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This is the second lecture of the mixture properties. In the first part, we develop relations

for the basic properties of a mixture, like its mass, specific volume, density, and mixture

molar mass. We will now extend that to say how can we is that enough to get the p-v-T

behavior of a mixture. 
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So, we go back to what we have already learned that for a pure substance, where the

ideal gas equation of state, where we said p v is equal to R T or in terms of the molar

mass and the universal gas constant that is what it is. For a real gas, we modified this

equation p v is equal to Z R T, where Z is the compressibility factor. 

And if you recall from single phase thermodynamics, Z depends on the state the pressure

and temperature, in particular we got the tables in terms of reduced pressure and reduced

temperature  by  dividing  these  by  the  respective  critical  values.  And  from there,  we

developed different types of equations of state. Like Van der Waals equation of state, BT

Bridgeman equation of state, and so many others, so that was good enough for this part,

where we were looking at the pure substance.

And now we say that if I have a mixture of two ideal gases or three ideal gases, thus this

mixture behave like an ideal gas, so that is the question. There is a mixture of ideal gases,

behave as an ideal gas. The implications of this are very far reaching. If the answer is

yes, then we can use the same relations that we had for a pure substance, life becomes

very easy, the calculations are very straight forward.

If the answer is no, we are to going to much more involved calculations to get an answer.

And there to, it will come only at the expense of sacrificing some of the accuracy, was

very accurate solutions, we will have to going to much deeper behavior of individual



species use much more complex models, and get much more accurate answers that is not

within the scope of this particular course. 
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So, to do that we invoke use two laws, and they help us in going forward in answering

that question. First is Dalton’s law of additive pressures, the second one we will look at

is Amagat’s law of additive volumes. So, this law is somewhat familiar from school days,

but Dalton’s law partial pressures has been taught with such that the mixture pressure

with the sum of the pressure of the individual components.

Now, we will make it more rigorous by saying that mixture pressure is pressure exerted

by  the  individual  components  provided,  the  individual  component  were  at  the  same

temperature  as  the  mixture  temperature  and  that  component  occupy  with  the  same

volume as the mixture volume, so that is the difference that we are now looking at. So,

here is what it means that if this is the system, and here we have one species which is the

blue dots, and the second species which is the red dots. This system its volume is V mix,

and  the  pressure  that  you  would  measure  here  is  p  mix,  and  this  system  is  at  a

temperature of T mix. 

And now what we are saying in Dalton’s law of additive pressures is that if I take the

same system, and now I only place one type of this molecules in this, say this blue ones.

In which cases, the blue ones is species number 1, and because it is the same volume that

we  are  taken  here,  this  is  V mix  same  as  this  one.  And  we  keep  this  at  the  same



temperature T mix as the mixture temperature. Under this situation, the pressure exerted

by this species is p 1 in this case a i equal to 1.

And now we say it was a binary mixture, this was i 1. Then we do the same thing with

the second component of their mixture, and now we are saying this is i is equal to 2. And

now we are only looking at the other species which is the red dots over there, and we

maintain the same conditions that this volume is V mix, its  temperature same as the

mixture temperature T mix, then the pressure exerted by this second species in this case

is p 2. And then p mix is equal to p 1 plus p 2. 

So, what we have done to what we have already learned in school is added condition that

partial pressure is the pressure exerted by the species, if it were to occupy by itself. The

same volume as that of the mixture, and b at the same temperature as that of the mixture.

So, these are very important considerations same volume V mix and same temperature T

mix, so that is Dalton’s law of additive pressures. 
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A consequence of this law is that we can now extend it, and say that I will now look at

the  ratio  of  the  partial  pressure  of  ith  component,  this  is  the  partial  pressure  of  the

component i to the mixture pressure. And this we can write that ith component is an ideal

gas, so p i is N i R u T i by V i. And we write the same thing for the mixture N mix R u T

mix upon V mix,  we simplifying  it,  this  becomes  number  of  moles  of  i  divided by



mixture moles which is nothing but what we just defined as y i,  which is the molar

fraction of the ith component. 

And this we are of course as before, we are doing at the same temperature, same volume.

So, we can say that the partial pressure of component i is p i which is equal to its molar

fraction multiplied by the mixture pressures. So, this is another important relation came

about because of Dalton’s law. 
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We now go to the second law, which is Amagat’s law of additive volumes. Simply put it

says that V mix is the summation of V i provided the component occupy is at the same

temperature, and the same pressure as the mixture. So, here is what it means that is this is

the system. And we have two components there, one is this one, and the others are here. 

Then if we separate it, the way we did few minutes back look by looking at Dalton’s law,

we would get the same type of the situation. So, we are saying that now I only have this,

but now the pressure of the ith component is less than the mixture pressure, so that is

what came about there the p i is less than p mix, when you do this separation, and that

came from Dalton’s law. 

But Amagat’s law requires that the volume of the mixture will be volume occupied by

this species, it were at the same temperature as the mixture. So, we have this mixture was

at T mix, and the volume of this was V mix, and the pressure inside here was p mix.



When we separated out the volume was the same, we could have maintain the same

temperature, but pressure will always be less than the mixture pressure.

And  this  is  what  Amagat’s  law  says  that  if  you  were  now  to  maintain  the  same

temperature T mix,  and maintain the same pressure p mix,  then the volume that this

species would occupy, if I did for all the species will equal to the volume of the mixture,

which means that this particular case, we would have to increase its pressure, so that this

becomes T mix, its pressure now becomes T mix, but this volume has now come down,

so volume of this is now V 1. So, this was i equal to 1. So, the volume occupied by the

ith  component,  if  it  were  at  the  same  temperature  and  pressure  as  the  mixture

temperature. 

Now, we do the same thing for the second component, so that is the same volume as the

earlier case, this we are saying this is V mix. But, now we only have, i equal to 2 the

second component of the mixture in this, so which is nothing but all these molecules

here. Now, we know that even if you were to attain T mix, then the pressure here again

will  be  its  partial  pressure  of  this  component  which  will  be  less  than  the  mixture

pressure,  but Amagat’s law requires that  this  component  should also be at  this  same

pressure  as  the  mixture  volume,  mixture  pressure,  and  the  same temperature  as  the

mixture temperature. 

For that again, we will have to reduce the volume of this one. So, all this is now this

molecules are now, you know smaller volume such that the temperature is the same as

the  mixture  temperature.  The  volume  is  now  V 2,  and  the  pressure  is  the  mixture

pressure. And what Amagat’s law says that in this condition V mixture is V 1 plus V 2.

And if we add more mixtures, we did the same thing with each one of them, it will be the

relation  that  we have right  here V mix is  the  sum of  the volumes  of  the  individual

species, if they were to occupy a volume at the same temperature and pressure was that

of the mixture. So, this is Amagat’s law of additive volumes. 
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So, we now have two ways of connecting various properties of components and to the

mixture. So, we extend Amagat’s law like we did with Dalton’s law V i by V max V mix

mixture is N i R u T i by p i which is and volume of the mixture is N mix R u T mix upon

p  mix  recall  that  in  this  case,  we  are  keeping  the  same  temperature  and  the  same

pressure. So, all the p i’s are equal to p mix, and T i equal to T mix in which case V i by

V mix becomes N i by N mix which is nothing but small y i the molar fraction. 

So, what is now we called by Amagat’s law. These are the partial volume of component i,

V i is equal to the molar fraction of i multiplied by the mixture volume. So, what has

emerged from this set of definitions with that p i by p mix is equal to V i by V mix is

equal to N i by N mix which is the molar fraction. So, this is something that comes out

from both the laws. 
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So, can we apply both laws to all situations well so happens that, when we look at ideal

gases, and real gas mixtures. So, we have for an ideal gas Dalton’s law is equivalent to

Amagat’s law. So, what we would predict using Dalton’s law is the same as what we

would predict using Amagat’s law, and that is strictly for an ideal gas.

So,  what  happens is  that  for  low pressures Dalton’s law is  better  and predicting  the

behavior, but at high pressures Amagat’s law is better. And the reason is that Dalton’s

law  does  not  take  into  account  the  fact  that  when  we  were  mixing  two  molecules,

intermolecular forces are not being taken care off. To some extent that is taken care of by

Amagat’s  law,  because  there  the  volumes  are  being  kept,  so  the  intermolecular

interactions are somewhat accounted for. And so at high pressures Amagat’s law is better,

at  low  pressures  Dalton’s  law  is  better.  But,  Dalton’s  law  at  high  pressures,  under

predicts the mixture pressure, so that is one thing that comes out ok.

Now, we want to say now we will take the steps further, and say now I want the p-v-T

relationship for a mixture or in some sense an ideal gas equation of state for a mixture or

a modification of that with the compressibility factor. So, we are now looking for is an

expression, where we are looking for something like this, and asking how good is this p

mix, V mix is equal to Z mix R mix into T mix. 
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So, we have two methods for tackling this problem. Method one is that we predict the

compressibility factor for the mixture by Dalton’s law. So, what we do here is that we

define Z mix as p mix v mix upon R mix T mix equal to and then we say that the mixture

pressures by Dalton’s law is a sum of the partial pressures of each component. And by

putting that we get this relation that this is summation of N by N i by N mix multiplied

by Z i. So, what remains here is the compressibility factor for the ith component. 

And so it  gives a very elegant  relation that  the mixture  compressibility  factor is  the

summation of y i Z i is the molar fraction of i multiplied by the compressibility factor of

ith component. Getting the ith component compressibility factor is something we have

already learned in part one of thermodynamics that we need the reduced pressures for

that  component,  and  the  reduced  temperature  for  that  component,  where  these  are

defined as p i upon critical pressure and temperature upon critical temperature. So, these

are the reduced properties. 

So, we got the reduced properties from the reduced properties, we go to the generalized

compressibility chart or many of the other equations that we have. And using that we got

Z i. And if we know the molar composition of the mixture, we can then combine this

with that to get the compressibility factor for the mixture.  And then we can go back

toward  equation  of  state  with  this  particular  value  of  Z  mix,  so  that  completes  the

calculation. 
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In the second method, we do something else which is we invoked what is called Kay’s

rule. And here this is the fundamental difference from the first method that we just saw in

that we treat the mixture as a pseudo pure substance. What does it mean that we know

that  the  mixture  has  got  different  molecules  in  it,  but  we  are  going  to  ignore  that

difference, and say this whole thing behaves like some sort of a homogeneous material

and that is why we put the word a pseudo pure substance? So, we are assigning this

mixture so called hypothetical single molecule, which is a quote unquote pure substance. 

So, what we do in that case if that we then say that the critical pressure of the mixture is

weighted by the molar fractions of the mixture multiplied by the critical pressure of the

individual components. Same similarly that critical temperature of the mixture can be

obtained by the weighted product of the molar fraction, and the critical temperature of

the individual species, remember this is all in kelvin. 

So, we got the critical pressure of the mixture critical temperature of the mixture from

that we can get the reduced pressure of the mixture, this is p critical mixture sorry p mix

p  mixture  divided  by  p  critical  mixture.  And  similarly,  reduced  temperature  for  the

mixture will be T critical mixture upon this is T mixture in the numerator. Now, what we

do is we take these values go to the generalized compressibility  chart  or some other

relation, and get z mixture. And from there we can use that equation of state, and get all

the other properties. 



So, now what we have got, if the ability to be able to get more information about the

properties based on Dalton’s law, Amagat’s law, and on Kay’s rule. The next question we

ask with that to solve a problem, we need internal energy, specific enthalpy, and specific

entropy, how do we get those properties. Now, that we have any questions on state for us

with  the  compressibility  factor  put  in,  we  can  get  all  the  other  relations  in  a

straightforward manner. 
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So, here is what we will be now look at is properties of a gas mixture. And what we want

a  specific  internal  energy  of  the  mixture,  specific  enthalpy  of  the  mixture,  specific

entropy  of  the  mixture,  constant  pressure  specific  heat  of  the  mixture,  and  constant

volume specific heat of the mixture. So, we will first look at the Kay’s which we have

looking at ideal gases, and then for real gases. 
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So, what happens is what we are saying is that the properties of a mixture of ideal gases,

we are only looking at one particular state. And we are saying that at that particular state,

there is no change in its composition. So, we say we have a system in which we have this

mixture, there is one component there, and the second component there, and it could be

more components there.

Then the first thing we do is, we will say the simple thing to tackle is the extensive

properties of this mixture. And so we say that extensive properties are nothing but edition

of the extensive properties of the individual components. So, U mix which is the total

internal energy of the mixture is the sum of the internal energy of every component of

that mixture, so that means this summation is basically telling you that U mix is equal to

U 1 plus U 2 plus like that till k. 

So,  this  is  this  helps  us,  because  U 1  can  be  written  as  the  mass  of  that  particular

component multiplied by its internal specific internal energy m i u i or in terms of moles

N i u i bar, it is the molar specific internal energy. In the same way, we can write a

substitute for U by H, and we get the enthalpy of the mixture. And you can substitute U

by S,  and get  the  total  entropy of  the  mixture.  Both  these  are  nothing but  sums of

respective property contributed by every component in the mixture.

We can also then ask what is the change in the internal energy of the mixture, and we

will write little more detailed things little later on. One could say that this is m i into



delta u i, but this is a question mark on this, for reason we will come to that in a few

minutes  ok.  So, we got  one part  of the property things  done which  is  the extensive

properties U, H, S being taken care of.

Now, we ask how do we get the intensive properties of a mixture. And that is where this

first part helps us that the specific internal energy of the mixture is extensive plus the

total  energy  of  the  mixture  divided  by  the  mixture  mass,  which  is  summation  of

everything  in  the  numerator  m i  u  i,  and  mix  this  being  common  this  goes  in  the

denominator. And simplifying it this becomes the product of the mass fraction, and the

specific  internal  energy, so that  is  a  very nice  thing  to  have  that  U mix is  equal  to

summation of Y i capital Y i into U i or Y i which is the molar ratio fraction multiplied

the molar specific heat.

And one can do this thing, and get h, h bar, s and s bar. We can now extend this also to

get the specific heats, the same way that we did earlier. So, C v of the mixture will come

up to be summation of Y i C v i, Y is the mass fraction, and same thing with constant

specific heat, we wait to a weighted sum of the product of the ith component specific

heat and its mass fraction. 

So, in this sense we got all the properties that we have been looking for, and what it is

telling us is that if we know the mass fraction or the molar fraction of the component,

and the specific property of the individual components. Then using these relations, we

can  compute  the  specific  internal  energy  of  the  mixture.  So,  this  is  what  we  have

accomplish now. 
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We now ask what happens to changes of the mixture properties. So, you are asking this

question that the mixture changes state from state 1 to state 2. And we are looking at the

general case, where the states could be such that the system could be open, and that you

could have added or subtracted some of the species, what happens in that case. 

So, there we have that delta U of the mixture will  be specific  internal energy of the

mixture in state 2 minus specific energy of the mixture in state 1, which is summation i at

for state 1 for state 2 Y i 2 U i 2 product minus the same thing, but this time it will be Y i

1, U i 1 that total. So, what we have done here is that we have allowed for changes in the

mass fractions or the molar fraction of any of the components of a mixture. If there was

no change in the component mixture components, then this relation will become simpler,

and it will just become summation i equal to 1 to k into say Y i which did not change

during the process multiplied by delta U i which is nothing but U i 2 minus U i 1. And

we can based on this get similar properties for changes in the enthalpy specific enthalpy,

and specific entropy of the mixture.

But, little care has to be exercise, when will look at entropy change for an ideal gas. We

have learned that entropy change of an ideal gas is s 2 minus s 1 which is integral T 1 to

T 2 C v dT dT by T plus R ln V 2 by V 1 or in terms of pressure C p d T by T minus R l n

p 2 by p 1. So, what we are seeing basically in both these relations that we learned in the

first course that C v and C p are functions of temperature. We did not assume constant



temperature, constant specific heats. Now, the same relation can be written for any ith

component by adding the subscript i s i, 2 minus s i, 1 is equal to all of these things. 
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So, now what happens is if you want the exact solution for the ith component, then delta

s i is s i, 2 minus s i, 1 which is s, i 2 0 which is the standard state entropy minus s i, 1 0

minus R l n p i, 2 by p i 1. So, during the pressures became the partial pressures. And

these are standard state entropy values. So, this is the exact solution.

The approximate solution is what we just wrote delta s c p, i ln T i by T 2 minus R l n p i

by p 2, and all that we did here from the earlier relation was this part, where we said that

c  p  the  constant  specific  heat  of  ith  component  is  constant,  i  not  dependent  on

temperature. So, we have the relations that we have been looking for entropy change an

approximate relation and a exact relation, so that completes all the properties that we

have been looking for and the property changes that you are looking for a mixture. 

So,  at  this  point  what  we  have  achieved  is  what  we  did  for  a  pure  substance  its

counterpart for a mixture is what we have done. We have defined various properties, how

did their change can be evaluated and seen one important thing that all properties can be

expressed  as  a  combination  of  mass  or  molar  fractions,  and  the  properties  of  the

individual components at that condition. So, now you know the entire picture on as far as

property it goes. 
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Now, we will come to the last part of this module, which is similar to what we did for

pure substance that how do I analyze a system where the working substance is a mixture,

and  not  a  pure  substance.  So,  this  is  what  we  are  looking  at  now  is  conservation

equations for gas mixtures. The first thing, we will do is look at the closed system. So,

what it means is that the system, there is no mass in flow or no mass out flow. And mass

means in this case not just mixture mass, but no species is coming in or going out which

means that during a process or given that system, the mixture masses remains constant.

And also mass of the ith component will be equal to mass of the ith component in state 2,

so that is conservation of mass. The additional thing that has come here compared to pure

substances is that instead of just one equation for conservation of mass which could be

the mixture 1. We now we will have as many conservation equations as the number of

components in the mixture. 

Let us now look at the first law. What we had written for a pure substance was that Q 1 2

or in general what W 1 2 plus E 2 minus E 1, this is the most general form of this first

law. And it did not differentiate whether the working substance was pure or a mixture.

Now, for a mixture we would modify these and say that Q 1 2 is W 1 2 plus E 2, we

qualify it as being energy of the mixture in state 2 minus energy of the mixture in state 1,

so that is the addition that is coming, where we define energy of the mixture as before

internal energy of the mixture plus half kinetic energy of the mixture, which is mixture



mass times its velocity of the square plus g z into m into mass, mass of the mixture

multiplied by its elevation here. So, we are denoting a boldface V, this thick one to mean

that this is magnitude of velocity, and not a vector.

And this is just to do differentiation that we already used the symbol V non-normal V, for

volume. Now, in a closed system if there is no change in kinetic energy or potential

energy, then the equation becomes simplified that Q 1 2 is W 1 2 plus U mix, 2 minus U

mix, 1, so that becomes the operative form of the first law for a closed system, where the

working substance is a mixture and this was the conservation of mass there. 

So, in solving a problem this is exactly what we wanted, you how do I evaluate the

internal energy of the mixture, and we just saw how this can be connected to the mass

and molar fractions, and the component internal energies, so that is the a closed system.

And the third thing that we have to do for the system is the second law analysis. 
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So, we are still looking at a closed system. And you say what is the second law analysis

of a closed system, and this as we have known earlier S 2 minus S 1 is integral is greater

than or equal to integral of delta Q by t equal to if the process is reversible, and greater

than if it is irreversible. The modification that we need to make this relation for mixtures

is that S 2 becomes S mix of 2 minus S mixture is state 1 greater than or equal to integral

delta Q by T 1 to 2, so that is the second law for the closed system. 
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Now, we come to a conservation equations for gas mixtures for an open system. So, what

we are doing here basically is like before we say that there is a system in to which there

are different inflows and outflows across which, there could be heat transfer, and work

transfer. And for that we define the control volume, which is say all  this part of the

substance in this control volume. The only difference is that these states here all of them

would have a mixture.

If I need not be the case that every one of them would have a mixture, it could be that say

for instance you have oxygen coming in from here, nitrogen coming from here, O 2 plus

N 2 going out from here. So, we have two are pure substances one is a mixture or it

could be that air comes in from here, you add something else flow it, and something else

comes from here.

In doing the single fuel substance analysis, we identify these inflows by the subscript i,

and by the subscript e for outflow. Now, we are running into a bit of a confusion, because

i we have also just used to denote the component. So, the same subscript is coming is

appearing for two things. And to avoid confusion, we are made a we will make a small

change, and say that for inflows instead of i lower case, we will use uppercase I. And for

outflows instead of using lowercase e, we will use capital E. So, thus control volume can

have  many  inflows  which  are  the  i's  and  many  outflows  which  are  the  E’s or  any

combination of them, in some of them can even be 0. 
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So, for this system with this notation, we can now write the conservation of mass and

then we go on to the first law. So, conservation of mass for a mixture. So, their outflow

rate minus inflow rate plus rate of accumulation of mass in the control volume equal to 0

that  general form of the conservation of mass system good. Except  that  we are now

adding a subscript there that out flow rates of the mixture minus inflow rates of each

mixture plus rate of storage of mass in the mixture is equal to 0.

So, this is the mixture conservation of mass, but individually each component also has to

conserve its mass. So, we can write conservation of mass equation for each component,

and this time instead of mix, we only write for this specific component i. So, outflow rate

of  ith  component  minus  inflow  rate  of  ith  component  plus  rate  of  storage  of  ith

component in the control volume is equal to 0. 

So, what it means is that we have a conservation equation one for the mixture, and one

equation each for the k components that are there in the mixture. So, the total number of

conservation of mass equations is  k plus 1. And this is  a major change from a pure

substance being considered. And here now we are talking of rates mass inflow rate and

outflow rate. And for each individual component, we can write that inflow rate is Y i

times mixture mass flow rate. And that the mixture mass flow rate is summation of m dot

1 plus m dot 2 plus m dot 3. So, these are all the components. 



So, at any flow when you have a mixture going in or flowing out, the total mixture mass

flow rate is sum of the mass flow rates of the individual components that is what this is.

And they can be related to by the mass the mass fraction. Also the mass flow rate of the

mixture can be written like we did the mass flow rate of a pure substance, density into

area into velocity of the mixture provided V is normal A c. So, the velocity is normal to

the area, so that is conservation of mass for an open system. 
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Now, we write conservation of energy or the first law equation for a control volume.

First law applied to a control volume, where inflow out flows are mixtures. So, the law

that we had earlier is exactly the same, your Q dot c v as the first term. Then first this

thing is the energy inflow rates, and right now we are writing it for the mixture. So, its m

dot  mixture  for  every  inflow capital  I,  and the  energy that  it  takes  into  the  control

volume, this is a specific enthalpy of the mixture for that state plus kinetic energy for that

state, and potential energy for that state.

So, it is the mixture kinetic energy, this is the mixture potential energy plus there will be

a similar term here for the exiting mass flow rates. And this we can write down as the

mass flow rate here mixture exiting at each e h mix at E plus V square mixture at each

exit  divided by 2 plus g z mix at  E. We do not have a confusion being the z’s here

because for elevation z is lowercase, and capital Z was the compressibility factor. So,

need to be clear that these are the lowercase sets ok. So, inflow rates is equal to outflow



rate of energy plus work done by the control volume plus rate of storage of energy in the

control volume which is U mix in the control volume plus V mix in the control volume

plus elevation change of the control volume, so that is the conservation of energy for the

control volume, it takes care of all those things.

And last  thing left  now is  the second law for the same thing a control  volume with

mixtures. And again we do exactly the same thing that we did in the previous equation,

we took the we take the equation for a pure substance or the most general form of the

equation, and put the prefix mix wherever that is relevant. So, this is the entropy in flow

rate for the mixture. So, there mass flow rate of mixture multiplied by its specific entropy

out flow this is out in flow rates, out flow rates plus heat transfer through the control

volume divided by the temperature plus rate of generation of entropy is equal to rate of

storage of change of entropy in the control volume. This is exactly the same equation that

we had for a single phase theory.

(Refer Slide Time: 53:47)

So, we can now summarize, what we have got. In module 1, we did two parts now. Our

objective of this module was to get gas mixtures was to study gas mixtures. And we

started asking the question, how can I learn something from the pure substances and the

formulations there, and extend that to gas mixtures. So, in first part of this module, we

saw how we got some of the properties. We defined important property which was the



mass and molar fractions, and using this we got the mixture molar mass the density of

mixture. 

And that  set  up the  stage  to  go  to  the  next  level,  where  in  the  second module,  we

extended  this  knowledge  using  two  laws  Dalton’s  law  of  additive  pressures,  and

Amagat’s law of additive volumes. And using these and what we learned earlier, we were

able to get the mixture properties u mix, h mix, s mix, C v mix, C p mix. 

And then we went to the next stage, where we got the conservation laws conservation of

mass, energy, and the second law. And we apply these and developed them for a closed

system, and for an open system. So, we have now the complete process with us to take a

problem apply  this  knowledge,  and solve  all  the  things  that  are  required,  when  the

working substance instead of being a pure substance is a mixture (Refer Time: 56:32). 

(Refer Slide Time: 56:37)

An example of such a thing would be that we have a system say a mixture of two things

say one component is there, and second component is there. And if only one component

was there we knew what would happen, if these were heated at constant volume from

temperature T 1 to T 2, and the question we would ask is well what was Q 1 2. We will

now if  there  is  a  mixture,  we  know what  is  the  process  to  follow, how to  get  the

properties of the mixture and answer the same question for this particular case. 



Same thing we can do for an open system, where we can say that there is an inflow of

something, and outflow something and how much is the accumulation happening there.

For that also we know that we define the same way, we go to find the control volume all

the  approximations,  see  what  is  given  get  the  properties  of  the  mixture  from  the

individual  components,  and  then  we  can  solve  the  problem.  So,  we  have  all  the

knowledge that we require now to solve problems involving gas mixtures particularly

ideal gas mixtures, and in some cases even real gases, so that completes module 1 for gas

mixtures, and we will stop here.

Thank you.


