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Now we will learn about the concept of a random variable. A random variable is a 

measurable function from the sample space, S, to the set of real numbers, ℝ. To 

understand what a measurable function is, we need to know about the sigma field. So, let 

us recall the sigma field. A sigma field is defined on a non-empty set. 

 

So, suppose S is a non-empty set. Let’s consider this set S, and we take a collection of 

subsets of S, denoted by C. Now, let’s look at an example. Remember the random 

experiment—let’s say we’re considering a random experiment like tossing a coin. So, if 

you toss a coin, what will be the outcome? What are the possible outcomes? 

 

We don’t know in advance whether it will be heads or tails, but we know the possible 

outcomes: heads and tails of this random experiment. So, S is the sample space 

containing all possible outcomes, heads and tails. To define a σ-field, no random 

experiment is actually required; we’re just giving an example here. Any non-empty set 

can be used for S; for example, S could be R. Here, we are considering S as the set {head, 

tail}, and C is some collection of subsets of S. 



So, we can consider this set of subsets. Suppose C contains only two subsets: the null set 

∅, which is also a subset of S, and S itself, which is also a subset of S. Now, let’s take 

another example—suppose C₂ contains ∅, H, and S. Here, we’ve included H as another 

subset of S. Now, a σ-field is defined as a collection, C, of subsets of S that satisfies 

certain properties. So, C is a σ-field if the following properties are satisfied: 

1. S must belong to C: Since S is a subset of itself, if C is to be a σ-field, then S has 

to be in C. 

2. If any set A belongs to C (meaning A ⊆ S), then Aᶜ (the complement of A) also 

has to be in C. 

3. If A₁, A₂, ..., Aₙ is a countably infinite collection of subsets of S, and each Aᵢ ∈ C 

(for i = 1, 2, ...), then the union of Aᵢ from i = 1 to infinity must also be in C. 

These are the three conditions. If these properties are satisfied by this collection of 

subsets of S, then C is called a σ-field. 

So, this is a σ-field. For example, if you consider this collection of subsets, since it is a 

collection of subsets of S, you can see that S belongs to C, and only S and ∅ are in C. 

That’s why we only need to check these elements to verify the properties. Now, if S 

belongs to C, then Sᶜ—what is Sᶜ? Sᶜ is just the null set ∅—so that also belongs to C. 

We see that ∅ is in C, and ∅ᶜ, which is S, is also in C. So, this property is satisfied by C. 

Now, for the condition involving A₁, A₂, ... as an infinite collection. Here, we only have 

two sets, so if you take their union, S ∪ ∅, that also belongs to C. That’s why even though 

it’s for an infinite collection, any finite collection would also belong to C because we can 

include ∅ and meet this condition. 

If you consider an infinite collection like A₁ = S, then ∅, ∅, ∅, and so on, and take the 

union, it would be S ∪ ∅, union ∅, etc., which is just S, and S belongs to C. So, this 

collection satisfies all the properties and is, therefore, a σ-field. 

Now, if you consider this collection C₂, you can see that S belongs to C₂, so that 

condition is satisfied. Now we have to check the second condition, which says that if an 

element A belongs to C, then Aᶜ must also belong to C. For S, the complement of S is ∅, 

and ∅ belongs to C₂, so no problem there. 

For ∅, ∅ belongs to C₂, and ∅ᶜ, which is S, also belongs to C₂. So, this is satisfied in C₂. 

Now, if we consider the set A as H, which is in this collection C₂, then the complement of 

H—since S contains both H and T—is the set T. But we did not include T in this set. So, 

that’s why C₂ does not satisfy this property, meaning it is not a σ-field because all three 

properties need to be satisfied for a σ-field. 



Now we have to check the second condition. The second condition says that if an element 

A belongs to C, then it must imply that Aᶜ also belongs to C. Now, for S, the complement 

of S is ∅, which belongs to C, so no problem there. For ∅, ∅ belongs to C, and ∅ᶜ, which 

is just S, also belongs to C. So, this is actually condition C₂ we’re considering. 

We have to think about C₂. Since both S and ∅ satisfy this, they belong to C₂. Now, if you 

consider the set A equal to H, then H belongs to this collection C₂. But if you look at the 

complement of H, the complement of H is actually the set T, since S contains both H and 

T. So, if you consider the complement of H, it’s the set T, which we didn’t include in this 

set. That’s why this property of C₂ is not satisfied, so this is not a σ-field, because for a σ-

field, these three properties have to be satisfied. 

So, this is not a σ-field. Now, we will discuss what a measurable function is. Let’s 

consider another σ-field. Suppose you are doing a random experiment by rolling a die. 

What will be the sample space? 

 

We will denote the sample space as S₂, which consists of {1, 2, 3, 4, 5, 6}. I just want to 

mention that C₂ is not a σ-field, as we found. The problem is that whenever we consider 

A = S, its complement does not belong to T. Now, we want to make C₂ a σ-field, so what 

corrections do we have to make? Keeping all the elements in this set, we want to add 

more subsets of S so that it will be a σ-field. 

Let’s consider adding ∅, S, and also T. We want to see if it is a σ-field. In this case, we 

can see that the properties will be satisfied. We are adding more elements to ensure it 

becomes a σ-field. For the element H, H's complement is T, which is also in C. If we add 

T, then T's complement, which is H, is also in C. Now, if you take any finite union or 

consider distinct elements, the property will be satisfied. If you consider unions like H ∪ 

T, that results in S, and S ∪ ∅ is still S. So, all possible unions will be in C, which means 

C₂ will be a σ-field because the third property is also satisfied. This set should satisfy all 

conditions because if you consider all possible subsets of S, since it is a finite set, it will 



contain 2ⁿ number of elements. For n = 2, this results in 4 subsets. So, C₂ contains 1, 2, 3, 

and 4 subsets. Therefore, it contains all the subsets, which is known as the power set. 

Whenever you consider all subsets, if C contains all of them, let S be a non-empty set. 

Let Ω denote the set containing all possible subsets of S. So, the set Ω is known as the 

power set. The power set includes all subsets of S, and it is a σ-field because it satisfies 

all the properties. S ∈ C, A ∈ C, and Aᶜ ∈ C since we have included all subsets. So, C₂ is 

a power set. 

So, let us consider another σ-field. Suppose you are doing a random experiment, like 

rolling a die. In that case, what will be the sample space? Let’s denote the sample space 

as S₂, which is just {1, 2, 3, 4, 5, 6}. Now, another thing I just want to mention is that we 

found C₂ is not a σ-field. The problem is that whenever we consider A = S, its 

complement does not belong to T. 

So now, suppose we want to make C₂ into a σ-field; what correction would we have to 

make? To do this, we’d keep all the elements in this set and just add more subsets of S so 

that it forms a σ-field. How can we do that? Let’s take C₂ with ∅, S, H, and now add T as 

well. So, let’s see if this forms a σ-field or not. 

So then, you see, in that case, this property will be satisfied. Basically, here we are 

adding more elements—we want to add T as well—so that it becomes a σ-field. Then, 

you can see that for the element H, its complement, which is T, is also in C. Now, if I add 

T, then T's complement, which is H, is also in C. If you take any union, finite or infinite, 

or distinct elements, this condition will still be satisfied. 

So for finite collections, this property will also be satisfied in C. Now, if you consider all 

kinds of unions, like H ∪ T, which is just S, and S ∪ ∅, which is still S, then all possible 

unions will be in C. That’s why C₂ will also be a σ-field, as this third property is also 

satisfied. So, this set should satisfy the requirements because if you consider all possible 

subsets of S, then, since S is finite, it will contain 2ⁿ elements. So, for 2², we get 4, 

meaning C₂ also contains 4 subsets. 

This way, it includes all the subsets, which is why it’s known as a power set. So, it’s 

known as a power set whenever you consider all subsets. Let S be a non-empty set, and 

let Ω denote the set containing all possible subsets of S. So, Ω is known as the power set. 

A power set means it contains all subsets of S. 

Obviously, the power set is a σ-field because it satisfies all these properties. So, if S ∈ C, 

and A ∈ C, then Aᶜ ∈ C, since all the subsets are included. So, C₂ is a power set; C₂ is a 

power set. Now, let us next discuss this example: a random experiment of rolling a die. 

This is a subset, a non-empty set S₂. 



 

S₂ is the sample space for rolling a die, so it contains {1, 2, 3, 4, 5, 6}—6 elements. If 

you consider the power set, then it will contain 2⁶ elements in the power set. Now, let us 

consider not the power set, but some non-trivial σ-field. Let us consider one set A = {1, 2, 

3}, and another set B = {2, 4, 6}. B is the subset {1, 3, 5}. 

So now we want to find a σ-field generated by, let’s say, a collection of subsets. Suppose 

C₂ is here; we already denoted C₂. Let us consider this as S₁, and let’s call it C₁. C₁ is just 

the set containing A as the only subset. But note that it is not a σ-field because S is not 

here, ∅ is not here, and Aᶜ is not here. 

So we want to make this a σ-field. We want to add more sets. So, the σ-field generated by 

C₁ will include A, Aᶜ (which is B), S, and also the null set. This is the σ-field generated 

by C₁. You can add more sets as well, so that’s a σ-field. 

But maybe we consider it as a smaller σ-field generated by C because if you remove any 

of the subsets here, any of the elements here, then it will not be a σ-field. So, it is called 

the smallest σ-field generated by C₁. So, this is a σ-field. Basically, Aᶜ is nothing but B. 

So, this set A, it is a σ-field, okay. 

Now, we want to define—so there are two sets, sample spaces, here. So, S₁ is one set. Let 

us consider S₁ and C₁. C₁ is denoted as σ, so we consider this. Let us denote this as F₁. 



 

F₁ is the σ-field generated by C₁. F₁ is a non-empty subset, and this is the σ-field. S is 

nothing but the head and tail we talked about, and C, which we have already discussed, is 

nothing but ∅ and S. This is another set, or we can consider C₂. This is also a σ-field, so 

no problem. 

Let us consider C₂ as S and C. Now, this is also a σ-field. We want to define it. This 

notation is called 𝒻; it is the standard notation. Here, this is also 𝒻, not a small f. 

Now, we want to define a function between S₁ and S, some function. f: S₁ → S, and we 

want to define that function. Suppose S₁ contains {1, 2, 3, 4, 5, 6}, and S is the set {H, 

T}; there are two elements. Suppose we want to map all even numbers to heads, or let us 

consider a constant function. If we consider a constant function, let f(x) = H for any 

element x ∈ S₁. So, this is a function. 

For any x ∈ S₁, this is the function I am defining, so basically all points go to H. This is a 

constant function. Now, we want to check what C contains. C contains just two elements, 

so you can remember that C is ∅ and S. Now, I just want to find what is f⁻¹(∅). 

The f⁻¹(∅) is defined by all x ∈ S₁ such that f(x) ∈ ∅. Now, you can see that it does not 

contain any elements satisfying this because f(x) = H for any x ∈ S₁. So, ∅ means it is the 

null set. None of the elements will satisfy this. But f(x) = H for any x, so this will again 

be a null set. 

That is why ∅ belongs to 𝒻; you can see that. Now, if you consider another set in C, let’s 

take f⁻¹(C). This is defined as all x ∈ S₁ such that f(x) ∈ C. So, what is C? We know that 

C is a σ-field. 

We want to take this set S, and we want to take another element of C. That is why I just 

realized notationally it is wrong; it is actually S. All elements belong to S. So, note that if 

you consider x such that f(x) ∈ C, now what is f(x)? f(x) = H, and S contains {H, T}. 



So, for any x you consider in S₁, then f(x) has to belong to S. So, all x satisfy this 

condition. So, all x means here it is nothing but all of S₁, and this also belongs to the σ-

field 𝒻. You can see that for this function f, if you consider any element in the σ-field and 

take the inverse of that, it actually belongs to this σ-field. This kind of function is known 

as a measurable function. 

 

So, what is a measurable function? Let’s denote S₁, 𝒻₁, and S₂, 𝒻₂ as two σ-fields, and a 

function f: S₁ → S₂ is said to be a measurable function if for any element B ∈ 𝒻₂, the 

notation should be 𝒻. Otherwise, you will conclude with the usual functional notation. 

For any element B ∈ 𝒻₂, f⁻¹(B) must belong to 𝒻₁. This means that if you take the inverse 

of this, f⁻¹(B) is all x ∈ S₁ such that f(x) ∈ B. 

 

This is called f⁻¹(B). If this belongs to 𝒻₁ for any B ∈ 𝒻₂, because it is S₁ to S₂, then it is 

known as a measurable function. 

Now, we will discuss a special kind of σ-field. So, because these concepts are a bit 

abstract, like head and tail when throwing a die, the outcomes are {1, 2, 3, 4, 5, 6}, which 

are real numbers. However, most phenomena in real life are described using some 

abstract types that may not be real numbers. 

 

If we can observe something as a real number or relate it to a real number, it will be very 

helpful for our understanding. In the real number system, we have learned many 

concepts, such as algebra from our school and college education, including algebraic 

properties, multiplication, addition, and subtraction. We also learn about limits, 

continuity, sequences, and series, all of which are developed within the real number 

system. 



If we take any abstract set, we need to develop those concepts again. While this can be 

done, we must verify it or develop all these concepts and results with respect to what we 

want to use. 

 

Since the sample space is often abstract, like head and tail for events such as earthquakes, 

we need to find a way to relate these abstract concepts to real numbers in order to 

understand them and perform computations. Therefore, we want to learn about some 

special σ-fields, which are special collections of subsets of the real numbers. So, if you 

consider this set of real numbers S, we are assuming it is a non-empty set. 

 


