
Design of Mechatronic Systems

Professor Prasanna S. Gandhi

Department of Mechanical Engineering

Indian Institute of Technology, Bombay

Lecture 19

Microcontroller Programming Philosophy

(Refer Slide Time: 00:11)

In today's class, we will start continuing further our discussion on microcontroller

architecture and programming details. So, let’s begin with the programming philosophy as we

discussed in the last class also, this philosophy would center around registers.

(Refer Slide Time: 00:49)

So, we have seen there are different levels of programming and each one has like different

ways to access different registers in the microcontroller platform. And these registers are

basically at their fundamental level, they are flip flops. So, you can see hardware has these

different layers, one can understand the hardware in different layers, or and one can

understand the software also will have like as we will see different levels of programming.

So, the base level is the assembly language where you can access each of the registers by

directly assembly language. And we will see how you do that with some examples of some of

the hardware of basic fundamental microprocessor 8085 system. And then, we will move on

to like the more advanced system and see some examples of programming there and we will

move to further advanced system, which is on ARM technology.

We have seen in the last class, general philosophical description or motivation, for which

ARM technology was developed. And it has a lot of usages in the modern mechatronic

systems. So, that is why I like it is good to study ARM kind of technology and its

applications or its interfaces that it provides and things like that.

So, this way you will be able to develop your own mechatronic products in the future, if need

be, very easy. And you know what is the state of the art that is happening. So, that is why we

will work with this Tiva microcontroller and the Tiva microcontroller will give us lot of

understanding about ARM technology.

(Refer Slide Time: 03:09)

Now, we will move on to little bit more details about programming. So, if you go to basic

fundamental assembly level language, say 8085 system, the programming would have this

something called opcode which is the instruction for, as in C you have some instructions like

that, you will have some instructions in the assembly level programming, which is given in

some kind of MOV, ADD these are very short instructions are there.

This MOV as the name suggests it moves contents of register A to registers C, these are, A

and C as we saw are registers in architecture of 8085 system somewhere. So, A is a special

register called accumulator in that system. So, these are descriptions of these all things will

be given in the datasheet and even these commands and their meaning will be given in the

instruction manual for the microcontroller or microprocessor in this case.

So, this is most fundamental level programming that one can do, where you actually write

assembly language code, nobody does that these days actually. It is just for the sake of

academic understanding that, oh look finally whenever we assemble our C code, it finally

gets into this program and this program gets executed in its own way.

So, finally, each of these commands also will have some hex code associated with that. So,

that is how that code will be loaded into the, into their respective registers. And then based on

the timing and control circuitry that one-by-one lines of code will get executed and that is

how likely your operation happens. So, this goes for fundamental level understanding of how

things happen at a hardware level.

Say, for example, when I say moves contents of register A to register C, there are some

hardware pins to be enabled and then needed to made high. So, that contents of the register A

are available on the data bus. And then, you enable some other pins so that the contents from

the data bus are transferred to register C, these are micro instructions, which will be

associated with each of these so-called opcodes.

And number of these micro instructions will determine how much time would take, how

many clock cycles in particular would be required to execute this command MOV here. So,

that is understanding here so for any command.

(Refer Slide Time: 06:02)

So, in the instruction set you can observe now that there aremany different instructions that

will be given. So, for example, this is instruction ACI. So, description is add immediate to

accumulator with carry. This accumulator is this register A. So, if you have no understanding

of architecture, then these commands will not make much sense.

But, if you have understanding that look this is accumulator and this command as this opcode

and operand and then number of times state it takes is 7, or t-states cycles, number of cycles

of the clock it will take to execute this command is 7 here. Like that this, all these details will

be given and this instruction has hex code this CE 57.

So, olden days, you do not have this, the computer or keyboard to program these 8085

systems. So, what you do is, you will have this ADD display in which there are only like 8

fields. So, 4 are, 6 are, there are only 6 fields, there are 4 of them are address field, and 2 of

them will be data field. So, you start at any address and you start coding these hex codes into

these different memory locations. And that is how you start writing the program.

So, which was quite cumbersome to create right now, we have done that in our

microprocessor course or lab that I was when I was MTech. student here, I did that in one of

the labs actually. So, it is quite a time-consuming process. Also, in my B tech. project I did

that actually. So, it is very interesting, now if I think about how this, so much of a drudgery to

code this and then make sure that they execute properly and run your motors or any other

applications.

(Refer Slide Time: 08:34)

So, it will have all the instructions that are available for 8085 system to go, they will be all

there in this. So, there are some conditional instructions, unconditional call will be there.

There will be some if-else statements how do they execute that you will get to know say for

column positive. So, if something is positive, then you will shift the address, next address

which will be from where the programming execution will restart. Like that you will have

some kind of nesting loops possibility and things like that, by using this basic fundamental

level commands.

So, nowadays, all modern microcontrollers you just say if-else in C language and your job

will be done. But in olden days there is no command if you will find in this whole set of

instructions for this, there is no command- if or there is no command- while. So, there are

these commands called call on positive, call on carry or call on 0. So, that means when the

flag, you have seen the flag we studied in the last class, when the 0 flag and that flag register

becomes 1, then the program some sub-routing will be called for the program and that is how

this instruction works actually, call.

So, this is how olden days this is programming used to be, and that is what is done now also,

but it is all the compilers to do that targery. So, human beings are spared from that. So, we as

a programmers for hardware programming write all the codes in C language and they get

executed. So, that is how things happen there.

So, main understanding here is that this 8085 system or any microcontroller system will

ultimately have the program in the assembly language that will be downloaded to

microcontroller and each of these instructions of course, they will have associated some hex

code with that and given higher level program that you will write in C, the assembler will, or

compiler will compile this program and generate these opcodes and then generate a code,

which will be only with respect to these opcodes and that is a code which will be downloaded

microcontroller memory that is how the things are going to happen.

And you will see later when we see the interface of Tiva microcontroller, we will be able to

see that some of these opcodes or some of the assembly level parts of the code which are

there in the microcontroller.

(Refer Slide Time: 11:55)

These are fundamental operations that will happen in microcontroller at the assembly level.

So, all these operations are that way universal I would say, but one can see there are some

opcodes or instruction sets which are in the assembly level for each of these fundamental

operations. There are some logical operations, there are arithmetic operations, we saw this

command ADD, then internal data transfer, we saw this command MOV.

So, like that there are this branching operation there this call command or jump or jump on

carry, jump on 0, these are commands, which are for branching. So, you are executing some

series, the commands, and from here now based on some condition, I want to execute

something else, I will jump from there to something else execute that and come back and

keep doing that. That way, you will have a facility to create loops and you have facility to

create if-else statements and things like that as I said earlier.

So, these are the ways in which things actually happen at the assembly level. So, we do not

need to get into whole lot of details here. But we need to have the sense that look, whatever

commands I am writing here in the higher-level language, they will have, compiler will

actually compile them and convert them into these opcodes. And then, those opcodes will be

finally executed automatically right now.

(Refer Slide Time: 13:38)

Now, let us move further for little bit higher level microcontroller. So, if you see your

Arduino microcontroller or your XEP 100 their philosophy is (I mean philosophy) is the same

you need to have a finally convert those codes into the assembly level language. But to access

the registers, you do not have these register names A, B, C, D as you had in the 8085 kinds of

a system, you will have these registers access there in a different way.

So, these registers are available as a variables in C, some variable in C. These variables

would be defined in the datasheet of the microcontroller. And also, they will have header files

provided to you in which those registers are mapped into, those variables are mapped into

certain memory locations or registers finally. So, when you write to that variable, it will go to

appropriate register in the microcontroller system, that data value whatever you have written

in that variable, it will go to that particular register.

And there are two types of such registers, one is control register, and other is working

register. Control registers for any interface, there will be these two kinds of registers. So, we

will see some examples. Say for example, maybe I will explain first what this function is and

then we will take a example.

So, control registers set up your interface for particular or configures your interface for a

particular operation to happen and working register actually supply the working values which

will be continuously changing.

So, control registers you set up only once in your program and then working register you may

keep on changing based on whatever closed loop operation that you are carrying out. For

example, if you remember or some of you might have already done this programming of XEP

100 in that this DDRA register was there, DDRA variable was defined.

So, the call is DDRA now register only although it is a variable in C you would because this

is mapped to a certain register which is fixed in the computer or a microcontroller memory, it

can be referred to as DDRA register. So, say this register DDRA in digital input output

interface in XEP 100 it controls as the name suggests direction definition register.

So, DDR is direction definition register. So, it defines the direction for the data transfer in

this register pins of register A and this is A port that is available on the hardware pins of this

microcontroller. So, this all will be given in the datasheet. We will look at this XEP 100 data

sheet also in a minute. But this DDRA that way happens to be a control register then, you do

not keep on changing the data directions typically in the register.

So, once you define, I am using this register as an output register and the pins are connected

to some output LEDs, I will not change the direction now, once it is set, we will execute that

for say some display of some numbers or dancing LEDs or some LED to glow for to indicate

some operation happening that is the functionality that will built into the microcontroller

program.

So, that way this DDRA register is a control register. Now control register will just set up the

things, it will not put values into any of the functions actually. So, for that you need a

working register that is working registers will actually start putting values in that and

outputting something that you want to execute in your final program.

So, for example, DDRA will set this register to have an output definition for pins of port A

and you actually write to this port A some data and then like that data will be displayed if it is

output port, that is how you have written this program. So, we will see that now in a datasheet

of this microcontroller. So, let us switch to that.

(Refer Slide Time: 18:33)

So, this is XEP 100 reference manual. Now, if you see this manual, it will have 1324 pages.

So, we do not get into reading all these manuals to start putting programming. So, we want

see this the module that is responsible for actually doing this data input output, is this port

integration module and we can directly go to see what is there in that module.

(Refer Slide Time: 19:01)

And you can see that you can read through some of these details as is port A port B

something is given then there are these different variables will be given. Then number of pin

definitions will be given like that all these things are given. So, you can, if you know this

name of some registers, you can look for those registers as there can say control find and look

for these registers.

(Refer Slide Time: 19:38)

So I say here DDRA and I get all the details about this register. So, we can see here, so this is

data register DDRA data direction registers for port A. So now, it gives me all the definitions

if the value is written there, it will be defined as input port or output port like that. It gives all

the description and according to what is written in the datasheet if I set up this register some

number, then accordingly the functions will start happening in the hardware.

So, that is how one goes about programming these different-different microcontroller

interfaces. So, this is about this simple digital input output interface. These are many different

you have DDRB, DDRC and things like that. Then you will have port register port A, port B,

port C is a data register. So, port A when you say like the data will be given to this port or

read from this port.

Port C means the data will be, suppose I want to write or this is port is output port, I will

write this output number into this port and depending upon what is your data say that data is

10101010, then wherever that 1 is there that LED will glow, 0 is there LED will be shut off

or something like that.

So, you are putting the hardware pin high and low values on the hardware pin by putting

these data into respective registers, that is our operation that takes place in the input output

ports.

So, this is how we look for programming for little higher-level microcontrollers. So, this

thing you will be able to observe for many different kinds of interfaces. So, these different-

different modules, so, on these, you see different chapters in the datasheet we will find what

are modules that are provided by this microcontroller or in the datasheet you will find all

these modules that are provided and more details of those interfaces will be observed in the

respective chapters of the datasheet.

(Refer Slide Time: 22:15)

So, typical interfaces will be of these different-different kinds. So, depending upon

microcontroller that you choose you will have these different interfaces and interfaces names

also will change from one microcontroller to another microcontroller. Say for example, this

digital input output interface as we saw just now in XEP it is called port integration module

or PIM. In the Tiva, it has a name GPIO or general-purpose input outputs. So, like that you

will have different-different names in different microcontroller. So, do not get bogged up

with that you can just understand this is your interface that you need to program.

Typically for mechatronic applications from sensors perspective, we will need these

interfaces, general purpose digital i/o input outputs. Analog to digital conversion and then

quadrature encoder interfaces and maybe some serial or other communication modes can be

possibility. Especially if the sensors give directly the output in terms of serial port or port like

a CAN interface then we will need these serial or other communication modules to be

programmed.

Actuator typically will run by PWM module. In some cases, there is a possibility of running

the actuator by using this digital to analog conversion also, but in most of our cases it may

not happen.

(Refer Slide Time: 23:55)

So, I think maybe now we will just talk about little bit more details of these interfaces. But

we will come back maybe in the in the next class. So that I have this small chunk of thing

about just to maybe base fundamentals of these and then we can come back to this more

details of these interfaces in the next part of the today's class. So, I will stop here for now.

