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Lecture - 57
Adjoint-determinant theorem

So let  us continue this  lecture  with what  we have planned last  time namely  Adjoint

determinant formula. So, I will prove it today.
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So, let us recall what we did last time last time for a a matrix square matrix a a i j in M n

K we have defined the adjoint matrix, the adjoint matrix that we have denoted Adj a and

this is defined a i j tilde where a i j tilde is defined minus 1 power i plus j capital A j i and

what is capital A i j.

And capital  A i  j  they are defined I  will  define  them in terms of the standard delta

function. So, we have delta e this is standard determinant function on K power n n times

standard alternating n multi-linear form on K power n. So, this is an element in alt n K

power n and this is one dimensional that is the most important that we have been using in

this and this capital A i j is minus 1 power i plus j delta e evaluated on x 1 to x phi min a

x j minus 1 e i x j plus 1 x n.



Where this x 1 to xn are the columns of a, so, I will write it here this is also it is x 1 x n.

So, they are the columns column vectors of remember here. So, this is very easy you take

a standard determine function and at the j th position you put the standard d i th a and

evaluate the standard determinant function there and these values are some scalar and

last time I showed you why this minus 1 power i plus j occurs. So, this was the adjoint

matrix and now I want to prove. So, we will prove the adjoint determinant formula, but

before that I will take this opportunity also to prove the expansion theorem.
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So,  remember  from a  determinant  of  a  by  definition  it  was  summation;  summation

running over sigma in S n sign sigma and the product is on j equal to 1 to n a sigma j j.

And also this is equal to when you replace sigma by sigma inverse in this summation

then it is sigma in S n sign sigma product i is 1 to n ai sigma i. Now this one this one is a

determinant expansion of the determinant in terms of the column the first column this is

expansion; expansion in terms of first column what does one mean by that if you write

the columns like this; this is the first column and what do you do you take the first entry

remove this row remove this column and take the minor then go to the next entry with

the alternating sign then this entry remove this row remove this column remove this row

remove this column. And whatever the mine n minus 1 minor comes that determinant.

So, it is one can define it inductive lee also like this and this is these are the terms of

those the sign come because its alternative know. 



Similarly the second equality  is  by using the first  row. So, first  row that is you odd

usually it was took it took standard way to define like two by two we use to be like this

in the school take this entry at time these take this entry with a minus n time these and so

on. So, this is the expansion in terms of the first column and this is expansion in terms of

first row and somehow it was preferred rows, but if you see our exposition the columns

are better exposed for some reason.

So, now I want to use the adjoint entries to also give expansion of the determinant in

terms of any i th row or any j th column not necessary first once. So, that is the next

theorem I have written. So, that is, so the theorem I want to prove is this is I will call

expansion theorems theorem for determinants. So, you have a matrix a, a i j and i and j

are in between one and n they are fixed and it fixed. So, in the definition i was 1 and j

was also 1.
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Then determinant of a equal to summation; summation is running from K equal to 1 to n

minus 1 power K plus j entry of the K j th entry of the matrix times this a k j this is

expansion in terms of the j th column.

So, I  just  remember  this  expansion of depth in  terms of j  th  column.  Similarly now

expansion in terms of the i th row that is summation K equal to 1 to n minus 1 power i

plus K a i k capital A i k. This is expansion of det in terms of i th row both are very

important because for some reason if your matrix has i th row or j th column as many 0



entries then it is better to expand in terms of that row or that column because then the

computation will become faster instead of applying Gauss and bringing of them to this

position that position directly you can.

So; that means, save time for calculation that is there and later on if I have more time or

maybe in the next course I will also prove expansion theorems when not in terms of one

row or one column, but in terms of bunch of rows and in terms of bunch of columns. So,

that will be also interesting, but I do not know whether I will finish in this. So, let us

prove this it is enough to prove the. So, proof enough to prove the first equality because

the second equality will be same when you replace a by a transpose and we already know

a; and determined a and determined transpose of the same value. So, it is always our

philosophy that uses the theory results to make the computation faster. So, this is ok, so

usually enough to prove the first equality. 

Now what is the determinant I will use alternating multi-linear form. So, determinant a is

by definition delta e evaluated at the columns x 1 2 and j th column is somewhere here x

j x n a delta e is to the standard and it is you think of it is a form it is a map form m n K

to K this m n K you can think of k n cross k n cross k n n times this is alternating multi-

linear form this is standard alternating, we define these by using the standard basis of k n

and the standard basis also we think like columns. In this so, what is given? So, in this I

am going to put. So, what is x j; x j is the j th column of a. So, that is delta e I am going

to put it x j.

So, what is x j; x j is therefore, summation; summation is running over K equal to 1 to n

a k j e k you have use the standard basis elements to write this column in terms of the

standard basis. So, the coefficients are obviously, the entry in the j th column now first

entry is a 1 j th second entry is a to j and so on. So, I am just going to put that in this

summation K is equal to 1 to n a k j e k and all others.

Are same columns x 1 2 other than j th entry I am not change now what do we do with

this we use the fact that the delta e is alternating and multi-linear.
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So, I will take this sum out. So, therefore, this is equal to summation is anymore K equal

to 1 to n delta not delta. So, the coefficients first, so, a k j delta e x 1 to x j minus 1 then

here  is  e  k  x j  plus  1 to  x n this  is  just  a  multi-linearity  and what  is  this?  This  is

operationally what do I define capital A k. So, this is minus 1 power K plus j capital A k

j. So, that is it, this is summation K equal to 1 to n A k j these when you take it out minus

1 power K plus j capital A k j, this is what we wanted to prove.

So, this shows if your definitions are in order the; proves are also easier. So, now, now

we come to the adjoint determinant formula. So, remember we have defined adjoint of a

d j; this is the transpose of so that is a i j tilde and a i j tilde is minus 1 power i plus j and

not capital A i j, but capital A j i it is a transpose of and now what I want to prove is this

is called adjoint matrix of a this is also matrix in m n these also the same size square

matrix and these i j th entry here this tilde a i j this is i j th entry of this i j th entry is

called a cofactor i j th cofactor of a these are the standard terms one usually use I will

again not go to a numerical example.
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So,  that  the main theorem is  this  following theorem these also I  will  keep referring

adjoint determinant theorem. So, A is any matrix square matrix with entries in arbitrary

field K then if I take the adjoint of this matrix and multiply the matrix a.

Or do the other way that is multiply a on the left this, this is nothing, but determinant of a

times identity matrix. So, remember this matrix is a diagonal matrix with entries on the

diagonal determinant a determinant a and 0 is the diagonal matrix. So, this let us prove

this first and then we will draw the consequences proof, alright.

So, remember the definition of adjoint is i i j th entry is tilde a i j tilde and a i j tilde is

minus 1 power i plus j capital A j i. So, when you multiply again I will prove only one of

the equality and the other equality will follow by replacing a by a transpose. So, I will

prove only the first this equality this equal to this that equality I will  prove and this

equality will follow by replacing a by a transverse or by using the row or if I use a

column expansion for this then i 1 uses for this equality the row expansion similarly. So,

what is the product a d j a times a this product is again a n cross n matrix. So, let us call it

b i j and now is how are the b i js computed then b i j will be equal to summation over K

equal to 1 to n.

So, that bi b i j th entry will be the the K th row here multiplied by the no i th row here

multiply by the j th column here corresponding entry and added it. So, I have to look for

the i th row here. So, i th row here will be index for shielding cbi i K tilde times j th



column there. So, that is a k j this is the b i j the i j th entry of this product, but this is

same as I just plug-in what is tilde that is same as summation K is 1 to n minus 1 power

this I am writing K plus i this here capital A; capital A k i times a k j, but this one now

we look carefully this one the only term which will survive here for i equal to j because

if i different from j this one; this one is a repeated column here in the cofactor. So, this is

nothing  is  only  survived  for  i  equal  to  j.  So,  there  and in  that  case  because  of  the

expansion theorem will be the determinant.
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So, this is nothing, but delta i j where delta i j the canonical delta times the determinant

of e because so, let me write the reason because we are proved in expansion theorem

about the determinant of a is summation K equal to 1 to n minus 1 power K plus j A k j

capital A k j. So, that is when i equal to j it is precisely this equality which are wrote

which is we proved in expansion theorem that will precisely give for i equal to j it is

determinant and for i not equal to j it is 0. So, that proves what we want. So, that proves

what we want these product we have proved it is equal to this matrix determinant than

the diagonal.

Now, is some consequences, so, first of all suppose you have a invertible matrix if a g l

m k that is a is invertible remember that we have proved earlier that this is equivalent to

checking the  determinant  to  nonzero  these also  let  me just  remind you this  also we

proved by using the standard determinant  function.  That  means,  a inverse exists  this



invertible means a inverse exists and we want to compute the inverse for it then we can

actually  write  down  a  formula  for  inverse  then  a  inverse  is  matrix  is  nothing,  but

determinant inverse.

Determinant to the non zero scalar, so, therefore, this makes sense in the field this times

the adjoint matrix because when you substitute this in that adjoint determined formula

you get the identity matrix. So, therefore, this is the inverse and its uniqueness and so on

all that so on this is this is how one usually computes the determinant the inverse now I

want to write one corollary. But before I write one corollary also you; I want the note

explicitly that adjoint of what happens to the adjoint of the transpose this is same as

transpose of the adjoint just found the first equality if you replace a by a transpose you

will get this also so on.
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Now, another thing I want to deduce is. So, let me write the this as a corollary this is

usually  known  as  Cramer’s  rule,  many  many  such  computational  rules  in  standard

references one usually see as a statement, but not the proofs one reason could be because

calculation becomes more in Basier if one does not use standard determinant functions.

So,  and  we  are  deducing  them  is  easily  because  we  are  always  using  standard

determinant  functions  and  also  I  want  to  take  this  opportunity  to  make  one  more

comment  that  remember  when V is  n  dimensional  then I  am going to  shielding  this

alternating let us say r linear forms on V and we have checked that when r is bigger



strictly bigger than n these are all 0. So, the first time it is nonzero is also that determines

of form determines the dimension of the vector space. So, that is the first time alt n v

nonzero and this is one dimensional and then when you want to study earlier cases that

are also very nice theory, but one for that one needs one need to do so, called higher

multi-linear algebra.

And those will be related to in general r cross r minus of the given matrix. So, things

becomes  also be  safe  for  calculation,  but  if  you keep using  the  alternating  forms  it

becomes much literals, but unfortunately in this course I will not be able to do that and

ah. So, that will also it is the next step will be to study instead of by linear forms. So, that

will be the next step to study concretely more by linear forms and that will usually lead

to inner product spaces and so on and so on. So, that will be the next course beginning.

So, Cramer’s rule now, so, we have the system of linear equations.

So, let e be a system of n linear equations in n unknowns and that I am going to the as

usually when writes like this a 1 1 x 1 plus, plus, plus, plus a 1 n x n equal to b one and

this is the first equation and n th equation is an 1 x 1 plus, plus, plus, plus, plus, a n n x n

equal to b n and we want to solve this equation so, usually the coefficient. So, thus the

coefficient matrix is with coefficient matrix coefficient matrix a which we are denoting a

i j this is now n cross n matrix over of m n K and remember.

When we use gauss elimination we have noticed that if you one want to write down the

solutions of this linear system of equations then first one or one finds one solution by a if

adopt by trial error see there are also method, but let me say by suppose you know one

solution; that means, if you know a system is consistent then all solution we can write

down by using the home corresponding homogeneous system; that means, by computing

the kernel and then we could and then we translate by one vector by one solution and

then we get all the system and now we are we also know in this case. 

So, when this system we have we have written it as ax equal to b, where b is a column

vector x is also think of is a column vector and we know if x is invertible then there is a

unique solution not x if a is invertible if a is in gln then; obviously, we know how to find

a solution there is only one solution mainly x equal to q multiply this equation by a

inverse. So, a inverse ax because a inverse ax is this and this is a inverse times b and

from there you can compute this is column this is also column. So, you compute the



corresponding component and you get the explicit formulas for x i th and this is what I

want to write it down, but this I do it after the break.


