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Bayes' Theorem 
 

Now, we will discuss Bayes' theorem. But before that, let's go over a particular theorem 

known as the Total Probability Theorem, or the Law of Total Probability. So, let's discuss 

that. What does it say? We've already talked about this kind of theorem before, but we’re 

repeating it here. 

Let A₁, A₂, ..., Aₙ be a set of pairwise mutually exclusive and exhaustive events. What 

does this mean? Pairwise mutually exclusive means that the intersection of Aᵢ and Aⱼ is 

empty if i ≠ j. A mutually exclusive and exhaustive set of events means that the union of 

A₁, A₂, ..., Aₙ is equal to the sample space S. So, suppose this is the sample space, and 

then this is just a partition. 

So, we have A₁, A₂, A₃, A₄, and so on, up to A₅, and ∅. They’re pairwise mutually 

exclusive; they’re disjoint sets pairwise, and if you take their union, it will be S. Then, for 

any event—let’s say B—the probability of B can be written as the summation of i from 1 

to n, with P(B|Aᵢ) × P(Aᵢ). So, this is the conditional probability. And this is also the same 

as the summation from i = 1 to n of P(B ∩ Aᵢ). 

We’ve actually already proved this. So, let us go through it again. This is just a different 

expression. Now, because A₁, A₂, ..., Aₙ are pairwise disjoint and an exhaustive set of 

events, let’s consider an event B. Since B is an event, B is a subset of S. 

So, B can be written as B ∩ S. Now, S can be represented as the union of A₁, A₂, ..., Aₙ, 

because these are pairwise disjoint and exhaustive. Then, using the distributive property, 

this can be represented as B ∩ A₁ ∪ B ∩ A₂ ∪ ... ∪ B ∩ Aₙ. Now, all these sets will be 

pairwise disjoint because, if i ≠ j, then B ∩ Aᵢ ∩ B ∩ Aⱼ is the same as B ∩ Aᵢ ∩ Aⱼ. Since 

Aᵢ and Aⱼ are pairwise disjoint, this will be ∅. 

So, that’s why they are disjoint—they are pairwise disjoint. Now, using Theorem 1.5, this 

is just a finite version of Axiom 3. The probability of B can be represented as, actually, 

Theorem 1.5 is used here: B ∩ A₁ ∪ B ∩ A₂ ∪ ... ∪ B ∩ Aₙ. Because they are pairwise 



disjoint, we use Theorem 1.5, which says that we can add P(B ∩ A₁) + P(B ∩ A₂) + ... + 

P(B ∩ Aₙ). So, that’s the expression we got. 

Now, this means that P(B ∩ Aₙ) can be represented as P(B|A₁) × P(A₁). So, that can be 

found. Suppose, here you can see P(B ∩ Aᵢ). So, what is the conditional probability? By 

definition, this is simply P(B ∩ Aᵢ) / P(Aᵢ), assuming that P(Aᵢ) ≠ 0. 

 

 

 



This implies that P(B ∩ Aᵢ) can be represented as P(B|Aᵢ) × P(Aᵢ) for i from 1 to n. 

Hence, this can be represented as P(B|A₂) × P(A₂) + P(B|Aₙ) × P(Aₙ). So, in short form, 

we can write this as the summation from i = 1 to n of P(B|Aᵢ) × P(Aᵢ). 

This is useful, and we will discuss it whenever we talk about Bayes' theorem. There are 

also some examples where the total probability is used for computing this kind of 

probability. 

 

 

Suppose we have P(B|Aᵢ) and P(Aᵢ); then any event B can be represented this way.Now, 

we will discuss Bayes' theorem. You may have heard of it or learned about it. If you have 

learned it, then it will be very simple to understand. But I am assuming that you do not 

know this theorem, so I will discuss it very slowly from the beginning, starting with one 

example. 

 

We will also study some more examples to understand Bayes' theorem better. Bayes' 

theorem is very useful when working with data sets. Sometimes, some of the conditional 



probabilities are known and straightforward to identify, but the inverse probabilities are 

not known. For example, suppose we have attendance data for students based on whether 

it is a rainy day or a non-rainy day. The probability that a student is present on a rainy 

day, given that the day is rainy, may be known. 

We can also know the probability that a student will be absent, given that the day is rainy, 

not rainy, or sunny. Additionally, the probability of it being a rainy day or not can be 

known from the data set. Now, suppose we ask the question in the opposite direction: if a 

student is absent from class or present in class, what is the probability that the day is 

rainy? The probability of the student being present or absent, given that the day is rainy, 

is straightforward to find from the data set. But if we ask the opposite—if we know that 

the student is present or absent, what is the probability that it was a rainy day? 

That is very useful. We will discuss more examples related to this. Here, consider a 

manufacturing firm that receives shipments of parts from two suppliers: Supplier 1 and 

Supplier 2. The manufacturer takes parts from both suppliers, and we define these events 

as A₁ and A₂. So, A₁ is the event that a part will be from Supplier 1, and A₂ is the event 

that a part will be from Supplier 2. Now, we know that we get 65% of our parts from 

Supplier 1. 

 

That means, if we take a simple classical approach, the probability of receiving a part 

from Supplier 1 is 65%. This indicates that, for any part you take, there is a 65% chance 

it will come from Supplier 1. What is the probability that it is from Supplier 1? The 

probability of A₁ is 0.65. 

 

The probability of A₂ will be 1 - 0.65 = 0.35. So, there is a 35% chance that it is from 

Supplier 2. Now, if we condition on the data that it is from Supplier 1, what is the 

probability that this part is a bad part? What is the probability that it is a good part? We 

know this information, so the probability that the part is good, given that it is from 

Supplier 1, and the probability that it is a bad part, can be analyzed from the data. 

 

So, this is also given here. So, here it is: the quality levels. The percentage of good parts 

from Supplier 1, given that they are from Supplier 1, is 98%. This means P(good | A₁) = 

0.98. For a bad part from Supplier 1, it would be 1 - 0.98 = 0.02, i.e., P(bad | A₁) = 0.02. 



 

 

Similarly, out of the 35% from Supplier 2, the probability of a bad part, given that it is 

from Supplier 2, is 95%, or 0.95. So, the probability that it is a good part from Supplier 2 

is 0.05, which is 1 - 0.95. All this information is very straightforward. Now, suppose it 

happens that a bad part broke one of our machines. Suddenly, we find that a part is bad, 

so we are through for the day. 

 

What is the probability that the part came from Supplier 1? All these probabilities are 

given to us. Based on that, it is asked: given that a part is bad, what is the probability that 

it is from Supplier 1? So, we need to find the probability that it is from Supplier 1 given 

that the part is bad. This means we are looking for P(A₁ | B). 



 

Similarly, you can also ask what the probability is that the part is from Supplier 2 given 

that it is bad. Now, let's find out the probability of A₁ given B. This is nothing but P(A₁ ∩ 

B) ÷ P(B). We just saw that P(A₁ ∩ B) can be represented as P(B | A₁) × P(A₁). So, by 

definition, we have P(A₁ ∩ B) = P(B | A₁) × P(A₁). 

 

That's why I wrote it this way, and we divide by P(B). Now, how can we find P(B)? That 

is the question. We can compute this using the theory of total probability. Here, A₁ ∪ A₂ 

is just the whole sample space S. 

 

This means A₁ is for Supplier 1 and A₂ is for Supplier 2. All the parts are coming from 

either Supplier 1 or Supplier 2, so all parts belong to A₁ ∪ A₂, which equals S. Also, A₁ 

and A₂ are disjoint events. In this case, A₁ ∩ A₂ = ∅ because any part must come from 

either Supplier 1 or Supplier 2, but not both. So, they are disjoint. By using the total 

probability theorem, we can express P(B) since B is a subset of S. 

We can represent P(B) as P(B ∩ S), which is just P(B ∩ (A₁ ∪ A₂)). By using the 

distributive property, this becomes P(B ∩ A₁) ∪ P(B ∩ A₂). Hence, because they are 

disjoint, we have already shown that P(B ∩ A₁ ∩ B ∩ A₂) is nothing but P(B ∩ A₁ ∩ A₂), 

which is P(B ∩ ∅). This is the null set because A₁ and A₂ are disjoint. Therefore, they are 

pairwise disjoint as well. 

 

Hence, P(B) will be equal to P(B ∩ A₁) ∪ P(B ∩ A₂). Since they are disjoint, using axiom 

3, we can express this as P(B ∩ A₁) + P(B ∩ A₂). This can be represented as P(B | A₁) × 

P(A₁) + P(B | A₂) × P(A₂). This is the total probability. We will replace here, and this is 

called Bayes' theorem for two events. 

 

So, P(B) = P(B | A₁) × P(A₁) + P(B | A₂) × P(A₂). This is the probability of A₁ given B. 



Anyone can ask what the probability is that the part is bad, but it is coming from Supplier 

2. It can be found similarly. A₂ ∩ B, by the definition of conditional probability, is P(A₂ | 

B), which is nothing but P(A₂ ∩ B) ÷ P(B). 

 

This can be represented as P(B | A₂) × P(A₂) ÷ P(B). P(B), which we computed earlier, is 

P(B | A₁) × P(A₁) + P(B | A₂) × P(A₂). Note that the sum of P(A₁ | B) and P(A₂ | B) will 

equal 1 because this represents the total probability of all possible outcomes. Now, we 

will numerically compute all these values since they are known to us. Let's write down 

this equation again for clarity: 

 

P(A₁ | B) = P(B | A₁) × P(A₁) ÷ (P(B | A₁) × P(A₁) + P(B | A₂) × P(A₂)). As mentioned, 

the sum of these two values will equal 1. 

 

Now, we will replace the values here to find the desired probability. What is P(B | A₁)? It 

is 0.02. P(A₁) is given as 65%, or 0.65. Thus, we have 0.02 × 0.65. 

Next, what is P(B | A₂)? This is 0.05. P(A₂) is given as 35%, or 0.35. So, then if you 

compute this numerically, whatever the value it will come. You have to use a calculator. 

So, you have to use a calculator. So, here everything is explained. Now you can see that 

this is Bayes' theorem for two events that we have already discussed 

 



 

The computation of 0.65 * 0.02 gives us the value of 0.4262. You can review this again. 

All the explanations are also provided in the slides. For A2 given B, you can replace the 

values, and it comes out to be 0.5738. So, now you can see that this is the Bayes' theorem 

for two events that we have already explained. And this is the computation 0.65 * 0.02. 

 

This value is coming 0.4262. So, this value is 0.4262. So, you can go through it again. 

So, this is whatever we explained here. So, that is also given in the slides, and A2 given B 

also has its values replaced. 

 

So, you can try here. So, you replace this value, the numerical value, and this is coming 

0.5738. Now, if you add these two values, this should be equal to 1. So, this is known as 

Bayes' theorem for two events. Now, we will discuss Bayes' theorem for n events. 

 

This is just an extension for n events. Let A1, A2, ..., An be a pairwise mutually exclusive 

and exhaustive set of events. So, these are the notations used here: A1, A2, ..., An. For 

any event B, we assume that the sample space S and sigma field C follow similar 

notation, meaning B ⊆ S. For any event B, the probability of a specific event Ai given B 



can be represented as P(Ai | B) = P(B | Ai) * P(Ai) / Σ (P(B | Aj) * P(Aj)), where j = 1 to 

n. 

Now, what is the proof? Similarly, this can be proved for two events; it's just an 

extension for n events. It's very straightforward, and we will go through it. This is just an 

extension of Bayes' theorem up to n events. Let A1, A2, …, An be pairwise mutually 

exclusive and exhaustive events. So, as you can see, we have the notation here: A1, A2, 

…, An. 

For any event B, this will be in a sigma field. Here, we assume the sample space S and 

sigma field C, following the same notation, so that any event B ⊆ S. Now, for any event 

B, suppose if you consider any "i"—say, supplier "i" among n suppliers—then the 

probability of a bad part from Ai given B can be represented as P(Ai | B) = P(B | Ai) * 

P(Ai) / Σ (P(B | Aj) * P(Aj)), where j = 1 to n. What’s the proof? Similarly, this can be 

shown for two events; it’s just an extension up to n events. This is very straightforward. 

We’ll just go through it. 

The probability for i = 1 to n is fixed here. You take P(A1 | B), P(A2 | B), and find the 

probability by just changing the value of i. For fixing i, where i ∈ {1, 2, ..., n}, P(Ai | B) 

= P(Ai ∩ B) / P(B), assuming that P(B) ≠ 0. This is the definition of conditional 

probability, and it can be represented as P(B | Ai) * P(Ai) / P(B). 

Now, from the theory of total probability, this probability of B can be computed. Since B 

⊆ S, B can be represented as B ∩ S. Because A1, A2, ..., An are pairwise mutually 

exclusive and exhaustive sets of events, the union of Ai is S. Thus, this can be 

represented as Σ (i = 1 to n). By the distributive property, we can say they are pairwise 

disjoint. Therefore, P(B) = Σ (i = 1 to n) P(B ∩ Ai). This can be represented as Σ (i = 1 to 

n) P(B | Ai) * P(Ai). So, this is the probability of B. 

We replace this here, and finally, we get Bayes' theorem: P(Ai | B) = P(B | Ai) * P(Ai) / Σ 

(j = 1 to n) P(B | Aj) * P(Aj). I made a mistake because here, we are fixing i, so we 

cannot use this variable again. So, we will take j = 1 to n here instead. When i is fixed, 

you can change one of the values to get the probability of Ai given B. So, this is nothing 

but Σ (j = 1 to n) P(B | Aj) * P(Aj). 

Now, from the theory of total probability, this probability of B can be computed since B 

⊆ S. So, B can be represented as B ∩ S. Because A1, A2, ..., An are pairwise mutually 

exclusive and exhaustive events, the union of Ai is S. This can then be represented as Σ (i 

= 1 to n). By the distributive property, we can write that they are pairwise disjoint. 

So, the probability of B can be represented as P(⋃ (i = 1 to n) B ∩ Ai). Now, because 

they are pairwise disjoint by axiom 3 or theorem 1.5, this is nothing but Σ (i = 1 to n) P(B 

∩ Ai). So, that can be represented as Σ (i = 1 to n) P(B | Ai) * P(Ai). So, this is the 



probability of B we replace here. Then finally, we get this as Bayes’ theorem: P(Ai | B) = 

P(B | Ai) * P(Ai) / Σ (j = 1 to n) P(B | Aj) * P(Aj). I made a mistake because here we’re 

fixing i, so we can’t use this variable again. 

So, this is where we’ll take j = 1 to n, here also j = 1 to n, because i is fixed here. You can 

change one of the values, then you’ll get the probability of Ai given B. So, this is nothing 

but Σ (j = 1 to n) P(B | Aj) * P(Aj). So, this is Bayes' theorem; I just proved it. We've 

already gone over these things, like the theory of total probability when we discussed it 

earlier. 

 

Then here, we can replace the probability of B. It's just conditional probability, by 

definition of conditional probability, and we see how this is derived. So, this is Bayes' 

theorem. So, let us do this. We have already discussed one example. 

This is the Bayes' theorem for n events, which is given here. You can go through it again. 

Now, let us discuss a numerical example. There are 100 patients in a hospital with a 

certain disease. Of these, 10 are selected to undergo a drug treatment that increases the 

cure rate from 50% to 75%. 

Here it is actually given that whenever someone receives treatment, we denote that event 

as T. If a patient did not get the treatment, we denote that event as T complement (Tᶜ). 

So, we can write that T is the event that the patient got the treatment. So, it is already 

given that if a patient is cured, we denote this event as C, and if not, it is denoted as Cᶜ. 

Out of 100 patients in the hospital, 10 are selected to undergo drug treatment. Now, what 

is the probability that a patient received the drug treatment if the patient is known to be 

cured? So, C denotes the event that the patient is cured, and Cᶜ is its complement. T 

denotes the event that the patient received the drug treatment, and Tᶜ denotes that the 

patient did not receive the drug treatment. 



Since 10% of the patients received the treatment, the probability of T is P(T) = 0.1, and 

the probability of Tᶜ is P(Tᶜ) = 1 - P(T) = 0.9. 

Here, if we represent it using Bayes' theorem, A1 will be T, and A2 will be Tᶜ. The union 

of A1 and A2 will be all patients—this is the entire sample space S. Additionally, any 

patient either received the drug treatment or did not, so A1 ∩ A2 = Ø (null set). So, that is 

what we found from this problem. Now, 10 patients are selected to undergo drug 

treatment, increasing the cure rate from 50% to 75%. 

 

This means that if the patient receives the drug treatment, the cure rate is 75%. So, the 

conditional probability given here is that P(C | T) = 0.75. Similarly, the probability that a 

patient is cured, given they did not receive the drug treatment, is 50%, or P(C | Tᶜ) = 0.5.  

We need to actually formulate this problem using events because Bayes' theorem is 

represented by events. So, we have to transform the information in the problem into the 

form of our formula so that we can use Bayes' theorem. 

Here we have to understand that there are 100 patients, and 10 are selected to undergo 

drug treatment. This means 10% of the patients got the treatment, so P(T) = 0.1. 

Therefore, P(Tᶜ) = 0.9. Now it is given that the drug treatment increases the percentage of 

the cure rate from 50% to 75%. This means P(C | T) = 0.75. Earlier, the probability that 

the patient is cured given that the patient did not receive the drug treatment was 50%. So, 

given Tᶜ, P(C | Tᶜ) = 0.5, and given T, P(C | T) = 0.75. 

Now, what is the question? The question is: what is the probability that the patient 

received drug treatment? That means T is given here, and if the patient is known to be 

cured—C is given here. So, what is the probability that the patient received drug 

treatment? We want to find P(T | C), which is the probability that the patient received 

drug treatment given that it is known that the patient is cured. So, this probability is what 

is being asked. All this information is given, but this cannot be found straightforwardly. 

We have to use Bayes' theorem. 



By Bayes' theorem, it is expressed as: 

 

P(T | C) = (P(C | T) × P(T)) / (P(C | T) × P(T) + P(C | Tᶜ) × P(Tᶜ)). 

 

Assume that T is A1, Tᶜ is A2, and C is B in Bayes' theorem. Then it is P(B | A1), which 

can be expressed as P(A1 | B). Therefore,  

P(A1 | B) = (P(B | A1) × P(A1)) / (P(B | A1) × P(A1) + P(B | A2) × P(A2)). 

So, you can see the Bayes' theorem for two events that we discussed. So, here this is the 

probability of A1 given B, nothing but: 

 

P(A1 | B) = (P(A1) × P(B | A1)) / (P(A1) × P(B | A1) + P(A2) × P(B | A2)). 

 

So, if you relate this variable in this way, then you can use the Bayes' theorem here. So, 

then we will just find out: 

 

P(C | T) = 0.75 × P(T) = 0.75 × 0.1. 

 

By: 

 

P(C | T) = 0.75 × 0.1 + P(C | Tᶜ) = 0.50 × P(Tᶜ) = 0.50 × 0.9. 

So, just you have to calculate; you need a calculator. So, actually this value is not 

provided here. So, you can compute it using a calculator, and you can find out the value. 

So, this will be the final answer. You can find out the closed, simplified form of this 

value. So, this is one example of how you can use Bayes' theorem. 



 

You can go through more numerical problems, and then you will understand more clearly 

how to use the Bayes theorem. So, here we only studied two numerical examples. So, 

there are many other numerical examples you can find to use the Bayes theorem and how 

to solve it, which will make it more clear to you. So, we completed the first part of this 

discussion, starting from the definition of probability, the sample space, and the 

definition of events, sigma field, or sigma algebra. Then we discussed the classical 

approach and the axiomatic approach, and before that, the classical approach and 

frequency approach, along with their drawbacks. 

 

Then we covered the axiomatic approach to defining probability and discussed some 

important theorems. We proved those theorems, studied some numerical examples, and 

then discussed conditional probability and its applications. We talked about independence 

and the difference between independence and mutually exclusive events, the total 

probability theorem, and finally, we discussed the Bayes theorem. We went through two 

numerical examples for Bayes theorem, so I hope you are following along and that you 

understand. You can solve many more problems using these results. 


