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Moment Generating Functions 

 

Let us discuss the moment generating function, which is an important function 

corresponding to a random variable X. We have learned that for a random phenomenon or 

sample space, X is a random variable, meaning X is a measurable function from the sample 

space S to ℝ. To identify this, we use different measures. One such measure is the 

cumulative distribution function (CDF) of X. If X is discrete, we use the probability mass 

function (PMF), and if X is continuous, we use the probability density function (PDF). 

With these, we can perform computations such as calculating moments, mean, and 

variance. We have also learned about the transformation of random variables. Now, another 

important function for a random variable is the moment generating function. The moment 

generating function, denoted Mₓ(t), is defined as the expected value of eᵗˣ. For the discrete 

case, this is expressed as Σ eᵗˣ * pₓ(Xᵢ), where pₓ(Xᵢ) is the probability mass function. 

For the continuous case, it is defined as ∫₋∞⁺∞ eᵗˣ * fₓ(x) dx, where fₓ(x) is the probability 

density function. Let us discuss the moment generating function. Let X be a random 

variable. The moment generating function, often abbreviated as MGF, is defined as the 

expected value of eᵗˣ. Now, if X is a random variable, it can either be discrete or continuous. 

If X is discrete, it has a probability mass function, and if X is continuous, it has a probability 

density function. 



 

 

When we apply a transformation, such as Y = g(X), we can find the expected value of Y. 

For a discrete random variable, the expected value of g(X) is Σ g(Xₖ) * Pₓ(Xₖ). For a 

continuous random variable, the expected value of g(X) is ∫ g(X) * fₓ(X) dX. In this case, 

we are interested in the expected value of eᵗˣ. Here, g(X) = eᵗˣ, with t being a real number. 

If t = 0, then eᵗˣ = 1, meaning that g(X) = 1. If t = 1, then it becomes eˣ. If t = 2, it becomes 

e²ˣ. If t = -3, it becomes e⁻³ˣ. Based on this, we need to find the expected value of eᵗˣ. 

From this general formula, if we replace eᵗˣ, it becomes Σ (Xₖ * eᵗˣₖ * Pₓ(Xₖ)) when X is 

discrete. For the continuous case, it becomes ∫₋∞⁺∞ eᵗˣ * fₓ(X) dX. 

This is called a moment generating function because it is used to generate the moments of 

the distribution, such as the mean and variance, by taking derivatives of the function. The 

moment generating function may or may not exist because the sum must be absolutely 

summable for the expected values to exist. The integration must also exist. If it does not 

converge or is infinite, then we say that the moment generating function does not exist. 

It is called the moment generating function if it exists for some values of t, less than δ, 

where δ is a real number greater than 0. The moment generating function may or may not 

exist, but if it does exist for values of t within the interval from -δ to +δ, then we say that 

the moment generating function exists. For example, if δ is some number, the interval 

would range from -δ to +δ. If the moment generating function exists for all values of t 

within this interval, then we can say the moment generating function exists. 

Now, the question is, if the moment generating function exists, why is it called the moment 

generating function? It is called this because it seems to generate moments. If we assume 



that the moment generating function exists, we define it as the expected value of eᵗˣ. We 

also know that eᵗˣ can be represented as an infinite sum. The expression eᵗˣ can be 

represented as 1 + tX + t²X² / 2! + t³X³ / 3!, and so on. In general, it can be written as tʳ * 

Xʳ / r!, where r is a natural number. 

 

 

 

Now, for the moment generating function Mₓ(t), we have the expected value of eᵗˣ, which 

is equivalent to the expected value of the sum: 1 + tX + t²X² / 2! + t³X³ / 3! + …, with the 

general term being tʳ * Xʳ / r!, Using the properties of expected values, this can be written 

as the sum of expected values: 1 + t * E(X) + t² / 2! * E(X²) + t³ / 3! * E(X³) + …, with the 

general term being tʳ / r! * E(Xʳ). The expected value of 1 is 1, and for other terms, we 

recall that these are the raw moments of the distribution. The r-th order raw moment is 

denoted as μᵣ', which is the expected value of Xʳ. 

For example, when r = 0, μ₀' is the expected value of X⁰, which is 1. Therefore, we can 

write the moment generating function as the sum of infinite moments, each multiplied by 

the appropriate coefficient. The sum represents the moment generating function as a series 

of moments with their corresponding coefficients. We can see that the expected values of 

eᵗˣ can be represented as an infinite series: 1 + tX + t²X² / 2!, and so on. If we assume that 

all the moments, such as the r-th order moments, exist, we can proceed with the following. 

 



 

 

The r-th order moment of a random variable X is defined as the raw moment, which we 

denote as μᵣ'. For example, the expected value of X raised to the power of 0, μ₀', is 1. 

Similarly, the expected value of X, which is μ₁', is the first raw moment. We can follow 

this notation for r = 1, 2, and so on. Now, if we assume that all the moments exist, we can 

take the expected value on both sides. 

Using the properties of expected values, we can break this down into the sum of expected 

values: 1 + t * E(X) + t² / 2! * E(X²) + …, continuing with the general term. This infinite 

series can be represented as the moment generating function, provided the moments exist. 

The moment generating function, if it exists for certain values of t within an interval, can 

be represented as a sum of terms involving the moments of the random variable. Therefore, 

all the moments must exist for this representation to hold. We can write it as μ₀' + t * μ₁' + 

t² / 2! * μ₂' + t³ / 3! * μ₃' + …, continuing with tʳ / r! * μᵣ'. 

This is how we represent the moment-generating function. Now, why is it called a moment-

generating function? Suppose we know the moment function of a random variable, but we 

do not know its distribution function or probability mass function in the case of discrete 

variables, or the probability density function in the case of continuous variables. Using the 

moment-generating function, we can derive the moments of the random variable. How can 

we do this? We differentiate with respect to t. Taking the derivative of the moment-

generating function, we get μ₁' + 2t / 2! * μ₂' + 3t² / 3! * μ₃' + …, continuing with r * tʳ⁻¹ / 

r! * μᵣ'. 

If we differentiate a second time, we can proceed in the same manner. Let's write this again 

on the next page. Thus, we have the moment-generating function as eᵗˣ, assuming this 



expression exists. So, this is μ₀' + t * μ₁' + t² / 2! * μ₂' + t³ / 3! * μ₃' + …, continuing with tʳ 

/ r! * μᵣ'. 

Now, let's check if this is correct. If you take the first derivative of Mₓ(t) with respect to t, 

the result is μ₁' + 2t / 2! * μ₂' + 3t² / 3! * μ₃' + …, continuing with r * tʳ⁻¹ / r! * μᵣ'. Next, if 

you take the second derivative of Mₓ(t) with respect to t, you get μ₂' + 3 * 2t² / 3! * μ₃' + 

…, continuing with r * (r-1) * tʳ⁻² / r! * μᵣ'. 

 

 

 

Now, if you differentiate this again with respect to t, the result is μ₃' + 4 * 3 * 2 * t / 4! * 

μ₄' + …, continuing with r * (r - 1) * (r - 2) * tᵖ / r! * μᵣ'. By differentiating repeatedly, you 

can observe a developing pattern. The terms follow a similar structure, continuing with 

higher-order derivatives of the moments. So, we can now understand this pattern. For a 

particular r, if you differentiate the moment-generating function Mₓ(t), the result will start 

from μᵣ' and it will become t * μᵣ₊₁' / (r + 1)! + …. 

This pattern holds for any value of r, such as 1, 2, and so on. You can verify that this is true 

for r = 1 as well. Now, from this expression, what we gain is that if you differentiate the 

moment-generating function for the first time with respect to t and then evaluate it at t = 0, 

you will get μ₁'. Similarly, if you differentiate it a second time and evaluate the result at t 

= 0, you will get μ₂'. In general, if you continue differentiating the moment-generating 

function r times and then evaluate the result at t = 0, you will obtain μᵣ', which represents 

the r-th order moment. 



The key takeaway here is that whenever the moment-generating function is known, finding 

the moments directly from the probability mass function or probability density function 

may be complicated for certain random variables. In such cases, it can be simpler to use 

the moment-generating function. By differentiating it r times and evaluating at t = 0, you 

can easily obtain the r-th order moment, known as the raw moment, from the moment-

generating function. So, that is why it is called the moment-generating function. Now, let's 

discuss an example of how this moment-generating function can be useful in finding certain 

properties. Consider the example where X is a Bernoulli random variable with parameter 

p, where p ∈ [0, 1]. We are asked to find the moment-generating function, the mean, and 

the variance of X. Although we have already computed these values earlier, in this case, 

we will use the moment-generating function to find them. 

 

 

 

First, we will determine the moment-generating function for this case. After that, we will 

use it to find the mean and variance of X. Let's proceed with that. Let X be a Bernoulli 

random variable with parameter p, where p ∈ [0, 1]. The moment-generating function 

(MGF) is a helpful tool, and in this case, we will use its definition to find the MGF and, 

from there, compute the mean and variance. The probability mass function (PMF) of X is 

given as: P(X = k) = pᵏ * (1 - p)^(1 - k), where k ∈ {0, 1}. If X = 0, P(X = 0) = (1 - p), and 

if X = 1, P(X = 1) = p. 

The moment-generating function of X is defined as E(eᵗˣ). Since X is a discrete random 

variable, we sum over all the possible values of X. Thus, the MGF of X can be written as 

Σ eᵗˣ * P(X = x). So, the MGF of X = (1 - p) * eᵗ⁰ + p * eᵗ¹. This simplifies to (1 - p) + p * 



eᵗ. For simplicity, let q = (1 - p). This allows us to rewrite the moment-generating function 

as q + p * eᵗ. 

This is the moment-generating function for a Bernoulli random variable X with parameter 

p. So, where q = 1 - p, we can see that the moment-generating function exists for any real 

number t. This means that the MGF is valid for all finite values of t, which ensures no 

issues with its use. Now, we aim to find the mean and variance using the moment-

generating function. To find the mean, we first need to differentiate the moment-generating 

function. 

The MGF is given as q + p * eᵗ. The first derivative of this with respect to t is p * eᵗ. To 

find the mean, we evaluate this derivative at t = 0, which gives us E(X), which is p. 

Therefore, the mean of X is p. Next, to find the variance, we need to compute the second 

moment. To do this, we differentiate the moment-generating function a second time. 

The second derivative of the MGF is also p * eᵗ. When we evaluate this second derivative 

at t = 0, we again get p. Since the second moment is equal to p, we can calculate the variance 

of X using the formula for variance, Var(X) = E(X²) - (E(X))². Substituting the values for 

the mean and second moment, we find that the variance of X is p * (1 - p). Thus, the mean 

of X is p, and the variance of X is p * (1 - p). 

 

 

 

 



So, we found that the mean, denoted as μ₁, is equal to p. Now, we are finding the variance 

of X. The variance can be calculated as E(X) - μ₁². We know that the simplified formula 

for variance is μ₂ - μ₁². From earlier, we determined that μ₂ = p. 

Therefore, the variance of X is p - p², which simplifies to p * (1 - p), or p * q (where q = 1 

- p). In this case, you can observe that for any r-th order moment, the derivative remains 

the same. If you take the r-th derivative of the moment-generating function, it will always 

result in p * eᵗ. This means that for any r-th order moment, the r-th derivative of the MGF 

evaluated at t = 0 will give p. This is an example showing that for a binomial random 

variable, we can find the moments using the moment-generating function, and the same 

principles apply for any order of moments. 

 


