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Existence of a basis (continued) 

 

Before I go to the proof of above theorem, I would also like to give couple of remarks 

about Zorn’s lemma. 
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So, namely see one can proof Zorn’s lemma by using axiom of choice. So, let me briefly 

real axiom of choice which is more intuitive statement which is very easy to believe, but 

it is also equivalent to Zorn’s lemma. So, axiom of choice; so, let us recall if you are 

given a family A i of non empty sets, there exist function C from the indexing set I to the 

union A i such that the image of any I under C of I should belong to the corresponding 

set A i such a function is called a choice function. 

So, we are making a choice and picking up elements from A i and then you mapping I to 

the A i. So, the existence of axiom of choice is precisely a statement which says given 

family of non empty sets, there exists a choice function for this family. So, this Zorn’s 

lemma what I stated above if equivalent to this axiom of choice and this axiom of choice 

restatement is a precisely. So, this is equivalent saying the product say A i this is non 



empty that is axiom of choice because an element of the product set is the tuple and the 

tuple will give you the function. 
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So, if the tuple here that will correspond to choice function. So, the normal course on 

abstract set theory will have such implications axiom of choice is equivalent to Zorn’s 

lemma and also equivalent to another means full theorem which is called Zermelo’s well 

ordering theorem. This Zermelo’s well ordering theorem say that every set can be well 

ordered; that means, on every set we can put an order which is a well order; that means, 

well order means every non empty subset of that set as the minima. 

So first, though this is an abstract theorem given any set a we can define n order on that 

we can construct an order which is a well order this construction is not explicit this is an 

abstract construction and even further non uncountable sets explicit constructions are not 

known even on the set of real numbers we know this usual let us equal to this is an order 

this is a total order totally ordered set, but this is not well order because now if you take a 

set like subset like open intervals 0 1. 

For example this is a subset the minimum. So, or even whole set real numbers even if 

you take a set of real numbers there is no minimum now. So, this order this usual order is 

not a well order, but a Zermelo theorem say that there exist a well order on, but how to 

explicitly construct that is not known. 



So, this so far, now I am going to use this Zorn’s lemma. Zorn’s lemma is the most 

handy way to check some order set as maximal elements or not and once you have 

maximal also we can infer about minimal elements by proving the theorems to the 

opposite order set. So, it is usually consider one only concentrate on the maximal 

elements. So, so let us come back to the proof of the theorem we stated proof of theorem 

remember what we need to do is we need to we have given a generating system and we 

have given a part of that generating system which is linearly independent and we want to 

maximize this we want to put a maximal. So, we have to come to a situation we have to 

extract from this we have to get a ordered set which is should be inductively ordered and 

then use Zorn’s lemma to conclude in the maximal elements there and this maximal 

elements should be required basis that is the idea. 

So, consider a set skip J, I will call it this is by definition, I collect all those J primes in p 

i on the power set of I; that means, all those subsets J prime of i such that J should be 

containing J prime and the family x J prime J prime in J prime. So, the J prime will 

remember this is in p i mean this is contained in i this is K linearly independent. So, J 

this scripts J is precisely all families of the given generating system which contain the 

linearly independent family sub family and it enlarge to a linearly independent family 

these are precisely J prime. So, by a assumption that these set J belongs to J, the script J 

because we have given the sub family indicates by the J is linearly independent. 

So that means, this J belongs to J prime this J belong to script J this is by assumption. 
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Now, I want; so this J a script J is; obviously, ordered by a natural inclusion this is on 

ordered set this J is this natural inclusion is this is natural inclusion and we want to check 

that these ordered set as maximal elements we want to prove that J has maximal elements 

for this we want to use Zorn’s lemma for this we need to use we will we will use Zorn’s 

lemma. But for this we need to check the assumption given in Zorn’s lemma we need for 

this we need to check that these ordered set J inclusion this is inductively ordered; that 

means, every chain in this script J has an upper bound. 

So; that means, we want to check that every chain C in this ordered set has an upper 

bound. So, first let us take suppose C is empty chain then; obviously, the J which was 

given to a C in assumption that is an upper bound is an upper bound for C, note that 

upper bound just means it should contain every element of C. So, elements of C elements 

of C are subsets. So, upper bound means subset which is in j, but it should contain all 

elements of C. So, that is an upper bound for C. 

So, suppose C is non empty then I am going to look at the union of all elements in J this 

one note that because C is non empty this union makes sense C, C where empty union 

will have problem. So, because C is non empty this J prime make sense and it; obviously, 

contains it is a subset of I; obviously, contain J because each J prime is in C and C is a 

chain in this and all elements of J contains j. So, therefore, J is a subset of J double prime 

and J double prime is a subset of I. 



Now, we also it is clear that J double prime is an upper bound for a C, but only to check 

therefore, only to check that the J double prime should also be in script J then only it is 

an upper bound for C in j. So, you have to verify now that J double prime is in the script 

j, but J is contained in J double prime is a subset of I. So, on therefore, only thing to 

check only real checking is. 
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So, only to verify that the sub family x, x J double prime as J double prime varies in J 

double prime is K linearly independent because this will ensure that J double prime is 

indeed an element of script that was a definition of J script J. 

So, we want to verify that this family is linearly independent. So, what does that means, 

that means if you have a linear independence relation then all coefficients are 0. So, 

suppose we have a independence relation like this a J double prime x J double prime is 0 

this sum is varying over J double prime in J double prime and; obviously, a J double 

prime this tuple J double prime in J double prime this is in K open bracket J double p 

rime this as usual this simple means only finitely many coefficients are nonzero. 

So, look at this set although J double prime for which a J double prime is nonzero this is 

some subset of J double prime and this is a finite set this is a finite subset of that J double 

prime because only finitely many of them are non zero and what we want to prove is this 

set is actually empty set let us call this set as what can I give name let us call this as J 

tilde or J double prime tilde. So, we need to prove that J double prime tilde is empty set; 



that means, all a J double primes are 0 and then we would approved that they are linearly 

independent. 

So, suppose it is not then we should lead to contradiction. So, suppose J double prime 

tilde is non empty what is a finite set and they are all elements of J double prime and J 

double prime. So, now I want to use a fact that this J double prime is a union of J prime 

this J prime is varying in C and I want to use this fact that C is a chain; that means, if i 

given a finitely many elements in J double prime they will belong to this union finitely 

many elements, but among the J double prime in J j prime is varying in C. So, they have 

a inclusion relation among them. 

So, by without loss without loss of generality this J double prime tilde will be contained 

in one of the J prime not by this is a wrong word without loss. So, because J double 

prime is finite and C is a chain it follows that this J double prime tilde will be in one of 

the J prime because if for example, if J double prime as only one elements this is obvious 

if J double prime as more than one element to they will belong to 2 different J primes, 

but the J primes are comparable. So, I will choose a bigger one. So, definitely this, but 

then this relation this relation will become a dependence relation so, but then, but then 

this a J double prime x J prime equal to 0 is a dependence is a linear dependence relation 

among x J prime J prime is in J prime which contradicts this contradicts these contradicts 

the choice the J prime belongs to script J. 
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So, that proves what we wanted to proof that prove that I can enlarge given linear 

independent family to a maximal linear independence family and by then previous 

lemma it is a basis. So, that that proves the theorem that we wanted to prove. Now I want 

to write one corollary. So, one corollary, I want to write corollary is as usual V is a K 

vector space this corollary in this corollary I have collected a special cases of the above 

theorem which we handed to use. So, and W is a subset of V then one every generating 

system for V contains a basis K basis of V because take the generating system and find 

maximal linearly independence of set by the above theorem and this much be a basis. 

So, second; so this I will write here this is a special case, I will write the; I will write the 

blue in the bracket here this is a case where J is empty set in a theorem because that 

empty set is linearly independent and you make it maximal above the theorem. So, this 

thing exists and that is a basis. So, V as a basis; V as a basis, so these 2; 1 implies 2 is 

clear. So, 1 is the special case J equal to empty set in the theorem third one every basis 

every K basis W K basis of W can be extended to K basis of V. 

So, K basis of V is linearly independent family of w, but if it is linearly independent 

family of W it is linearly independent in V also. So, apply again the theorem to this. So, 

for there exist a basis K basis of V which contains a K basis of W, so this is also this 

statement of 3. So, now, I just want to give one remark here. So, remark. 
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So, suppose I have a field extension. So, let capital L or capital K be a field extension 

that simple means. So, that is K is a subset of L and it is a sub field that mean the 

operation in the plus and product multiplication operations in K are restriction of the 

additions and multiplication in L. 

Now, typically example is Q contained in r. So, R is a field extension of Q similarly C is 

a field extension of R or C is a field extension of Q. So, field extensions are very 

important in the study of theory of equations and for field extension you also need to use 

a vector space argument many times. So, then what we have just proved above that L if 

you look at L as a K vector space it as. So, L as a K basis which contain 1, remember one 

is same thing as 1 of L or 1 of L is same thing as 1 of K multiplicative identities are same 

because it is a field. 

So, we can extent this means we can extend this set one remember one is linearly 

independent over K and this linearly independent set we can extend it to basis by the 

earlier theorem this is very very important. So, such a basis; such a K basis in the case so 

in the; is also called Hamel basis of L over K Hamel where the first Hamel proved this 

for the case K equal to Q and L equal to R. This was proved in the in the beginning of 

20th century. 

So, with this also people in general in general now this is very common language in 

specially in function analysis in general where the not finite dimensional vector spaces 

are involved in general if V is a K vector space of not a finite also of dimension not finite 

dimension not of finite dimension then we; I have just put that V as a K basis the K basis 

of V are also called Hamel basis of V over R V over K remember lot of spaces, we have 

done we have did in the example above namely n times continuously differentiable real 

valued functions on say closed interval this is a R vector space and this is not finite 

dimension. 

So, we know by (Refer Time: 30:06) theorem, this as a basis and the one can also prove 

that the basis actually is not countable. So, such basis are called Hamel basis. So, now 

still we need to prove the following theorem. So, like a finite dimensional case. So, we 

now need to prove I will just say it orally we now need to prove that any 2 basis have the 

same cardinality now for this we will do this in a next lecture, but for this, I will have to 



recall little bit more precisely the concepts of cardinalities and how does one prove the 2 

sets have same cardinalities or not this we will do it in the next lecture. 

Thank you. 


