same: 0, 1, 2, and so on. The probability mass function of X₂ can be written as P(X₂ 

= x) = e^(-λ₂) * λ₂^(X₂) / X₂!, for X₂ = 0, 1, 2, and so on. For other values, P(X₂ = x) = 0. 

Now, let's consider the range of Z, where Z = X₁ + X₂. Since the range of both X₁ and X₂ 

is 0, 1, 2, and so on, the range of Z will also be 0, 1, 2, and so on. The minimum values of 

X₁ and X₂ can be 0, 1, 2, or any value. So, the range of Z will be 0, 1, 2, and so on. 

Next, we need to determine the probability mass function of Z. To find the probability mass 

function of Z, where Z = X₁ + X₂, we need to calculate P(Z = z). Let's consider different 

values for Z within its range, which includes 0, 1, 2, and so on. First, let's look at the case 

where Z = 0. For Z to be 0, the sum of X₁ and X₂ must equal 0. 

 



 

 

This is only possible if both X₁ and X₂ are 0, as their minimum values are 0. Since X₁ and 

X₂ are independent, we can multiply the probabilities for X₁ being 0 and X₂ being 0. The 

probability for X₁ being 0 is e^(-λ₁), and the probability for X₂ being 0 is e^(-λ₂). Therefore, 

the total probability is e^(-λ₁ + λ₂). 

Next, let's consider the case where Z = 1. For Z to be 1, the sum of X₁ and X₂ must equal 

1. There are two possibilities for this: either X₁ = 1 and X₂ = 0, or X₁ = 0 and X₂ = 1. Since 

X₁ and X₂ are independent, we can add the probabilities of these two mutually exclusive 

events. The probability of X₁ being 1 is e^(-λ₁) * λ₁^1 / 1!, and the probability of X₂ being 

0 is e^(-λ₂) * λ₂^0 / 0!. Similarly, the probability of X₁ being 0 and X₂ being 1 follows the 

same pattern. The total probability is the sum of the two possibilities: e^(-λ₁ + λ₂) * λ₁ * λ₂. 

From these examples, we can see that there is a pattern emerging. To find the probability 

that Z = z, where Z is the sum of X₁ and X₂, we can express it as the summation of possible 

values. For any given value z, we can sum over the possible values of r, where r ranges 

from 0 to z. For each r, the probability that X₁ = r and X₂ = z - r is multiplied, as X₁ and X₂ 

are independent random variables. 

For example, when r = 0, X₁ will be 0, and X₂ will have to be z. When r = 1, X₁ will be 1, 

and X₂ will be z - 1. This pattern continues for other values of r. So, in general, for each 

value of r from 0 to z, we compute the probability of X₁ = r and the probability of X₂ = z - 

r. The final result is the summation of these probabilities. We will continue this process on 

the next page. 

 



 

 

The probability that Z = z can be found by summing over all possible values of r, from 0 

to z. This probability is equal to the summation of P(X₁ = r) * P(X₂ = z - r), for each r. 

Specifically, for each value of r, we compute P(X₁ = r) and P(X₂ = z - r). For the Poisson 

random variables X₁ and X₂, we use their respective probability mass functions. The 

probability that X₁ = r, given it follows a Poisson distribution with parameter λ₁, is 

represented as: 

P(X₁ = r) = e^(-λ₁) * (λ₁^r / r!) 

Similarly, the probability that X₂ = z - r, given it follows a Poisson distribution with 

parameter λ₂, is represented as: 

P(X₂ = z - r) = e^(-λ₂) * (λ₂^(z - r) / (z - r)!) 

When we combine these terms, we can factor out e^(-(λ₁ + λ₂)), which is independent of 

the summation range. The result becomes a simplification of the sum of the remaining 

terms. Now, summation of r is from 0 to z. So: 

Σ (from r = 0 to z) [ (λ₁^r * λ₂^(z - r)) / (r! * (z - r)!) ] 

Now, how can we simplify this? Let us multiply by z!, because there is a z! factorial, and 

this is an independent constant. We divide by the outside z!, and then it cancels out. Now, 

what is this value? You can recognize that this is a binomial expression. For example, if 

you have (a + b)^n, it can be represented as: 

(a + b)^n = Σ (from r = 0 to n) [ (n! / (r! * (n - r)!)) * a^r * b^(n - r) ] 



This represents (a + b)^n. Comparing this with the given expression, you can see that if 

you set n = z, the rest follows accordingly, with r! and (n - r)! as components. So, (z - r)! * 

a^r * λ₁^r * λ₂^(z - r) is essentially equal to: 

e^(-(λ₁ + λ₂)) * ((λ₁ + λ₂)^z / z!) 

This holds for any values of z = 0, 1, 2, and so on. For any other values, it is 0. Therefore, 

we can write: 

P(Z = z) = e^(-(λ₁ + λ₂)) * ((λ₁ + λ₂)^z / z!) 

whenever z = 0, 1, 2, and so on. For other values, the probability is 0. This distribution is 

also very similar to the Poisson distribution, which implies that Z follows a Poisson 

distribution with parameter (λ₁ + λ₂). But with this method, we can also find the transformed 

probability distribution function. However, it is a bit more complicated. 

 

 

 

We did this example earlier, but in the context of transforming random variables, we just 

wanted to explain it again. This method is time-consuming and complicated, so we are 

looking for a simplified technique. Now, suppose Y₁, Y₂, and Yₙ are independent Poisson 

random variables with parameters λ₁, λ₂, and λₙ, respectively. We need to find the 

probability mass function of Z, where Z = Y₁ + Y₂ + ... + Yₙ. We can apply the previous 

approach, as we did for Y₁ + Y₂, and extend it to Y₁ + Y₂ + ... + Yₙ. 

It will be true that the sum of these variables will follow a Poisson distribution with the 

sum of the parameters, i.e., Z ~ Poisson(λ₁ + λ₂ + ... + λₙ). However, proving this is 



complicated, which is why we will demonstrate another technique. We need a different 

method. We will discuss another method to determine if there is a simplified approach to 

find the distribution more easily, without going through all these details. Next, we will 

explore a topic known as the moment generating function (MGF), which may be useful for 

finding the distribution of such transformed random variables. 

 

 

 


