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Moment Generating Functions for the Transformation of Random Variables 

 

Let us discuss this problem. Let X₁, X₂, ..., Xn be independently distributed random 

variables with moment generating function M_Xᵢ(t). Find the moment generating function 

of Y, where Y = Σᵢ₌₁ⁿ Xᵢ. Let X₁, X₂, ..., Xn be independent random variables, with the 

moment generating function of Xᵢ denoted as M_Xᵢ(t) for i = 1 to n. This is the general 

case. 

 

 

 

In a particular case, we can discuss some of the M_Xᵢ(t) values. Let Y = Σᵢ₌₁ⁿ Xᵢ. We need 

to find the moment generating function of Y, assuming these values are all known. So, 

what is the definition of the moment generating function of Y? Mᵧ(t) is nothing but the 

expected value of e^(tY). This is equal to the expected value of e^(t * Σᵢ₌₁ⁿ Xᵢ), because Y 

= Σᵢ₌₁ⁿ Xᵢ. So, if we explicitly write it, we get the expected value of e^(t(X₁ + X₂ + ... + 

Xn)). 



So, if you simplify this, it becomes the expected value of e^(tX₁), plus the expected value 

of e^(tX₂), and so on, up to e^(tXn). This is equivalent to the expected value of e^(tX₁) * 

expected value of e^(tX₂) * ... * expected value of e^(tXn). Now, this function can be 

written as M_X₁(t) * M_X₂(t) * ... * M_Xn(t). 

What is this? The expected value of e^(tX₁) is nothing but the moment generating function 

of X₁. Similarly, it is the moment generating function of X₂, and so on for Xn. Since the 

moment generating functions of all these variables are known, the moment generating 

function of the sum of these random variables can be represented as the product of the 

moment generating functions from i = 1 to n, M_Xᵢ(t). 

If you know the moment generating function of each independent random variable, you 

can simply multiply those moment generating functions to find the moment generating 

function of the sum of these random variables. This is one property of moment generating 

functions. Hopefully, you have understood it. 

Next, we will discuss an example. Let X₁, X₂, ..., Xn be a set of independent random 

variables, where each Xᵢ follows a Poisson distribution with parameter λᵢ. As we discussed 

earlier, if you have n random variables with Poisson(λᵢ) distributions and you want to find 

the distribution of Y, where Y = Σᵢ₌₁ⁿ Xᵢ, how can we find that? So, first, what will we do 

to find the distribution of Y? 

 

 

 

First, we need to know the moment generating function of the Poisson distribution with 

parameter λ. So, in the general case, let’s find that. Let X be a Poisson random variable 



with parameter λ, where λ > 0. First of all, let's write down the probability mass function 

because we need it to find the moment generating function. The probability mass function 

of X is given by p_X(k), where k represents the integer values. 

The probability mass function is e^(-λ) * λ^k / k!, where k can take values 0, 1, 2, and so 

on, and 0 otherwise. Then we can find the moment generating function from the definition. 

The moment generating function of X is given by M_X(t), which is equal to the expected 

value of e^(tX). By definition, since it is a discrete random variable, this is the summation 

from k = 0 to ∞ of e^(t * k) * p_X(k). So, the summation from k = 0 to ∞ of e^(t * k), then 

p_X(k) is e^(-λ) * λ^k / k!, for k = 0, 1, 2, and so on. 

Sorry, let me clarify why I'm writing this. Essentially, this is the probability mass function. 

Now, we need to find the solution. So, to find the simplified form, how can we do that? 

Since λ and e^λ are constants, we have e^(-λ), with k ranging from 0 to ∞. Now, we can 

write λ * e^t raised to the power of k / k!. So, this simplifies to e^(-λ) * [1 + λ * e^t / 1! + 

(λ * e^t)^2 / 2! + ...]. This is an infinite series. We know that this expression resembles e^x, 

which is written as 1 + ax + x² / 2! + x³ / 3!, and so on. 

So, that is why this is nothing but e^(-λ) * e^(λ * e^t). Hence, we can write it as e^(-λ) * 

e^(λ * (e^t - 1)). This holds for any t ∈ ℝ. So, this is the moment generating function of a 

Poisson random variable with parameter λ. Hence, you can remember that this is the form 

of the moment generating function of a Poisson random variable. 

Suppose there is a random variable, W, with moment generating function M_W(t). Let W 

be a random variable with moment generating function M_W(t). We do not know the 

distribution, but we know the moment generating function. The moment generating 

function M_W(t) is e^(t - 1). When you compare this with the standard form, it looks very 

similar, except for the change from λ to 2. Hence, by comparing these, we can conclude 

that W follows a Poisson distribution with parameter 2, based on the uniqueness theorem 

of the moment generating function. So, it cannot be different. If W is a Poisson random 

variable with parameter 2 (λ = 2), then this moment generating function looks like this. 

There cannot be any other distribution with the same moment generating function, because 

if two different random variables have the same moment generating function, they must 

have the same distribution. So, by the uniqueness theorem, we can say that W must have a 

Poisson distribution with parameter 2. 

This is the usefulness of the moment generating function for identifying a distribution. 

Now, let's look at this problem. We need to find the distribution of Y. First of all, X₁, X₂, 



..., Xn are a set of independent random variables, with each Xᵢ following a Poisson 

distribution with parameter λᵢ. Let's go through it. 

 

 

 

Let X₁, X₂, ..., Xn be independent random variables, where each Xᵢ has a Poisson 

distribution with parameter λᵢ for i = 1 to n. So, here λᵢ > 0. Therefore, λᵢ > 0 for i = 1 to n. 

These are independent random variables. Now, we know that the moment generating 

function of Xᵢ is what we just computed. We replace λ with λᵢ here, as the parameter is λᵢ. 

The moment generating function of X is given by M_X(t), which represents the expected 

values. Here, we directly write it, and we won’t compute it. So, the moment generating 

function of Xᵢ is given by M_Xᵢ(t). The parameter for this is λᵢ, so it will be e^(λᵢ) * (e^t - 

1). 

Now, we will use this theorem. Hence, the moment generating function of Y is the sum of 

Xᵢ, since they are independent, with i running from 1 to n. This is given by M_Y(t). So, 

these things we have already done. In this theorem, we can see that whenever X₁, X₂, ..., 

Xn are independent random variables, the moment generating function for each Xᵢ in the 

general case will be the product of their individual moment generating functions. This 

means that the moment generating function of Y will be the product of the moment 

generating functions of each Xᵢ, from i = 1 to n. 

So, the moment generating function of each Xᵢ is equal to an expression involving λᵢ and t, 

which includes a term with e^(λᵢ) * (e^t - 1). This product, I believe, is understood. We 

have used these kinds of notations several times before, or we can explicitly write them 



out. Now, this expression is simply e^(λ₁ * (e^t - 1)), then e^(λ₂ * (e^t - 1)), and so on, up 

to e^(λn * (e^t - 1)). I have just explicitly written this out. 

Essentially, this is the summation of these terms. This is λ₁ * e^(t - 1), plus λ₂ * e^(t - 1), 

and so on, up to λn * e^(t - 1). Since it is a multiplication in the power, it will become a 

summation. So, this is the summation of λᵢ * e^(t - 1), which is the common form. This is 

summation 1. 

This is simply e^(λ' * (e^t - 1)), where λ' is the sum of λ₁, λ₂, and up to λn. Now, if you 

compare this with the Poisson distribution, we do not yet know the distribution of Y. It 

looks very similar to this. Now, by the uniqueness property of the moment generating 

function, we can conclude that Y follows a Poisson distribution with parameter λ', which 

is equal to the summation of λᵢ values. 

Therefore, we found that for X₁, which follows a Poisson distribution with parameter λ₁, 

and X₂, which follows a Poisson distribution with parameter λ₂, we have shown that X₁ + 

X₂ follows a Poisson distribution with parameter λ₁ + λ₂, by directly finding the probability 

mass function. In the general case, if you consider X₁, X₂, ..., Xn as independent random 

variables with Poisson distributions, we found that if X₁, X₂, ..., Xn are independent random 

variables, where each Xᵢ follows a Poisson distribution with parameter λᵢ, and λᵢ > 0 and < 

∞ for i = 1 to n, then Y = X₁ + X₂ + ... + Xn follows a Poisson distribution with parameter 

λ₁ + λ₂ + ... + λn. This is the general result we have proved here using the moment 

generating function. Hopefully, you have followed and understood these concepts. 

 

 

 



Next, we will discuss more examples and explore how the moment generating function can 

be useful. We will find the distribution of Y, which is the summation of Xᵢ, in similar types 

of problems where X₁, X₂, ..., Xn are independently distributed. Consider random variables 

where Xᵢ follows a normal distribution with mean μᵢ and variance σ² for i = 1 to n. We have 

already discussed that the summation of independent random variables, Xᵢ, results in a 

normal distribution. Here, we will use the moment generating function to prove this. 

So, how can we do that? Let us recall what the moment generating function is. Let X₁, X₂, 

..., Xn be independent random variables, where each Xᵢ follows a normal distribution with 

mean μᵢ and variance σ². We can consider different σ values for each i, but here it is given 

that Xᵢ follows a normal distribution with mean μᵢ and variance σ² for i = 1 to n. Recall that 

if X follows a normal distribution with mean μ and variance σ², the moment generating 

function of X is given by e^(μt) * e^(½σ²t²). 

Let us go through this again. When Y is normally distributed with mean μ and variance σ², 

the moment generating function of Y is e^(tμ) * e^(½σ²t²). This is what we have written 

here. Hence, the moment generating function of Xᵢ is M_Xᵢ(t), which is equal to the 

moment generating function of Xᵢ with the mean μᵢ. So, it is e^(μᵢt) * e^(½σ²t²), where σ² 

is the same for all i. 

This is the moment generating function of Xᵢ. Now, using this result, the moment 

generating function of Y is the summation of Xᵢ, where i ranges from 1 to n. Since they are 

independently distributed random variables, we apply the previous result. The moment 

generating function of Y is given by M_Y(t), which is the expected value. Because the 

random variables are independently distributed, we write this as the product of M_Xᵢ(t) for 

i from 1 to n. 

This is equivalent to the product from i = 1 to n of e^(μᵢt) * e^(½σ²t²). Since this is a product, 

it will become a sum. Notice that the σ is the same for all terms. This will result in e^(∑(μᵢt)) 

* e^(n * ½σ²t²). Please go through this. 

To sum it, you can express it as a product. This product, when written as a power, will be 

the summation of μᵢ * t. While each μᵢ is different, the sum of n terms will be the sum of 

σ², so it becomes n * σ² * t² / 2. Hence, this looks like e^(∑(μᵢt)), with the coefficient of t² 

being n * σ², and then t² / 2. This also resembles the probability function of a random 

variable, with the only changes being that μ is replaced by ∑(μᵢ) and σ² is replaced by n * 

σ². 



Hence, by the uniqueness property of the moment generating function, Y, which is the 

summation of Xᵢ, has a normal distribution. The mean here is ∑(μᵢ), and the variance is 

replaced by n * σ². See that the variance, σ², is replaced by n * σ². So, the variance is now 

n * σ², which means Y has a normal distribution with mean = ∑(μᵢ) and variance = n * σ². 

Using the moment generating function, we can conclude this. 

 

 

 

Therefore, the sum of normal distributions is again a normal distribution, with the mean 

being the summation of μᵢ because they are independently distributed random variables, 

and the variance being n * σ². Hopefully, you have understood this. Now, we will discuss 

a new topic. First of all, what we have found is that in all of these cases, the moment 

generating function exists. But we discussed that the moment generating function may or 

may not exist. 

 

 



Let us now discuss an example where the moment generating function may not exist. We 

will go through one such example. Let us consider this example: a discrete random variable 

X with a probability mass function given by this. Let us consider the discrete random 

variable X with the probability mass function described as follows: the probability of X 

taking any value is given as 6 / π² * x² for values x = 1, 2, 3, and so on. For all other values, 

the probability is 0. 

 

 

 

 To verify if this is a valid probability mass function, first note that the probability for all 

valid x values is always ≥ 0, satisfying the non-negativity condition. Next, we check 

whether the total probability sums to 1. When summing over all possible values of x from 

1 to ∞, the series converges to 1 because it is a well-known convergent series. 

 Therefore, this is a valid probability mass function. If the moment-generating function 

exists for this random variable, it can be expressed as an infinite series of moments. 

This concept can be analyzed further to understand its properties. So, now, if the moment 

does not exist, then the moment-generating function cannot exist either. To examine this, 

the moment-generating function is defined as the expected value of e^(tx). This involves 

taking the summation over all possible values of x, starting from 1 and extending to ∞. So, 

we have e^(tx) multiplied by P_X(x). 

 

This becomes a summation starting from x = 1 up to ∞ of e^(tx). The term tx multiplied by 

x is essentially 6 / π² * x². Therefore, the summation is x starting from 1 to ∞ with the factor 



6 / π² taken outside. Then, inside the summation, we have e^(tx) / x². So, how can we show 

that this may diverge? 

 

Well, see, 1 + e^(tx) contains higher-order terms, such as 1 + tx + t²x², all of which are 

positive terms. Now, let's look at this sum. It’s actually ≥ the summation from x = 1 to ∞ 

of t * x / x². This is ≥ the summation from x = 1 to ∞. So, if you take t as any positive value, 

you can represent tx as 1 + tx + t²x² / 2! and so on. 

 

So, the other terms will be positive, and we are not considering just this term. That’s why 

this will be strictly greater than the previous sum. This sum is essentially the same as the 

summation from x = 1 to ∞ of 1 / x, which is a divergent series when t is a non-zero value. 

Therefore, this is not convergent. So, this actually goes to ∞. 

 

This sum is a divergent series and does not converge to finite values. That’s why it is not 

convergent. So, now, in another way, we can discuss what their moments are. Basically, 

we consider the first-order moments, suppose μ₁'. By definition, this is the summation from 

x = 1 to ∞ of x * P_X(x). 

 

 

 

So, this becomes the summation from x = 1 to ∞, x * P_X(x), which equals 6 / π² * x². 

Since 6 / π² is a constant, we get 6 / π² * summation from x = 1 to ∞ of 1 / x. This is a 

divergent series, so it does not exist finitely. So, that is why μ' does not exist, and in general, 



μ_r' does not exist for any r, whether r = 1, 2, or higher. None of the first-order, second-

order, or third-order moments exist in a finite value. 

 

Hence, the moment-generating function does not exist, meaning the moment-generating 

function of X does not exist. So, that is one example where the moment-generating function 

does not exist. There may be other examples where the moment-generating function does 

not exist as well. Whenever the moment-generating function does not exist and you want 

to find a similar property, there is a different definition. This function is known as the 

characteristic function. 

 

The characteristic function of a random variable X is defined similarly to the moment-

generating function, with a slight modification. It is denoted as ψ_X(t). Instead of 

multiplying by t, we multiply by j, where j is the complex number, the square root of -1. 

So, what is the benefit here? If we take the expected value of e^(jtx), for example, let us 

consider a discrete random variable. In this case, the definition becomes the summation of 

all x_k * e^(jtx_k), where P_X(x) = P_X(x_k), whenever X is a discrete random variable. 

 

This is equal to the integral from -∞ to +∞ of e^(jtx) * f_X(x) dx, when X is a continuous 

random variable. So, now, why is this beneficial? If we add -1 * √(-1) instead of t, it's 

because the moment-generating function may not exist for all random variables. What 

about ψ_X(t)? If we consider this for a continuous random variable, the discrete case will 

be very similar. 

 

So, if you consider ψ_X(t), the absolute value of ψ_X(t) is nothing but the absolute value 

of the integral from -∞ to +∞ of e^(jtx) * f_X(x) dx. If you take the absolute value inside, 

then e^(jtx) and f_X(x) are already positive numbers, always ≥ 0. So, the absolute value 

will be the same as this. So, now, what is e^(jtx)? This represents the modulus of a complex 

number. 

 

e^(jtx) is essentially the sum of cos(tx) + j * sin(tx). Now, what is the modulus of this? It 

is √[cos²(tx) + sin²(tx)], and the square root of that equals 1. So, cos²(tx) + sin²(tx) = 1. The 

square root of 1 is 1. 



 

This value is nothing but the integral from -∞ to +∞ of f_X(x) dx. Since it is a density 

function, this value will equal 1. Therefore, the modulus of ψ_X(t) will be ≤ 1. This means 

that it will always be convergent. It will not be ∞ or -∞; it will have some finite value. 

 

Hence, it always exists. So, other properties are very similar. Also, whenever the moment-

generating function exists, if you replace t with jt, you will obtain the characteristic 

function. For example, in the case where X follows a normal distribution with mean 0 and 

variance 1, or in a more general case with mean μ and variance σ², the moment-generating 

function is simply μ * t + (1/2) * σ² * t². So, then for ψ_X(t), if you replace t with jt, it will 

become e^(jμt) * e^(-σ² * t² / 2), because j² = -1. 

 

So, this is the characteristic function of X. We have already discussed the moment-

generating function in detail, and when the moment-generating function exists, you can 

simply replace t with jt to find the characteristic function of X. The properties of the 

characteristic function are very similar to those of the moment-generating function. If the 

moment-generating function does not exist, we can still use the characteristic function to 

find the properties, which is one of the advantages of using the characteristic function. 

 So, this is the concept of the moment-generating function and some of the numerical 

examples, their properties, and how the moment-generating function can be utilized to find 

the unknown distribution, especially for the transformation of a random variable and 

finding the distribution. 

 



How the moment generating function is used in that process, we have also discussed. So, 

hopefully, you have followed and understood it. In the references, there are many 

numerical examples you can go through for moment generating functions and the 

transformation of random variables to gain better clarity. Next, we will discuss another 

topic: an important inequality known as Chebyshev's inequality. 


