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Lecture – 03 

Examples of Vector Spaces 

 

We will recall what we have been defining in lecture one. Last we have ended the lecture 

one with the definition of a vector space. 
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So, let us recall it definition once more to define a vector space we need a field. So, I will 

always start with let K be a field then definition an Abelian group V plus is with a scalar 

multiplication of K on V which, is a math from K cross V to V which, the image of the 

pair a comma v, I will denote a, v satisfying a proper the following properties; four 

properties if you recall these four properties are basically the properties about 

compatibility of the field structure on K and these addition on V and the scalar 

multiplication of V. 

So, the four properties are; a, b tends v same as a, b, v where b, v is a scalar 

multiplication and is further scalar multiplication on the new element b, v. On the other 

hand multiply a and b in the field and then take scalar multiplication of them. Similarly, 

with the addition of first addition of the vector space that is a times v plus w equal to a, v 

plus a, w and third one is when you add elements in the field a plus b tends v equal to a, 



v plus b, v and last one is one times v equal to v. This property should be varied for all 

scalars a, b and k and all elements v, w in v. 

So, even Abelian group as a scalar multiplication of K and it satisfy these property then 

in Abelian group (Refer Time: 03:51) is called a K vector space or all though sometimes 

I will say vector space over K. This field is called K, we will be then referred as scalar 

field of V and elements of K are called scalars, elements of V are called vectors. 
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Later on we will see that how this concept is related to the older concept of the vectors in 

the geometry. 

Today I want to give many examples, many different examples which we will 

constructed from the given once. So, recall that yesterday, the model example I give was 

K power n Cartesian product of K n times. So, elements of these are tuples, these are n 

tuples with coordinates in K and we saw it is a vector space in a very natural Abelian 

group structure namely the component wise addition which is coming from K, addition is 

component wise and scalar multiplication is also component wise. 

So, the addition of the field K is extended to the set of tuples and multiplication in the 

field K is also extended as a scalar multiplication on this tuples. And later on we will see 

that every so called finite dimensional vector space will look like this, but before go on, I 

want to mention some of the properties that one need to check, I will just mention them 



without proofs. For example, general distributing law; this generalization of the property 

2 and 3 sort of so that is if we have finitely mean elements a i, i in i, this I is indexed set 

and finite. 

Typically one will take I equal to for example, 1 to n, 1 to m. So, (Refer Time: 07:37) 

elements, but sometimes it is useful to, who denote or enumerate the elements in I 

differently. So, for that use in we will not in general assume that I is 1 to n, but we will 

assume I is a finite set. It has only finitely mean elements and cardinality some natural 

number m. So, cardinality is some m and suppose we have finitely many vectors v j, j in 

J again J is indexed set, finite indexed set. So, for example, J could have n elements 

which one might denote j 1, j 2, j n. Finite is important because without finite, the 

statement will not to make sense. 

So, on one hand we have this summation a, i. So, we are adding elements a is, the finitely 

mean element and remaining adding them in the field. So, you get again an element in 

the field. So, you get a scalar. So, this is scalar, we have seen that associatively. So, this 

is well defined does not matter we will put the bracket. So, this sum is well defined 

because of the associatively in the field. So, this and from the vectors v j we get will sum 

them up in by using the addition in the vector space. So, they will get a vector, so this is 

a vector and when I take the scalar multiplication and now what do we get? What I want 

to stress is, you can open the bracket. 

So; that means, you are using the property 2 and 3 repeatedly. So, we can write this as 

summation over i comma j in the products at a, i, v, j. So, this needs the formal proof; 

when i as two elements, j as two elements then it is precisely either 2 or 3. So, I will 

leave it for you to prove this. So, this is known as general distributive law; that means, 

you can use the distributivity as many as times you want, what is more importants is 

finitely mean time because infinite sums do not make sense in generally in the vector 

spaces. Another sort of, this I call it sign rules when one makes a calculation with 

formulas, we will obey this. 
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For example, you have 0 in the field, zero scalar also; we are denoting the same notation 

and zero vector also we are denoting by the same letter 0. So, it should be clear from our 

context what we mean for example, 1 I want to write, 0 times x as I told you earlier 

scalars we are denoting by the letters a, b, c etcetera. Vectors we are denoting by x, y, z, 

u, v, w etcetera. So, here 0 is a scalar, x is a vector because we cannot multiply vectors. 

So, this result should be 0 and the 0, this should be vector. Now on the other hand also I 

can take like that any scalar a, and multiply the zero vector then, I should get a 0. 

So, this is also 0. So, I could write the equality here because this 0 as a vector. So, one 

need to proof this, so second one, if I take any scalar and multiply by negative of the 

vector, minus x. Negative of the vector simply means inverse in the Abelian group of x. 

So, they should be same as you take the scalar and take the negative of that; that means, 

inverse in the additive group of the field and multiply by x, this is result should be same 

or also you could also take this. You take the scalar multiplication of a on x and take the 

negative of that vector, all these three quantity it should be equal. 

Another one, third one minus of the scalar, negative of the scalar times negative of the 

vector is same as scalar tend to vector. Fourth is, if I take scalar and take the scalar 

multiplication in the difference vector that should be same as a x minus a y. This is the 

vector subtraction and same thing with the subtraction of the scalar a minus b times x 

should be equal to a x minus b x. So, these rules are so natural that and they will also 



simplify our writing which will be exactly same as what we were doing with our number 

systems. So, proof I will leave the proof to their. So, I will simply say verify, this will 

give you a good practice about how does one write the equations in Abelian group or in a 

vector space and so on. 

More important I want to say is, following cancellation rule and this term will proof it 

suppose. So, let a be a scalar and x be a vector then, if a times x is 0 then, either this 

scalar a 0 or the vector x is 0. So, let us write a proof. So, we want to prove either or 

statement. So, always in mathematics you assume one of them any are true and prove the 

other is true. So, suppose a is not 0 then, we must prove that x is 0. We have given a x 0 

when, you multiply this equation by a scalar a inverse because a is a non zero element in 

the field, a inverse is also an element in K. That is why we have defined our fields. 

So, this will imply a inverse time say a x equal to a inverse times the vector 0, which is 0. 

Just now we are wrote the sign rule 1 for example, on the other hand this a inverse times 

a x we can use the property 1, which will say that I can first multiply a inverse and a in 

the field and times the vector x. This is by property 1 only in the beginning I will write 

this, after sometime I will not write this, but this is same because a inverse is the inverse 

of a in the field, this is same as 1; 1 times x, but property forces 1 times x is x. So, we 

have proved x is 0. So, this proves x is 0. So these cancellation rules say that, if your 

scalar multiple of a vector is 0, either the scalar is 0 or the vector is 0. 

This was the intuitively clear when we studied the vectors. Next now let me give lots of 

examples of vector spaces. 
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So examples first one; so in all these examples, when I do not mention anything about 

the letter K, we will always take K to be a field an arbitrary field. It could be finite, it 

could be infinite, it could be or field of rational numbers or field of real numbers or field 

of complex numbers or a finite field with P elements. So, the first example let I be any 

set. So, this example is generalization of the, our prototype example which K power n. 

So, here I would like to mention K power n also you can think, either you can think the 

elements are tuples or you can think they are mapping so on. They said 1 to n to K, this 

is the set of all maps from 1 to n the field K maps. So, these correspondences 

individually either you think of function f or you think of the tuple f of 1, f of 2, f of n. 

Each tuple will give you a unique function and each function we will give a unique 

tuples. So, when a set is infinite or you do not know beforehand what they said, how 

many elements it has etcetera, it is better to think about functions from I to K. So, that is 

what I am considering here K power I, this is the set of all maps. Sometimes I will write 

these also maps from I to K or like this f from I to K; if f is a map. 

Also I will like to take this opportunity about my saying sometimes. So, the difference 

between the function and a map, these then the very fine distinction between these two 

words and most of the people in general they do not do this, but I would like to do this 

for many reasons. Functions means where the values are that is our one of our number 

system. For example, it can be rational number, it can be real number, it can be complex 



numbers. When we do not know about the field then, we will call it a map when the 

values where it goes. If it is our known set like one of the number system then we will 

call it a function, otherwise we will call it a map. 

So, that is a reason I am writing a map here. If K was set of real numbers I would have 

said function. So, our V is now K power I and I want to check that these V is a vector 

space, K vector space in a very naturally way. So, that means, I need to define a addition 

operation on this maps and get a map again and with that addition it should be an 

Abelian group and also I should tell you, what is the scalar multiplication and when one 

need to check all those four properties of the vector space. So, it is think they are very 

natural like we will see if we have f and g two maps from I to K then, I need to define, 

what is the plus f plus g? And the result should again be a map from I to K. 

That means, I need to define, what is f plus g 1 arbitrary element of i in I and what can 

we do? Obviously, on one hand we can take f of I, which is an element in K, also you 

can take g of i also element in K and add them use the addition in K. So, we have added 

these values. So, result is again in element in K because K is a field. So, I define this f 

plus g evaluated or image of i under f plus g is take f i take g and add them in the field. 

So, you get a map from I to K. Now I need a scalar multiplication. So, if have a scalar a 

in K then, I need to define what should be a times f and this should again be a map from 

I to K. So, I need to define, what is a f evaluated on i? 

Well what do I have? I have f of I, this is an element in K and I have a given element in a 

in K. So, I can multiply in the field. So, this is a result I will get a product of two scalars 

which is again a scalars; so which again an element in K. So, with these I would define 

plus 1 V and also I have defined a scalar multiplication. 
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Now, see these two operations are so very natural and canonical that all the properties of 

the vector space are satisfied that again I will leave it for you to check. So, I will just 

mention. So, I will just first mention check that with this operations V equal to K power I 

is a K vector space. 

Notice: that if I take f in K power I, the negative of that, if that maps I to K which maps I 

to f of i and minus of that, this is that map and it is obvious that this serve the purpose of 

the inverse. So, that with respect to plus it is indeed an Abelian group. So, for example, 

let us take special cases. For example, if I were a very single term then, what is K power 

single term, 1; this is nothing, but just to K, the copy of K because you are taking K cross 

K cross one times. So, it is only one copy and the vector space structure is nothing but 

the field structure. 

So, vector space structure is exactly same as the field structure. So, when one says, the 

vector space structure; that means, two things one is that addition of the vectors and the 

scalar multiplication. With those four properties, all these together is called a vector 

space structure on V. The plus give an Abelian group structure, scalar multiplication 

gives the scalar multiplication and the four properties combined them to. So, I equal to 

say 1 to n or any set I where I is exactly n elements then, K power 1 to n is nothing, but 

K power n which was the prototype property, example that we have mentioned in the 

before the definition of the vector space. 



So, these examples are also called function spaces. Function spaces because here vectors 

are functions. So, elements in K power I are functions. This strictly speaking I should use 

this word only when K is Q, R, or C. That is a reason why they are called function spaces 

and you will see this examples more often in your analysis courses. 
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Now, example 2; this is what I am addressing you to, what is called restriction of 

scalars? So, typical situation will arise when we are given a field K and a vector space V, 

K vector space. For example, V equal to R n; R power n here K is R; field of real 

numbers. 

Such vector spaces are also I will, people call them as real vector spaces. So, if the field 

is C, then one calls them as complex vector spaces. So, it is clear from the writing what 

field what scalar field one takes. Sometimes it is useful to take complex numbers as 

scalars. Sometimes it is useful to take real numbers. So, this is a field. So, this is a real 

when we are given a real vector space for example, that is a V equal to R n and, but this 

field of real numbers contain the field Q and Q is actually sub field of R. Sub field 

simply means that when you restrict the field structure of R to this subset Q, it should 

give the Q vector spaces. 

It should get the original field operations in the Q, that is because we have extended the 

plus and multiplication from Q to R in a very natural way. So, it is a sub field. So, one 

would like consider this real vector space as a Q vector space. So, what do we have to 



do? Already we have given an Abelian group structure that will not change; only we 

have to give a scalar multiplication of Q on V in a very natural way. So, scalar 

multiplication of R is given. So, R cross V to V we have given a scalar multiplication, in 

multiplication. I simply restrict and there is a subset here Q cross V. So, I simply restrict 

this scalar multiplication to Q. 

So, restriction I will just say restriction of the scalar multiplication to Q simply means 

you take this scalar multiplication, given scalar multiplication map and restrict to this set. 

So, you get a map from Q cross V to V and with this already the properties are satisfied. 

So, that it becomes this V will become a Q vector space and then nothing special about Q 

and R. In general you could take arbitrary field K and a sub field. As I said sub field 

should mean that when you restrict the field operations of K to K prime, they should get 

the operations of the field K prime. 
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In that case every K vector space you can think K prime vector space. Before I stop for 

the break I would like to mention here in particular it is important case. So, I want to 

record it here in particular; obviously, C is a C vector space. If like in a earlier example n 

equal to 1 and R is a sub field of C. So, the same C, I can think as C as a R vector space 

where restriction or I can also thinks C has vector space. So, here the scalars allowed are 

natural numbers, here the scalars allowed are real numbers or even also R is a R vector 

space. Then it is also Q vector space by restrictions, but here I cannot say R is a complex 



vector space because to extend I need to do more. For restriction I do not they have to do 

anything, I have to just simply restrict. 

So, I stop here and we will come back after few minutes. 


