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Taylors Experiment Wilkins-Guinan Analysis

Hello everyone, in the last lecture we have discussed about the Taylor's impact test, an impact of

finite  bar. So today we will  continue  this  discussion,  so  will  discuss  about  some additional

consideration and some additional analysis by Wilkins and Guinan on this Taylor's experiment.

(Refer Slide Time: 00:57)

So what we have seen earlier is that the Taylor's experiment that will for the final shape of the

deform bar may not be exactly what Taylor assumed. So the main differences may be with the

real differences of Taylor's analysis with real experiments is number 1, the deform part may not

be conical, but not conical we have seen that that may have mushrooming effect mushroom ship.

So basically when a body is impacted, so the Taylor analysis says that this is a residual, this will

be conical, but then this may not be exactly that and this will may have some mushroom effect

like something like this. So and the number 2 is the boundary between plastically deformed and

elastically  deformed  we  would  say  the  plastically  deformed  and  undeformed  region  is  not

distinct.



That  means here the early analysis  the Taylor analysis  it  says that there is  a clear boundary

between  this  plastically  deformed  and  plastically  undeformed  part,  but  in  real  material  so

sometimes this can have some gradual deformation part, so we where we cannot actually exactly

know the whether the boundary is that is the boundary between the plastically deforming and

undeform part.
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So Wilkins and Guinan in 1973 they have performed the simple mathematical analysis on the

Taylor's test they studied the reduction of L 1 by L 0 ratio. So the initially the bar impacting the

rigid wall is initial length is L 0 and the final length so if you are assuming this the conical shape

the final length is L 1. So how this L 1 by L 0 ratio reduce that reduction ratio they did analysis.

And they did experiment  on a  number of  materials,  different  materials  we will  derive  their

analysis, so first they verified that first they verified is L 1 by L 0 ratio is independent of L 0. So

they have also performed one experiment on this they have one experiment on 1090 steel the

material let us say is 1090 steel and this L by L 0 in the y axis and then velocity is on the x axis.

So this is the plot looks something like this.

And they use different L 0 values let us say L 0 3 different value like 4 centimeter L 0 = 2

centimeter and L 0 equal to let us say something below 1 centimeter or 0.8 centimeter. So they

have got all the points for all the 3 samples, so that means that that L 1 by L 0 that ratio is

independent of L. So they have these points follow this curve.



(Refer Slide Time: 07:19)

And so what the derive first we will start with the change in length with time is the instantaneous

velocity  U, so the -  sign because this  decreasing length and then they applied the Newton's

second law. So Newton's second law that force equal to mass into acceleration, the force on that

impacted bar is nothing but the sigma yd the stress multiplied by the area. So area the cross

sectional area of the bar and sigma yd is the as we know dynamic yield stress.

And we know that the stress in that plastically deform area will be sigma L that will be constant

throughout and so sigma yd x multiplied by will give us the force mass will be Rho 0 we have

the density of the material that projectile a bar multiplied by L into cross sectional area. So this

will give us LA multiplied by the volume and which density it will give the mass. So this is mass

and acceleration is dU by dt.

And this is actually the acceleration wherever negative sign here, so because it will the velocity

is reducing, so from here we can cancel out this area and then sigma yd will be equal to - Rho 0

L dU. So from this expression we can if we combine it here so 1 by dt, so we can write as U by

dl, so from A, so this we can rearranged as dL.L Rho 0 sigma yd dU. So if we take the now

integration from L 0 to L 1 dL by L.

So this is from initial length to the final length and here we have Rho 0 sigma yd which are

constant out of the integration sign it will be the velocity will change from U to 0 Udu.



(Refer Slide Time: 10:38)

This will look like Ln L, this is limit L 0 to L1 Rho 0 sigma yd U square by 2 U sorry so 0 so

then what we will get is Ln L 1 by L and equal to Rho 0 sigma yd we have a - here if we this will

be -, so this will give us finally Ln L 1 by L = - Rho 0 sigma yd U square by we can write a 2

here. So this is the expression and it shows the dependence of L 1 L 2 with Rho U square sigma

yd which is also similarly we got it for the Taylors analysis.

There were some relation for Taylor analysis also , we worked on that, so this is similar, so now

that Wilkins and Guinan they have a correction on this, so correction is they observed that this

the thickness of the plastically  deform zone,  so plastically  deform zone means we have this

residual, so we have that assuming it is as a conical. So plastically deform zone the thickness is

actually independent of velocity.

So what happens when it hits first and then that H will increase and finally there it is got a fixed

value of H and this H is independent of velocity U that is this impact velocity U and proportional

to  L 0 the initial  length or we can write  H by L = constant,  they defined in  new boundary

conditions here , that means this boundary between the these 2 and that is as you know that it

will move to a fixed position the H will move to a fixed position after the deformation.
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From the earlier relation so this Ln L, so if we want to get this H 0 by L out because H 0 does not

depend on U and then the our earlier relation what we showed is that that is a function of You, U

square at L1 by L U square. So what they did is they have that H 0 part of H 0 by L = constant

that part out of this relation. So for that they have the limit L 0 - H 2 L 1 H = Rho 0 U square

twice sigma yd U to 0.

So this will give us Ln L 1 - H L 0 - H this is Rho 0 U square twice sigma yd, so what we can do

in the left hand side little rearrangement we can do it like L 0 L 0 - H, this and then this will be

let us say the right hand side will remain same and then this will be L n L 1 - L 0 in this ratio and

H - L 0 and then this will be same L 0 L 0 – H. So finally what we can do is we can keep this out

L 0 - L 0 H - L 0 will give us this exponential - Rho 0 U square twice sigma yd.

And then finally we want to get a relation L 1 by L 0 which is 1 - H by L 0 I am not writing the

intermediate steps here, so directly you can find it out twice sigma yd + H by L 0 that H by L 0

will come here and this if we invert it L 0 by L 0 - H this will give this term and so this is the

expression where the H by L 0 term is you can see H by L0 term this one term here and then one

term here.
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So they plotted that L 1 by L 0 the plot I did with Rho 0 U square twice sigma yd by the this term

and then found an interesting result for different materials. So as we have an intercept here and

as we know this in the early expression so we have H by L 0 term on this side, they verified it for

3 materials aluminum, steel and tantalum. So they have did all the experiments and they got that

for all the 3 materials they have these experiment results lie on very close to this line.

So that is an important contribution from Wilkins and Guinan because first they verified that that

L 1 by L 0 ratio is independent of L 0 and the secondly they showed that that H the thickness of

the plastic zone is independent of the velocity of impact and that H 0 is depends only on the

initial length L 0 H by L 0 = is a constant and by doing that they showed the interesting result

here that aluminum, steel and tantalum show the same trend that is if we plot it L 1 by L 0 versus

this term that is U squared term with the constant Rho 0 divided by twice sigma yd.
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So with that so we will we are finishing this analysis part and then we will have some problems

on these on plastic wave propagation. So first problem we will work on is on von Karman and

Duwez test you know if you remember that the wire the plastic deformation of the semi infinite

wire. So in this case lets example these examples you can find it in the Mayor's Mark Mayor's

book.

So this is this solved examples we will work on here, this is let us say we have a material copper,

copper wire and we are given a stress-strain curve up copper, the common stress-strain curve for

this copper. So now to find from here is determine so determine the maximum strain and the

stress. So stress at the maximum strain will as we you know we write it as epsilon 1 here that is a

sigma 1.

And we need to get plastic  wave velocity  which we denote as C 1,  C 0 is  for elastic  wave

velocity. So these 3 we need to find out as a function of V 0 the impact velocity V 0 so that is a

sorry V 1 the impact velocity of the drop weight, so we need to find in front in terms of that and

that is one common do is all right small von Karman and Duwez wire experiment, that is semi-

infinite where a plastic deformation.

So we have the stress-strain curve, so from there that we need to know that that as we know that

the plastically deform part we have a relationship K epsilon to the power n. So what we can do is



in the logarithmic scale we can plot that and that will be like log the natural logarithm of sigma

that will be again log k + n log epsilon.

(Refer Slide Time: 22:55)

And this we can plot it, we will plot it here so log natural logarithm of strain epsilon and log of

sigma. So this will look something like this, so here will be yeah this line is nothing but what we

showed earlier this log of sigma = log k + n log epsilon. So n is the slope and this part is our the

intercept here, we need to get the properties also although I did not mention that in the earlier

slide.

So  these  properties  will  be  because  we  know  the  stress-strain  curve  then  we  can  get  the

properties, so these properties are the K value will be 346 10 to the power 6 this will be in a

Newton per meter square and then we have the N the hardening exponent is 0.33 and we have

our density it is copper 8900 kg per meter cube and then young's modulus of copper is 1 29.7

gigapascal.

So similarly so what we wanted to know is the maximum strain, so maximum strain and we

know that the maximum stress will stress is related to it is a little to the necking instability. So for

necking instability we found out that the maximum strain is equal to N and that is 0.33. So we

will use this and so what we can have is the C 1, C 1 is the plastic wave velocity. So we need to

find C 1 and C 0.



So plastic wave velocity is d sigma d epsilon divided by Rho 0 ok, we will write Rho 0 as a

density, so which will be from this expression only x from sigma = K epsilon to the power n. So

this will be K n epsilon to the power n - 1 the derivative of sigma which respect to epsilon and

this will be divided by Rho 0. So if you calculate, so we have K here, this we have K, we have n

and we have epsilon actually epsilon 1 the maximum we can take that equal to n hardening

coefficient.

Because this is at necking maximum strain corresponds to the necking instability. So this will if

we do these all calculations this will give us 164.1 meter per second, so that is the plastic wave

velocity and what about elastic wave velocity. Elastic wave velocity is C 0 and as you know this

is simple E by Rho 0 which will give us 3812 meter per second as we know it is much faster than

the plastic wave.

So this is actually for as you know these are true for slender bar or cylinder not for unbounded

medium. So this is the maximum like plastic wave velocity so 164.1 meter per second which is

corresponds to making, so if it is the plastic wave velocity above that, so the wire will break wire

will not know which tend more deformation more plastic deformation. So now our first part is

the maximum strain we need to find maximum strain.

And then sigma 1 and then C 1 all in terms of function of V 1 which is the impact velocity. So

first part so what we need to do is epsilon 1 which we have from our earlier equation that we

already derived. So that I am not going to write differently, so this directly we are putting this

Rho 0 V square V 1 square, this is n + 1 square 4 by K n to the power 1 + 1 1 by n + 1. So this

here we know the density, we know the n which is 0.33, we know K.

And so we need to get the maximum strain in terms of the V 1 the impact velocity, so if we

calculate I am not writing to all the steps, but it will be 4.4 into 10 to the power - 4 V 1 square, so

that is what sorry this is 1.5 actually, so how it get 1.5 to the power and that you can understand

this is square and this will give us 1 by 1.33. So that will eventually will give you 1.5 because 1

by 1.33 is like 3 by 4 and so this will be 1.5. So this is the first relation, so we now check the

second and third.
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So for number 2 so we need to find out sigma 1, so sigma 1 as we know is nothing but this is the

relation K epsilon 1 to the power n. So that is how it is now simple, so we know K, we know n

and we have a expression for epsilon 1 in terms of as a function of V 1. So that will be equal to

27. 09 V 1 0.5 this one and the third one V 1 to get the plastic wave velocity. So plastic wave

velocity  which is  derivative  of sigma with respect to  epsilon divided by Rho 0 whole thing

square root take n and K n epsilon 1 to the power n - 1 after differentiation.

This is Rho 0 this and then we have the expression for epsilon 1 in terms of V 1 and then I am

writing the final expression, so K n to the power 2 - n - 1 V 1 square n + 1 square for Rho 0 2 n -

1 the whole thing we will use the square bracket here, instead of this circular bracket, so square

bracket n - 1 twice n + 1. So yeah so we got the second relation in terms of sigma, the sigma 1 in

terms of V 1. And then we got the third relation the plastic wave velocity in terms of impact

velocity. So now we will move forward and we will discuss another problem which is a little bit

same the example we have shown here.
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This is example number 2, so for the given material above like for copper we need to find the

shape of the wave front, so we need to determine the shape of the wave front shape of the wave

front at first 0.05 millisecond and 1 millisecond. So after the fall of the weight, so let us say we

have the von Karman and Duwez experiment the weight the height of the weight was set at

height of weight that means the initial height of the weight is at 1 meter from the extreme end of

the wire.

So that means the weight will fall 1 meter and then it will hit the wire and the lowermost end of

the wire. So we need to first calculate the impact velocity that we can easily find out from this

height of the weight, weight where we kept first, so that is nothing but that V1, so this is the

solution we are starting from here. So V1 is nothing but 2 gh, h is this one 1 meter. So this will

give us 2 into 9.8 into 1.

So this will give us 4.4 meter per second, so that is the impact velocity, that weight hitting the

wire  a  lower end of  the wire and now what  we need to  find is  the velocities  plastic  wave

velocities and elastic wave velocities, so that we can draw the wave profile. So we will now find

a plastic wave velocity from the above whatever we discuss in the earlier problem the plastic

wave velocity expression from here.



So this will be like kn, kn to the power 2 – n V 1 square n + 1 square divided by 4 Rho 0 2

divided by n - 1 and to the power n - 1 to n +1. So here if you see we know K from the earlier

problem we mentioned about K, so K we have the value of K, we have the value of n and then

we have the density so and we know the impact velocity now. So earlier we did not know that

but we know for this problem we have the impact velocity with us.

So this will give us C 1 = 660 meter per second, so 660 meter per second is a very high velocity

that  we know that  wire will  not  withstand why because  our  C 1 the maximum C 1 that  is

corresponds to the nicking we found in earlier problem as C 1 = 164.1 meter per second. So now

this problem and the wire will break or wire cannot withstand such a high plastic wave velocity.

(Refer Slide Time: 36:50)

We need to plot the wave profile, so what we will do is we will assume then C 1 as 164.1 meter

per second, so what we got the maximum one and then we know that C 0 = 3812 meter per

second that we calculated in the last problem. So now we need to have the wave profile for 2

time, first one is 4.05 millisecond and the second one is time = 1 millisecond, so what we can do

is for the wave profile as we know the x-axis will be epsilon.

And then y-axis will be X, so the wave profile from earlier if you want to draw is sorry this is

0.05 millisecond one and so this will be like first what we need to do is we will have a C 1 t, so C

1 t time is t = 0.5 millisecond, so this will give as X = C 1 t which will be equal to this C 1



multiplied by t and that means 164.1 0.1 into 10 to the power - 3 sorry I made a mistake here 0.1

millisecond not 1 millisecond.

So this is 0.1 and this is 0.05 millisecond ok, that is correct, now so this is point what we need to

do is here is 0.05 millisecond and then similarly here we need to get the X = C 0 t, C 0 t will give

us 3812 multiplied by 0.05 10 to the power 3. So now we can plot that, so this will something

like this and as we know this will  correspond to this. So similarly for this  what will  be the

difference is the distance X how much it will cover.

So the difference will be it is at higher time, so it will be the higher C 0 t, so we have C 0 t, so let

us assume this is t1 and this is t2. So here is C 1 t 2, so if you write it clearly so this will be C 0 t

2 here and this is X and this one will be C 1 t 2 here and let us C 1 t 1, so this will be they were

front look taller as you know the C 0 t2 will be twice as high as this one, so that is the difference

here, we have one more problem on Taylor's analysis.

(Refer Slide Time: 40:47)

So let us say we have the example number 3, so this is on Taylor's analysis. The Taylor's analysis

is as we know the Taylor's analysis assuming a conical shape of the deform bar, so we have a

copper material and then initial length of the bar when it hits the target that bar was the initial

length L 0, L 0 is 10 centimeter which D 0 the diameter of the bar is 3 centimeter and we have a

velocity of this bar velocity when heating is 2 velocities let us say we are assume 150 meter per

second.



Let us say this U is 150 meter per second and we write U 1 and U 2 will be 400 meter per

second. So there are 2 velocities and then assume that yield stress is equal to 100 megapascal. So

determine the final shape of the bar, so what we can do first is we need to get this term out, so

this sigma yd, so that will be we know the density is for copper 89 will write 30 kg per meter

cube.

And then U square first we will take this one U 1 and then let us say we will write U 1 here and

then sigma yd is 100 megapascal 100 into 10 to the power 6 we are writing all in SI unit. So this

will give you a factor 2 and then for the other velocity, so what we can do this is square sorry so

8930 right, this will be 400 square 100 into 10 to the power 6 and this will give us a 14.2.

So now we know this 14.2 is a very high value and if you remember the earlier discussion in

earlier classes so we cannot go with this because Taylor's analysis will not reveal it for this that

will not we cannot predict the shape up from this shape from Taylor's analysis. So we will go

with only this value for 2.

(Refer Slide Time: 44:06)

And then we if you remember the 1 plot between this x-axis Rho U square sigma yd and then in

the y-axis we have we may have L 1 by L, the L 1 is the as you know L 1 is the final shape final

length and the L 0 is the initial one. So L 1 by L and then and L1 by L and then another issue L 1



by L divided by X. So both of this we can plot with this Rho U square by sigma yd. So that we

found that this curves that we already did it in the earlier lectures.

So this curve is L 1 - X divided by L will look like this and then L 1 by L will be something like

this. So if you see that figure from the book so what you can get is if the value of this term is

equal to 2, so you can find the values of this and this so this is found to be L 1 -, so L 1 - X

divided by L is found to be 0.35 and then that is from the plot now you can find it in the book

and that is found as 0.5.

So we know the initial L, so that is 10 centimeter, so from there you can find the L 1, you can

find a logical L 1 and you can find X, then we have to find the diameter as well because so what

you can do is you can assume that the volume will be constant, so the volume will be constant

and then we have as you know this after count after the impact this portion we keep this portion

as X and this will be L 1 - X and total distance is L 1.

So this is this part is L 1 – X, so now if the volume is constant suppose the initial volume is the

and the final volume is constant, so what we can do is the initial as you know this is only the

initial will be as L and d D 0 will write D 0 and this is let us say the initial is I will write L and d

0 writing square L is  = pi D 0 square by 4 X,  so you will  you can do the calculations  by

yourselves as I am this that is even given in the book.

So this will be L - X multiplied by D 0 square by 4 + D 0 D 1 by 4 + D 1 square which is D 1 is

the final one, D 1 square by 4, so with this we can find a diameter, so and then we can find get

the final shape L L1 X and the diameter, so final diameter. So that is all for today, so that is

actually end of the plastic wave chapter and then we will discuss on the shock waves , so in the

next lecture thank you.


