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Let us discuss the notion of convergence for a random variable and a sequence of random 

variables. Now, whenever we talk about convergence in a sequential sense, we know the 

sequence of real numbers. First of all, let us discuss the sequence of real numbers aₙ. We 

say that this is a sequence of real numbers. So, it is basically a function from ℕ (natural 

numbers) to ℝ (real numbers). 

For each value of n, we get a real number. So, it is known as a sequence of real numbers, 

denoted by aₙ. So, we say that this sequence is a convergent sequence, and we denote it as: 

lim (n → ∞) aₙ = a if, for any ε > 0, there exists n₀ ∈ ℕ such that |aₙ - a| < ε for all n ≥ n₀. 

So, this is the concept of convergence in a sequence of real numbers. Now, if you consider 

a sequence of random variables, it is a sequence of functions. 

For each n, we get random variables X₁, X₂, ..., Xₙ. This is a sequence of random variables. 

So, that means for each n ∈ ℕ, Xₙ will be a function from the sample space S to ℝ. 

Now, how do we define convergence in this case? It’s not a real number, and it’s not just 

a function; it’s a random variable. 

This means it is a measurable function, but we can also talk about its probability. So, for 

some Xₙ, for any s ∈ S, Xₙ(s) is a real number. Now, if you want to define that it is 

converging to some random variable X, how can we define this? 

So, there are different approaches to define the convergence of a sequence of random 

variables. One is called convergence in probability. 



 

 

So, a sequence of random variables Xₙ is said to converge in probability to a random 

variable X. X may also be a constant random variable, which we can say is some real 

number. In general, for convergence in probability to X, if for any ε > 0, we consider the 

difference Xₙ(s) - X(s). 

This difference |Xₙ(s) - X(s)| ≥ ε for all s ∈ S such that |Xₙ(s) - X(s)| ≥ ε. This will be a 

subset of S; it is an event. If you take the probability, then this will be a real number. Now, 

if this happens, n becomes a sequence of real numbers. 

Now, if this goes to 0, it means we can write: lim (n → ∞) P(|Xₙ - X| ≥ ε) = 0. 

For simplicity, we will just write lim (n → ∞) P(|Xₙ - X| ≥ ε). If this probability goes to 0, 

then we say that for any ε > 0, lim (n → ∞) P(|Xₙ - X| ≥ ε) = 0. 

This is the same as the simplified notation. So, we can say that if this is equal to 0, then Xₙ 

converges to X in probability. 

Now, let us discuss one example. In this example, suppose we consider X₁, X₂, ..., Xₙ as 

independent, identically distributed (iid) random variables, where each has the same 

distribution, a normal distribution with mean μ and variance σ². 

Now, if you change n, the number of random variables will change accordingly. Let us 

consider X̄ₙ. We can express this as: X̄ₙ = (Σ Xᵢ) / n, which is the sample mean. 

We know that the expected value of X̄ₙ is equal to μ, and the variance of X̄ₙ, which we have 

already discussed earlier, can also be computed as σ² / n. 



Let us compute it. The expected value of X̄ₙ is: E(X̄ₙ) = E((X₁ + X₂ + ... + Xₙ) / n) = (1 / n) 

× (E(X₁) + E(X₂) + ... + E(Xₙ)). 

By definition, the expected values of X₁, X₂, ..., Xₙ are all the same, which is μ, because all 

X's come from the same normal distribution. 

So, n × μ / n = μ. 

Similarly, the variance of X̄ₙ can be found by taking the variance of (X₁ + X₂ + ... + Xₙ) / 

n. Since n is a constant, it will be: (1 / n²) × (Var(X₁) + Var(X₂) + ... + Var(Xₙ)). 

There will be some covariance terms, but since the variables are independent, the 

covariance will be 0. 

So, all the variances will be the same, σ². 

This becomes: n × σ² / n² = σ² / n. 

Now, the claim is that as n → ∞, X̄ₙ, which is a sequence of random variables for n ≥ 1, 

converges to a constant random variable, μ, in probability. 

How can we show that? Note that by Chebyshev's inequality, for any random variable, P(|X 

- μ| ≥ ε) ≤ σ² / ε². 

 

 

 



For any ε > 0, the probability that X̄ₙ, which is the mean μ, is greater than or equal to ε is 

less than or equal to the variance of X̄ₙ, which is σ² / n, and this is ε². Now, this probability 

is always ≥ 0, and it goes to 0 because it is just a sequence of real numbers as n → ∞. 

This implies that: 

lim (n → ∞) P(|X̄ₙ - μ| ≥ ε) = 0, by the sandwich theorem. 

Hence, by definition, if this satisfies, we say that X̄ₙ converges in probability to X. So, X̄ₙ 

converges to μ in probability. 

This is one notion of convergence. Another type of convergence is known as almost sure 

convergence. So, it is nothing but this function converges in pointwise limit as n → ∞, with 

Xₙ(s) → [the limit]. 

So, let us explicitly write that. This is almost sure convergence. 

 

 

 

Let Xₙ be a sequence of random variables. A sequence of random variables, Xₙ, is said to 

converge to X almost surely if, for all s, the probability that the sequence converges 

approaches a limit as n → ∞. Essentially, it converges pointwise for all s ∈ S (the sample 

space). Now, it may not be converging for all s, but if the probability is equal to 0, it is 

equivalent to saying that the probability that for all s ∈ S, lim (n → ∞) Xₙ(s) = X(s). If we 

observe that this probability is 1, then we say that Xₙ converges to a point X almost surely. 

So, suppose this is a sample space, and you have some set A, where P(A) = 0. If the 

sequence of random variables converges at all points except for this set A, then it is called 



almost sure convergence. Almost sure convergence is like taking the majority, where there 

is some possibility or probability. If P(A) = 0, we will not consider those points. So, in a 

way, we're saying something similar to Lehman's idea, but the mathematical definition is 

that if P(A) = 0, and if the sequence of random variables converges at all other points where 

P is 1, then we say it is almost sure convergence. 

Another notion of convergence is called convergence in law, also known as convergence 

in distribution. A sequence of random variables, Xₙ, is said to converge in law to a random 

variable X if, as n → ∞, Fₙ(x) → F(x) for all x ∈ ℝ, where F is continuous. So, for all these 

X where F is continuous, if you observe, Fₙ = F. Here, the notation is that Fₙ(x) represents 

the cumulative distribution function (CDF) of the random variable Xₙ, and F(x) represents 

the cumulative distribution function (CDF) of the random variable X. 

 

 

 

This defines the convergence in law. We will discuss some more examples in the following, 

whenever we learn some theorems or results and how they are utilized. First, let us discuss 

the weak law of large numbers. The weak law of large numbers states that we have already 

shown this kind of result. However, here we assume that convergence is in probability, 

with the mean (μ) and variance (σ²) existing, and that the random variable X is normally 

distributed. 



 

 

 

The weak law of large numbers is stronger than this concept. Let X₁, X₂, ..., Xₙ be a 

sequence of independent and identically distributed (i.i.d.) random variables with a finite 

mean, μ. The variance is not specified, and X̄ₙ represents the mean of these variables. The 

weak law of large numbers states that as n → ∞, X̄ₙ converges to μ in probability. This is 

known as the weak law of large numbers. 

The weak law of large numbers states that... It is often abbreviated as the weak law of large 

numbers. Let X₁, X₂, ..., Xₙ be a sequence of i.i.d. random variables. Since they are 

identically distributed, they all have the same mean, with Xᵢ = μ for all i, where i ranges 

from 1 to n. Then it says that if you consider the sample mean of X₁, X₂, ..., Xₙ, this sample 

mean converges to μ in probability. This means that as the number of observations (n) → 

∞, for any ε > 0, the probability that |X̄ₙ - μ| ≥ ε approaches 0. 

This is called the weak law of large numbers. We are not going to prove this here. The 

strong law of large numbers says the same thing, but we will not go into the details. So, 



this is just to learn it: the weak law of large numbers and the strong law of large numbers 

say that if X₁, X₂, ..., Xₙ is a sequence of i.i.d. random variables with finite mean μ, then 

for any ε > 0, as n → ∞, P(|X̄ₙ - μ| ≥ ε) → 0. Basically, this limit is inside here. 

So, this applies to all s such that it is not converging to μ. Therefore, this is equal to 0. So, 

the strong law of large numbers says that the limit, whenever you apply it, remains the 

same. The statement for the strong law of large numbers is the same as the strong law itself. 

So, all these things will be the same. 

 

 

 

Let X₁, X₂, ..., Xₙ be a sequence of independent and identically distributed (i.i.d.) random 

variables. Since they are independent and identically distributed, they all have the same 

mean, Xᵢ = μ for all i from 1 to n. The Strong Law of Large Numbers states that X̄ₙ, which 

is the sum of X₁, X₂, ..., Xₙ divided by n, converges to μ almost surely as n → ∞. This is 

almost sure convergence. In other words, you can say that lim (n → ∞) P(X̄ₙ = μ) = 1. 



 

 

This is equal to 1. Alternatively, you can say that for any ε > 0, if you consider the 

probability lim (n → ∞), the difference |X̄ₙ - μ| > ε will be equal to 0. This means it is 

converging. So, this is the same as saying that lim (n → ∞) P(|X̄ₙ - μ| > ε) = 0. This is 

equivalent to saying these things. 

So, this is the Strong Law of Large Numbers. We won't go into more details about it, but 

it's important to mention both the Strong Law of Large Numbers and the Weak Law. So, 

why is it strong and why is it weak? Because almost sure convergence is stronger than 

convergence in probability. There are some examples where a sequence of random 

variables converges in probability, but it may not converge almost surely. 

But if a sequence of random variables converges almost surely, then it must converge in 

probability as well. That's why almost sure convergence is considered strong. So, that’s 

why it’s called the Strong Law of Large Numbers, and because it involves convergence in 

probability, it’s called the Weak Law of Large Numbers. We won’t go into more details 

here. Now, how is the Law of Large Numbers used? 

There are many examples in real-life situations. For instance, if you go to a village during 

a Mela, you might see this in action. So, there are different types of gambling going on. It 

may seem like everything is happening randomly, and some people may be fortunate and 

make a profit. However, if you look at the theoretical part and how it's utilized, the Law of 

Large Numbers tells us that when n becomes very large, it's no longer random—it will 

approach a particular value. 

 

So, the game is actually designed in such a way that the people running it—such as the 



shopkeeper or those who designed the game—will always make a profit in the long run. In 

the long run, they can compute the average behavior and the average profit. While 

individual trials may seem random and someone might win, in the long run, it is not random 

at all. It mostly converges to a particular point. For example, suppose you have a fair six-

sided die, with each side having an equal probability of landing face up when the die is 

rolled. 

Now, if you roll the die 100 times and record the outcome of each roll, what is the expected 

value, or mean, of the outcomes after rolling the die 100 times? So, whenever you roll the 

die, you do not know what value it will land on. However, if you roll it 100, 1,000, or even 

10,000 times, you can expect that each number will appear with a probability of 1/6. The 

number of times it should occur can be concluded based on this probability. We can discuss 

more details of this example later if we have time. 

Then it will be very interesting to see how the Law of Large Numbers is useful in gambling, 

how it's used, and more details can be discussed with examples. Now, we will discuss 

another important topic. Often, when we collect data, we do not know the exact distribution 

of the data. So, it could be a Poisson distribution, binomial distribution, exponential 

distribution, or gamma distribution; we do not know. In that case, we assume it is a normal 

distribution. 

 

 

 

The question then is, why are we assuming it to be a normal distribution? Why might it 

work or not? The basis for this assumption is the central limit theorem. The central limit 



theorem is a fundamental result in probability theory. It holds immense significance in 

various fields due to its versatile applications. 

 

The theorem exists in multiple versions, each catering to different scenarios. So, here we 

discuss one version. Consider a sequence of independent and identically distributed 

random variables. There are many versions, but here we focus on these. Each random 

variable, Xᵢ, has a mean denoted by μ and variance denoted by σ². Now, let us define Zₙ. 

 

 

 

 

Let X₁, X₂, Xₙ be a sequence of random variables. So, consider a sequence of independent 

and identically distributed random variables. Here, we assume that each variable has a 

finite mean, as all have the same mean. The variance of each Xᵢ is equal to σ² for all i from 

1 to n, because the random variables are identically distributed, meaning their means and 



variances are the same. Let Z be defined as the difference between the average of the 

sequence of random variables, Xₙ̄, and the mean, μ, divided by the standard deviation, σ, 

divided by the square root of n. If we simplify this, the square root of n is equal to the 

difference between Xₙ̄ and μ, divided by σ. We have already defined Xₙ ̄as the sum of X₁, 

X₂, ..., Xₙ, divided by n. 

We have computed the mean of the expected values of Xₙ̄, which is μ. The variance of Xₙ̄ 

is σ²/n. In this transformation, we are subtracting the mean and dividing by the standard 

deviation of Xₙ,̄ which is σ/√n. The central limit theorem states that, since it depends on n, 

let Fₙ(z) be the cumulative distribution function of Z. We denote it as ϕ(z), which is defined 

by the integral from negative infinity to z of (1/√(2π)) * e^(-t²/2), with respect to t. 

This is the cumulative distribution function of the standard normal distribution, or the 

cumulative distribution function of a normal distribution with mean 0 and variance 1, 

representing a standard normal random variate. So, we say that it is the standard normal 

random variate. Sometimes, we denote it as N(0,1), which represents a normal distribution 

with a mean of 0 and a variance of 1. This is referred to as the standard normal random 

variate. Then, as n approaches infinity, Fₙ(z) for any z equals ϕ(z) for any z ∈ ℝ. 

In other words, we say that Zₙ converges to N(0,1) in distribution as n approaches infinity. 

The distribution function of Fₙ(z) resembles the distribution function of the standard normal 

variate when n is very large. It is known as the central limit theorem. The central limit 

theorem has many applications. Here, the central limit theorem is given. 

 

 

 



The purpose is to standardize the sum of n random variables. The main result of the CLT 

is that as n → ∞, the distribution of Zₙ tends to the standard normal distribution. 

Mathematically, as n → ∞, Zₙ is very close to N(0, 1). This is the central limit theorem. If 

you graphically represent this, suppose you take the transformation of Zₙ, which is (Xₙ̄ - μ) 

/ (σ / √n). 

 

For small values of n, it may look something like this. So, when n is large, let's consider 

different values of n. Suppose n = 10, then n = 50, and n = 100. As n becomes larger, for 

example, when n = 1000, the distribution closely approximates a standard normal variate. 

This is the theorem. 

So, when n is large, the distribution or probability density function of Zₙ and its probability 

distribution function will closely resemble the standard normal distribution, which is 

denoted as N(0, 1). This is why, when n is large, we consider it to be a normally distributed 

random variable. This is the central limit theorem, and it has many applications. One of the 

applications is that the cumulative distribution function of F_Zₙ(z) converges to the 

standard normal cumulative distribution function, φ(z), as n → ∞. This convergence is 

crucial for understanding the behavior of the sums of random variables. 

Suppose you have a population of test scores with a mean of 50 and a standard deviation 

of 10. If you randomly sample 50 test scores from this population, what would be the mean 

and standard deviation of the sampling distribution of the sample mean? Additionally, find 

the probability that the sample mean is greater than 72. Let us discuss a numerical example 

where the central limit theorem can be applied. Suppose you have a population of test 

scores with a mean of 70 and a standard deviation of 10. 



You randomly sampled 50 test scores from this population. Essentially, you have a sample 

of X₁, X₂, ..., X₅₀, meaning there are 50 test scores, with n = 50. These are independent and 

identically distributed (iid) random variables, all having the same mean because they are 

identically distributed, as stated by the population. So, from the population, you are 

drawing test scores with a mean of 70 and a standard deviation of 10. The variance, denoted 

as σ², is the square of the standard deviation, which is 100. 

 

 

 

This holds for all i from 1 to 50. This information is given. Now, notice that the distribution 

of this population is not known. If the distribution is not known, whether it's a gamma 

distribution, an exponential distribution, or a normal distribution, we are unsure which 

distribution to use. The question here asks for the mean and standard deviation of the 

sampling distribution of the sample mean. 

 

These can be determined because if you calculate the sample mean, denoted as X̄ₙ, and 

here n = 50, it is simply the sum of X₁, X₂, and Xₙ divided by n. From here, we can compute 

that the expected value of X̄ₙ will be the same as the mean, which is 70. The variance of 

X̄ₙ will be σ²/n. Since σ² = 100 and n = 50, the variance is 100/50, which equals 2. This is 

correct. 

 

The variance of X̄ₙ can be found without using any specific distribution. We computed the 

expected value and variance of X̄ₙ earlier, and we did not rely on a normal distribution or 

any other distribution. You can see here that this calculation was done earlier. Whenever 



we discuss the law of large numbers, we can see that here. We can compute the mean and 

variance of X̄ₙ. 

 

Since the random variables are independent and identically distributed (i.i.d.), the variance 

of each Xᵢ is σ². So, we computed the variance as σ²/n. Now, we can calculate the value. 

As we have already found for this example, the expected value of X̄ₙ is 70, and the variance 

of X̄ₙ is 2. Now, what is the mean and standard deviation of the sampling distribution? 

The standard deviation of X̄ₙ will be the square root of the variance of X̄ₙ, which is √2. So, 

the next question is to find the probability that the sample mean is greater than 72. We need 

to find this probability, where the sample mean X̄ₙ is greater than 72. Now, how can we 

find this? We do not know the distribution of X̄ₙ. 

 

Here, nothing is given about the population, only the mean and variance are provided. Now, 

if you use the central limit theorem, we know that if you consider Zₙ, which is (X̄ₙ - μ) / (σ 

/ √n), it approximately follows a normal distribution with mean 0 and variance 1 as n → 

∞, whenever n is large. Now, if we use the central limit theorem, we know that if we 

consider Zₙ, which is (X̄ₙ - μ) / (σ / √n), it approximately follows a normal distribution with 

mean 0 and variance 1 as n → ∞, whenever n is large. We can consider that since n will be 

large, it typically follows a normal distribution whenever n is greater than a certain value, 

such as 30. Most of the time, we can assume that it holds, but we must verify whether it is 

true. 

 

Here, we assume that whenever n is large, it follows a normal distribution. Since n = 50 in 

this case, let us now consider X̄ₙ - μ. So, what is μ? X̄ₙ - μ is 70, where μ = 70. That is the 

value of μ, and σ / √n is σ². 

 

The variance of X̄ₙ here is the variance of the standard deviation. Therefore, the standard 

deviation of X̄ₙ is simply √2. We can replace this value here. So, this implies that the 

probability of X̄ₙ is the same as the probability of (X̄ₙ - 70) / √2 being greater than a certain 

value. If you perform the same operation here, the inequality remains unchanged, and the 

probability will be the same. 

 

So, this is essentially the probability that (X̄ₙ - 70) / √2 is equal to a certain value. This 



might seem numerically complicated, but we will find out. So, this is Zₙ, and it is greater 

than (72 - 70) / √2. So, this is equal to the probability that Zₙ is greater than √2. Now, we 

know that Zₙ is approximately normally distributed with a mean of 0 and a standard 

deviation of 1. 

 

So, Zₙ > √2 is approximately 1.414. This is the value for √2, and this is -√2. By symmetry, 

the probability that Zₙ > √2 is the same as the probability that Zₙ < -√2. Therefore, we will 

use approximate values of Zₙ. The approximate value for √2 is Zₙ < -1.414. 

I am using this value because we want to use this table. This table is the normal distribution 

table, and it already provides the negative values. So, the value for -1.41 is 0.07927, as 

given in the table to two decimal places. So, this is approximately 0.07927. You can see 

that the probability up to -1.41 is 0.07927. This is one application where, whenever n is 

large or when the distribution is unknown, we can use any distribution. 

 

 

 

However, the best approach is to apply the central limit theorem. If n is large, it will mostly 

follow a normal distribution. By assuming that it is a normal distribution and using this 

transformation, we can find the required probability. I think we have completed the 

syllabus for probability theory for data science. I hope you have followed along and 

enjoyed this course. 

 

You can refer to the books for more details and solve the assignments. By solving more 



problems, you can clear your doubts. I believe you have understood everything clearly, and 

I think this is the end of the course. Thank you. 

 

 


