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Module 2 

Lecture - 5 

Upper Bound Theorem 

 

Today we will be discussing about the nest type of method of analysis that is by the upper 

bound theorem. This comes under the bound theorems. There are basically 2 bound theorems, 

one is upper bound theorem and another is the lower bound theorem and these are extensively 

used for analysis of determining the forces required for the deformation. 
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If you look at the solutions to the boundary value problems in elasticity theory, from elasticity 

theory point of view, the solutions to the boundary value problems can be obtained using the 

principles of minimum potential energy and/or the minimum complimentary energy, so that is 

how they and most of the case it is well established. You have good relationships by which we 

can determine the stresses or forces which are necessary for that, but when you come o the 

plasticity theory, the exact solutions are very difficult to determine. 

 

Since its exact solution must be both statically and kinematically admissible, so this is the main 

problem, so in plasticity theory. So, exact solutions are very difficult when you look at these 

requirements. By statically admissible stress field, so when you talk about, it is the field where 

the stress field which satisfy the equations of stress equilibrium, it satisfy the stress boundary 



conditions, and nowhere it violates the yield criteria, so that is what is called a statically 

admissible stress field. 

 

Now by kinematically admissible means that there must be geometrically self-consistent, that 

is, the deformation mode or the velocity field satisfies the velocity boundary conditions and it 

also should satisfy the strain rate and velocity compatibility condition. So these two conditions 

are if it is met then you say it is a kinematically admissible field. 
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Now any of this whether it is lower bond or upper bound theorem, they can be used at arriving 

the solutions which are necessary for solutions of problems of practical interest, and these 

theorems arrive at forces that are higher or lower than the exact solutions. By integration of 

differential equations, these theorems provide a way for a simple way of arriving at solutions 

that is the biggest advantage of this. 

 

So, when you look at though in this lecture, I am not going into depth, I am not going to discuss 

about lower bound theorem, but while using the lower bound theorem, the geometric self-

consistencies are being ignored; however, they will have to satisfy the stress equilibrium 

criteria and stress boundary conditions, which is necessary for the lower bound theorem. The 

forces which are determined by lower bound theorem are either they are correct or correct to 

actual load or they are lower than the actual load. 

 



So that way basically it is useful for safe design of structures because whatever you are going 

to get, it is lower than the actual load, so based on that if you do it, you will find that at no 

where it violates the yield criteria and your load is always lower, so that it is very safe for use. 
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When you talk about that in a general way, I will just tell here suppose this is a body which is 

shown here is a body having a volume 𝑉, total surface area is S, and a traction Ti if you are 

applying at this point, traction 𝑇 on a specified part of the surface let us say some part 𝑆𝑇 if you 

are applying here a traction, when you are applying this traction here, a surface displacement 

increment is just taking place. So, we can say that a prescribed, what is that, displacement 

increment 𝑑𝑢𝑖 is coming into picture here on this path of that Su of the total surface 𝑆 okay. 

 

If the stress field in the body due to this surface traction of the force which are applying on the 

surface if it induces a stress okay and the stress field we can represent it as 𝜎𝑖𝑗 ∗. Then, under 

the conditions of equilibrium, the work done can be in a general way written as integral over d 

Ti dui ds = integral over V sigma ij d epsilon ij dV where epsilon ij is the stress field inside the 

body due to which and V is the volume and sorry epsilon ij is the rate of velocity increment 

okay strain increment sorry. 

∫ 𝑇𝑖𝑑𝑢𝑖𝑑𝑆 = ∫ 𝜎𝑖𝑗𝑑𝜖𝑖𝑗𝑑𝑉
𝑉𝑠

 

It is the strain increment in the body and these are the force due to it, so it induces. So by 

equating these two things, we can find out the forces which are necessary. So let us come to 

this upper bound theorem. 
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The upper bound theorem as we discussed is based on the geometric self-consistency and it 

should satisfy the yield criteria, but in this case the conditions of satisfying equilibrium are not 

considered so that is one thing, so it is not necessary that equilibrium conditions has to be 

satisfied whereas this geometric self-consistency it should meet and it should satisfy the yield 

criteria, so these two things are necessary for this upper bound theorem. 

 

The upper bound theorem states that at any estimate of the forces to deform a body obtained 

by equating the rate of internal energy dissipation to the external forces will be equal to or be 

greater than the actual force. This is the other way of opposite to the lower bound theorem. So 

if you are going to estimate the forces, which is required for the deformation of that body, there 

is a shape change and it has to undergo shape change, then if you are equating the internal 

energy dissipation to the external force and from that if you are calculating, that force will be 

equal to or greater than the actual force. 

 

So whatever you are going to get, your estimation will always be higher than the actual case, 

that is what the upper bound theorem says. So for plasticity theory where you are going to 

plastically deform the material, this upper bound theory is of importance in determining the 

forces necessary for the deformation because by that if you determine the forces, it will always 

be higher than what is required, so naturally you can expect that material will plastically deform 

during this case. So that is what the upper bound theorem says.  

 

The main process, the methodology of upper bound analysis is that you initially assume an 

internal flow field inside the material which will produce a shape change in the material, so 



that means we are assuming that internal flow field it produces a shape change and then when 

the shape change is taking place, you calculate the rate at which energy is consumed. So the 

internal energy rate or energy dissipation you calculate it due to the flow field okay and then 

the rate of internal energy consumption it is equated with the rate of external work done, when 

this external forces are applied. 

 

So, you find out the internal energy consumption and then you equate it with the rate of external 

work done due to the imposed your say traction and then after equating it, from that you 

calculate this forces by equating these two. 
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When you are going for this upper bound analysis, there are certain assumptions which have 

to be taken. One is that material is rigid-plastic, so that means the rigid-plastic is like so if you 

are just drawing 𝜎 versus  𝜖 , you will find that from here, the material will remain like this and 

then it is plastic, so up to this region, it is rigid and then after that it is plastic, so that is one 

thing. Even though the material is rigid-plastic and the material is homogenous and isotropic, 

so anisotropy generally is not considered in upper bound theorem or upper bound analysis and 

there is no strain hardening. 

 

So we are ignoring the strain hardening, so that is why we are assuming, this is just theoretical 

case which we are taking rigid-plastic, though it deviates from the actual case to a great extent, 

the analysis is fairly accurate by the upper bound analysis for plasticity studies and during this 

deformation because when you are trying to deform a material, you have to use some tools to 



apply the forces and other things okay and there may be a constraint also for material to flow, 

so all those things are coming. 

 

So, naturally what happens is that there it is going to be in contact with some sort of die okay, 

so at the die work this material at the interface region, there is no friction, this is major thing 

we people assume is that friction is neglected or if friction is assumed, then it is sticking friction 

which prevails, rather than the column friction okay. So, interfaces are either frictionless or 

sticking friction prevails. 

 

In most of the case, upper bound analysis is in the simplest form it uses only the three 

dimensional cases, that is the plane-strain condition that is what it is generally assuming and in 

this upper bound analysis because the material is rigid-plastic, the deformation is occurring by 

a shear on a few discrete plane, not entire planes. So along certain planes only this is happening. 

So everywhere else or other places, you are assuming that material is a rigid block and the 

block as such it is moving along certain discrete interfaces that is what it is, along certain 

discrete planes, so that is another assumption which is there. 

 

In spite of these assumptions which are moving away from the actual case, but still upper bound 

analysis gives fairly good result for practical application, especially when you are dealing with 

plasticity theory. 
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So when you just come in the upper bound analysis, you are assuming that okay say in this 

body suppose actual displacement increment is 𝑑𝑢𝑖 which his there and if you assume a 



different displacement increment 𝑑𝑢𝑖which is prescribed on some area on the surface Su if 

applied on the surface so such that assume a different displacement increment dui star such that 

𝑑𝑢𝑖= 𝑑𝑢𝑖
∗ on surface Su, a part of the surface Su, and these both fields are required to fulfill 

the incompressibility criteria. 

 

When you are assuming that there is a plastic deformation, one of the major assumptions which 

you assume is that the material is incompressible. So the volume remains constant, so constant 

volume relationship is mentioned that is for both the fields fulfill the incompressibility criteria, 

that is dui star by dxi = 0 and dui by dxi = 0. So if this is not met, what will happen is the 

spherical component will start doing some work, which is not correct actually. 

𝑑𝑢𝑖
∗

𝑑𝑥𝑖
= 0 𝑎𝑛𝑑

𝑑𝑢𝑖

𝑑𝑥𝑖
= 0 

 

So spherical component will always be doing either expansion or dilation, that is what is 

coming, but the actual shape change which we have earlier discussed is mainly due to the 

deviatoric component of the stress okay or strain. So, now a kinematically admissible 

displacement increment field will have discontinuities so when you are applying some say as I 

mentioned earlier, you are applying some traction and due to okay there is a displacement 

increment field 𝑑𝑢𝑖. 

 

If you are assuming another increment displacement field 𝑑𝑢𝑖 ∗ , so then we are trying to do 

that, but when you are doing it when the material is deforming, see there will be say 

discontinuities okay in the tangential component along certain directions along certain surface. 

Let us say along the surface SD star there is some tangential discontinuity which is taking place, 

discontinuities in tangential component is taking place okay. 

 

Though tangential components are there, discontinuities are there along certain direction, you 

can find out the tangential component, but the normal component must be the same on other 

side, in the region where it is deforming and in the region which is not deforming, so there this 

normal component of the displacement increment should be the same okay. So that is what, 

when you are doing the kinematic studies and other things that is velocity of flow when you 

are discussing with that, that should be the same. 

 



Now let us denote that 𝑑𝜖𝑖𝑑 ∗ is the plastic increment is the assumed plastic increment derived 

from your prescribed displacement increment field dui star okay and if you apply the principle 

of virtual work to the kinematically admissible displacement increment field and the actual 

stress field sigma ij, we get that integral over s Ti dui ds = integral over V sigma ij star dV = 

the sum of sigma over integral SD into q into du star dSD star okay where 𝑑𝑢 ∗ denotes the 

discontinuity in the tangential displacement increment on the surface SD. 

∫ 𝑇𝑖𝑑𝑢𝑖𝑑𝑠 = ∫ 𝜎𝑖𝑗
∗ 𝑑𝑉 = ∑ ∫ 𝑞|𝑑𝑢∗|𝑑𝑆𝐷

∗

𝑆𝐷𝑉𝑠

 

 

So du star denotes the discontinuity in the velocity field in tangential displacement increment 

on surface SD star for the kinematically admissible displacement increment field and 𝑞 is the 

shearing stress component of 𝜎𝑖𝑗   in the direction of displacement, the direction of dui star, 

increment discontinuity. Now if you look at the principle of maximum work dissipation, the 

principle of maximum work dissipation states that any rigid perfectly plastic material 

undergoes distortion or deformation in such a way as to cause maximum dissipation of energy. 

So this is the principle of maximum work dissipation. 
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So if you say that 𝜎𝑖𝑗  is the stress field derived using the strain increment field then we can 

write V into sigma ij star – sigma ij into d epsilon ij star dV is always greater than or equal to 

0 where this is the actual stress field and this is the assumed or we can say that always the 

assumed stress field if you just expand it and bring this term onto the right side, you will find 

that always the work done by the assumed stress field is always higher than that of the actual 

stress field that is one thing. 



∫(𝜎𝑖𝑗
∗  − 𝜎𝑖𝑗)𝑑 𝜖𝑖𝑗

∗ 𝑑𝑉 ≥ 0
𝑣

 

 

This is the concept of plastic potential from the strain increment field d epsilon ij star if you 

do. So if you apply this in the first equation, so you can write it that integral over s Ti dui ds is 

less than or equal to integral over v sigma ij star d epsilon ij star dV + summation over integral 

SD into K where is the shear yield stress K into du star dSD star okay, we can write this equation 

based on this okay. So  in this case, where K is your shear yield stress of the material okay and 

since normal case K is greater than q, so that is why we are getting this relationship. 

∫ 𝑇𝑖𝑑𝑢𝑖𝑑𝑠 ≤ ∫ 𝜎𝑖𝑗
∗ 𝑑𝜖𝑖𝑗

∗ 𝑑𝑉 + ∑ ∫ 𝑘|𝑑𝑢∗|𝑑𝑆𝐷∗|
𝑆𝐷𝑉𝑠

 

 

This term, we can write it in this form, this is the total surface Ti dui ds can be written in terms 

of two component over SU Ti dui dSU + integral over the remaining part total ST that is Ti 

into dui star into dST, so that we can write so that if you just substitute into this one you will 

end up with this integral over SU Ti dui dSU is less than or equal to integral over the volume 

sigma ij star d epsilon ij star dV + sigma or integral over SD K du star dSD star – integral over 

ST surface T Ti dui star dST, so you are getting this relationship. 

∫ 𝑇𝑖𝑑𝑢𝑖𝑑𝑠 = ∫ 𝑇𝑖𝑑𝑢𝑖𝑑𝑠𝑢 + ∫ 𝑇𝑖𝑑𝑢𝑖
∗ 𝑑𝑆𝑇

𝑆𝑇𝑠𝑢𝑠

 

∫ 𝑇𝑖𝑑𝑢𝑖𝑑𝑠𝑢 ≤ ∫ 𝜎𝑖𝑗
∗ 𝑑𝜖𝑖𝑗

∗ 𝑑𝑉 + ∑ ∫ 𝑘|𝑑𝑢∗|𝑑𝑆𝐷
∗

𝑆𝐷𝑉𝑠𝑢

− ∫ 𝑇𝑖𝑑𝑢𝑖
∗ 𝑑𝑆𝑇

𝑆𝑇

 

 

So in this, you should understand that this term which is coming, so here the du star denotes 

the as we mentioned discontinuity in tangential displacement increment on a surface 𝑑𝑆𝐷
∗  which 

can be the internal part, inside the material where it is going to, the deformation is taking place 

along some discrete planes that is what we have mentioned. Now for achieving the final shape 

and the final size, the material may have to undergo a shape change along more than one 

directions okay or more than one planes, that is why the summation is taking place. 

 

If multiple planes are there along with deformation is taking place or tangential velocity 

discontinuity is there in place, so you have to add the energy, that is the internal energy 

generation or dissipation through all those things, so that is why it is the summation is written. 
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Now in the same thing assuming that plane strain condition, so I am not going to too much 

depth in that planes because we will with the practical situation, we will just discuss with that 

case following this, so that is why. Assuming the plane strain conditions and material is rigid 

plastic, that is where the material consists of rigid blocks of material separated by lines of 

tangential displacement discontinuity. 

 

Then the same equation we can write it as integral over Su finally it will end up with Ti dui ds 

is always less than or equal to say sigma over integral SD star K du star into dSD star. So we 

can arrive at this relationship and then do that okay. So here, this term on the right hand side, 

you will find that that multiple tangential discontinuity if it is taking place, then we have to add 

it, if it is only one, only one will come. 

∫ 𝑇𝑖𝑑𝑢𝑖𝑑𝑠 ≤ ∑ ∫ 𝑘|𝑑𝑢∗|𝑑𝑆𝐷
∗

𝑆𝐷∗𝑠𝑢
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So let us just see that upper bound theorem under plane strain condition, let us just discuss one 

case. Say in this the figure, it shows that a material during the plastic deformation, material is 

rigid and it is represented by ABCD which is shown here ABCD is there moving, it is moving 

horizontally with a unit speed okay or unit velocity towards the right, and AD, you assume a 

line XX such that AD is parallel to XX. 

 

When it passes through this element of the rigid material, when it passes through this plane XX 

because this is the plane XX, though here it is showing as a line, when it passes through the 

plane XX, due to some constraint, may be constraint may be your die material or some other 

things, due to some constraint, there is a change in the direction of movement. So metal when 

it is flowing in the plastic region, when it is flowing from left to right and when it cross a certain 

plane, you will find that there is a change in the direction with which. 

 

So finally, the material will be moving with a different velocity V2 and which is inclined at an 

angle of 𝛼 to the initial horizontal direction. This is the case we are going to assume okay. So 

in this case, what happens when it crosses this plane XX, the shape of this ABCD, the element 

ABCD, there is a shape change in this region and it ends up with a shape A dash B dash C dash 

D dash and this happens by internal shearing of the material. So, shear yield strength is very 

important in this case, so it happens by internal shearing. 
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Now for this particular case, let us draw the velocity diagram. So because for this to be 

kinematically satisfied admissible, then we have to draw the velocity diagram which is called 

as holograph, so let us see that. The absolute velocity, the initial velocity it is moving with a 

unit velocity, so you can just star with origin O and then let us give to some scale of the velocity 

you draw a unit velocity with 1 okay. So, this is that value. 

 

Now, this horizontal velocity with which it is moving before it reaches the plane XX, it will 

have two components, one is a component which is parallel to the XX that is the tangential 

component which is parallel to our XX and another which is normal to the XX. It is the 

tangential component which causes the shape changes because that is the discontinuity, the 

velocity discontinuity which is taking place. So, we can say that the normal component is 

𝑉𝑝 and other case it is 𝑉𝑎. 

 

So let me just say this is 𝑉𝑎, so that means 𝑉𝑎 is parallel to XX and 𝑉𝑝 is perpendicular to XX. 

Now the thing is that after this, let us see what is happening at the exit side. So, the velocity 

changes so both in magnitude as well as in direction. So in this case, the direction is along this 

direction parallel to this what we show is as 𝑉2. So from O, let us draw a line which is parallel 

to this 𝑉2, we don’t know what is that value okay. 

 

Since then condition of constant volume is to adhered, the 𝑉𝑝 should be, that means normal 

component of the velocity before it passes the plane XX and after it passes the plane XX, these 

should be the same. If there is a difference, it will do work, so that is why. So since for the 



volume constancy relationship to be maintained or the constant volume relationship is to be 

maintained, then this 𝑉𝑝 should be the same for both these case. 

 

So in the second case at the XX, you will find that, okay this is the thing, so tangential 

component at the exit also will be there parallel to that, so that will be from here to here, so you 

just draw a line parallel to 𝑉2 parallel to the tangential component, tangential to your 𝑥𝑖. So 

both these, so the 𝑉𝑎 produced, it will reach at what you call it as 𝑉𝑏, so you get the 𝑉𝑏. When 

these two meet, 𝑉𝑏 you are going to get it. Now the intersection of this line of 𝑉𝑎 produced 

with this 𝑉2, this is your 𝑉2, will be the terminating point of the final velocity 𝑉2 okay. 

 

So, the velocity discontinuity what you are going to get? Tangential to a line say 𝑉𝑏, say you 

can tell that as u, this is your, so that is there, u is the velocity discontinuity so that is tangential 

to to XX. So we can say that say 𝑢𝑥𝑥 we can put it like that okay. So, this is the so when the  

material closes this plane XX, there is a change in the flow direction and so there is going to 

be a tangential velocity discontinuity which is parallel to your this plane XX, so that is 

represented by u and which is nothing but say u = the difference between 𝑉𝑏 –  𝑉𝑎. So that is 

what we can get it, it is magnitude is equal to the difference between this 𝑉𝑏 and 𝑉𝑎, so that is 

what the discontinuity you are going to get it. 
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Now, when this is happening, let us consider the work done because in this case there is an 

internal energy dissipation because the shearing has taken place, so we have to find out what 

is the work done. So when the shape of the particle has changed from ABCD to 𝐴′𝐵′𝐶′𝐷′ when 

it has changed the shape, sowe have to find out the work done, ABCD to 𝐴′𝐵′𝐶′𝐷′. 



 

So in the initial case, let us say that AD that is parallel to xy line and that line AD and all lines 

parallel to this line which is parallel to XX will after traveling through, after undergoing the 

shape change, all those lines which are parallel to AD will always remain parallel to XX itself, 

so that is one thing. So if you in this below figure you say that this is the ABCD which you 

have drawn, ABCD, and then this shape also you superimposed so that no 𝐴′ and 𝐷′ they are 

coinciding with A and D. 

 

So this U shape change you are doing that that is 𝐴′𝐵′ and 𝐷′𝐶′ you are getting it. So, this is 

the figure which is coming. So in this case if K is the shear yield strength on both the sides, the 

work done is equal to due to shearing, we can y 𝐾 𝑖𝑛𝑡𝑜 𝐵𝐶 𝑖𝑛𝑡𝑜 𝐶𝐶′, this is the work done. If 

you just look at the rate of internal energy dissipation, so that means per unit time if you have 

to move that = K into BC into CC dash divided by t where t is the time for the length DC to 

cross line XX, that means it is the velocity. 

𝑡ℎ𝑒 𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 (𝐾 ⋅ 𝐵𝐶) ⋅ 𝐶𝐶′ 

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛 =
𝐾 ⋅ 𝐵𝐶 ⋅ 𝐶𝐶′

𝑡
 

 

So if you are assuming unit velocity no, then it becomes much easier okay. So since you are 

using this unit speed no, so that means, the rate at which the CD crosses this line, so that is the 

time which is coming. So if it is a unit time, then it will be much easier okay. So if the block is 

moving with a unit speed, then the internal energy for a unit speed, if block moves with a unit 

speed, then internal energy dissipation = K into BC into CC dash by DC that is what you are 

getting because that is the time by which DC just takes to cross the line XX, so that is what we 

are getting. 

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛 = 𝐾 ⋅ 𝐵 ⋅
𝐶𝐶′

𝐷𝐶
 

So now comparing these CC C dash CD and the holograph, you will find that they are similar 

to say U xx = CC dash by DC, so that you will get the relationship. 

𝑢𝑥 =
𝐶𝐶′

𝐷𝐶
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So in that case, the rate of energy dissipation which also can be written as dW by dt where w 

is the work done = K into BC into CC dash by t = K into BC into CC dash by DC. So that you 

can write it as K into BC into Uxx or BC and AD are same, so that is equal to K into AD into 

Uxx where this is the distance CD which is going to change the shape okay. See the line over 

which this discontinuity occurs is curve, this is for straightened, in this case we have considered 

to a straight line, XX is a straight line, but if you are just writing that if the line is curved okay. 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛  

 

𝑑𝑊

𝑑𝑡
= 𝐾 ⋅ 𝐵𝐶 ⋅

𝐶𝐶′

𝑡
= 𝐾 ⋅ 𝐵𝐶 ⋅

𝐶𝐶′

𝐷𝐶
 

= 𝐾 ⋅ 𝐵𝐶 ⋅ 𝑢𝑥𝑥 = 𝐾 ⋅ 𝐴𝐷 ⋅ 𝑢𝑥𝑥 

 

So we can say if XX is curved, then AD is replaced ds, the term ds so that dW by dt, it implied 

dW by dt, then you have to write it as integral K Uxx x ds. So if it is, if the line XX is straight, 

the dW by dt = K into Uxx into S where S is the length of the line XX, but you will find that 

under in all these relationship whether it is this or this, at no point the condition of stress 

equilibrium is fulfilled, so that is one thing we have to see that. 

𝑑𝑊

𝑑𝑡
= ∫ 𝐾 𝑢𝑥𝑥𝑑𝑆 

𝑖𝑓 𝑙𝑖𝑛𝑒 𝑥𝑥 𝑖𝑠 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡
𝑑𝑊

𝑑𝑡
= 𝐾 ⋅ 𝑢𝑥𝑥 ⋅ 𝑆  

(Refer Slide Time: 41:14) 



 

Now, let us just consider, take a typical example and discuss how this is applicable. So in this 

particular case if you look at it, you see that with a unit velocity it is moving and then when it 

crosses certain plane so it undergoes a shape change and due to the shape change, there is going 

to be say velocity discontinuity along certain line and that is how you calculated. So, for that 

shape change to take place, what is the internal energy generated and you have to equate it with 

your external applied force or traction force, and what is the rate or power which you have 

applied into that and from that only you are going to calculate the forces. 

 

So let us take a case of a frictionless extrusion. So here since it is a slab method, if you just slab 

extrusion, if you assume a slab extrusion, a rectangular block which you are assuming for the 

theoretical purpose. So here, this is your die and this is the work piece material. So since it is 

symmetric, we have taken only half of the extrusion part. So, this is your initial or you are 

applying a pressure so through and then the material is allowed to deform plastically, so initially 

the material just moves along this direction with a velocity 𝑉0 and then it enters into this, this 

is the deformation zone. 

 

It enters into this region, so in that case there is a change in the flow direction because of the 

constraint imposed by the die, the metal cannot move along that, so there is going to be a change 

in the plastic flow of the material. So then after that, it comes out and again the metal is moving 

along the horizontal direction. So, once it comes out of that, there are no stresses here, so and 

you will find that okay it is coming out and then it is moving out with a different velocity 

depending upon what is the reduction, the initial volume and the initial cross sectional area and 

final cross sectional area. 



 

Under plane strain condition, if you take it and we can just calculate it for a unit width if you 

just calculate it. So, let us say that this part the initial height is h0 and the final height is he at 

the exit side, it is half, if this is one, this is half, that means your reduction is 50% in this case 

and the die angle 𝛼, this is the die angle 𝛼 which you are getting it okay, so that is 30 degree. 

So suppose this is 30 degree if you assume, should not be read as 300, it is 30 degree, and when 

you are applying a force, external force 𝑃𝑒 from the left hand towards the right, the metal is 

shrinking. 

 

So let us see how the metal flows inside this cavity, inside the extrusion chamber and inside 

the deformation zone. What is the velocity at which the metal is flowing, so that is what we 

have to find out. So in this particular case, we can do that. See you start with a point O here, so 

this is the velocity diagram which we have written, so what is done is that since you are 

assuming this 𝑉0 as the initial velocity with a unit velocity V, 𝑉0 or any to scale you draw it, 

but when it enters the deformation zone, though initially it is moving, you may find that the 

metal is flowing parallel to this die metal interface. 

 

So this is how it comes, metal will flow in this we are assuming. Because we are assuming that 

it is rigid plastic and it moves along certain discrete planes, otherwise the material is remaining 

as rigid blocks, so we have to assume that it is moving in this direction which is parallel to the 

die and this is mainly due to the imposed constraint of the die, but once it reaches here, again 

it will just move in this direction okay, in the horizontal direction. So, initial velocity and the 

final velocity are the same. 

 

So when it comes out, you will find that this velocity it is here, this is your 𝑉𝑒, this is initial 

your 𝑉0 and this final is your 𝑉𝑒 which we are getting okay. So, both are horizontal, but here 

this is moving with an absolute velocity 𝑉1 inside the deformation zone and it is parallel to the 

die metal interface, so from the origin itself you draw a line parallel to the die surface, die 

interface you can say, interface okay. So from O you draw a line. Now the thing is that when 

it is flowing, there is going to be a tangential discontinuity, so that we have to find out. 

 

So, this is the absolute velocity of the material which is taking place. The initial velocity was 

𝑉0, so the tangential velocity discontinuity will be like if you just draw this, so this is the 



tangential velocity discontinuity you are getting, so 𝑉𝐴𝐵, we can put 𝑉𝐴𝐵 or 𝑉𝐴𝐵
∗ whatever you 

can put it, so that is the velocity discontinuity which is coming, so that way you get it. So when 

the material is flowing through this, this is the line corresponding to that XX which we derived 

earlier. 

 

So when the metal is coming here and it now after crossing this plane AB, so there are two 

planes, the two planes are, two planes of tangential velocity discontinuity are AB and BC. So 

when it crosses plane AB, discontinuity is 𝑉𝐴𝐵 on the hodograph. Similarly, across plane BC, 

it is 𝑉𝐵𝐶 which you can do that because the outlet velocity is much higher, so in this case it will 

be we can get the exit velocity Ve and from here to here if you cross that, you will get the 𝑉𝐵𝐶, 

so these two things you can determine from this velocity discontinuity diagram okay. 

 

Now, the rate of internal work or internal energy dissipation rate dW by dt is equal to as per 

our earlier relation K into 𝑉𝐴𝐵 into AB + 𝑉𝐵𝐶 into BC, so where AB and BC are the lengths AB 

and BC here, this is the AB so you have to. So if you draw this, you can get it. You can also 

either you draw this hodograph and from this you to some scale you draw it and from this 

figure, you get this AB and BC as well as 𝑉𝐴𝐵 and 𝑉𝐵𝐶 or you can once you get the hodograph 

you can just either physically you measure it, the other way is that it is easier to, by analytical 

method you can get it, so that is another thing. 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑤𝑜𝑟𝑘,
𝑑𝑊

𝑑𝑡
= 𝐾(𝑉𝐴𝐵 ⋅ 𝐴𝐵̅̅ ̅̅ + 𝑉𝐵𝐶𝐵𝐶) 

 

 

So in this case, you know if you look at this is H0 = 1. So you can get the 𝑃𝑒 by 2K is what you 

have to calculate, 𝑃𝑒 by 2K. So we can evaluate it analytically or graphically, which way is, so 

like we can say that h0 by AB = sin theta, so this is that, this is your sin theta if you draw like 

this, h0 by AB, and similarly he by BC = sin phi, so this is your sin phi and sin theta. So from 

this relationship and for a 50% reduction, that means he = 1 by 2, so your velocity V will be 

very high. 

𝑃𝑒

2𝐾
 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑜𝑟 𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑎𝑙𝑙𝑦  

ℎ0

𝐴𝐵
= 𝑠𝑖𝑛𝜃           

ℎ𝑒

𝐵𝐶
= sin 𝜓 
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So for that purpose what we can do is that 50% reduction and die angle of 30 degree using the 

law of sins will lead you to say V star AB by sin 30 from the geometry you can get it V0 by 

sin theta – 30 or V star AB by V0 = sin 30 by sin theta – 30 and similarly VBC by sin theta = 

VAB by sin phi or VBC by V0 = sin theta by sin psi into VAB by V0. So th is way, you can 

calculate it and, if theta = 90 degree, V star AB by V0 = say 0.577 and for psi = 30 degree, 

VBC by V0 = sin 90 by sin 30 into VAB by V0 okay. VAB by V0 into that is equal to 0.577. 

𝑉𝐴𝐵

𝑠𝑖𝑛30°
=

𝑉0

sin(𝜃 − 30°)
       𝑜𝑟       

𝑉𝐴𝐵

𝑉0
=

𝑠𝑖𝑛30°

sin(𝜃 − 30°)
 

𝑉𝐵𝐶

𝑠𝑖𝑛𝜃
=

𝑉𝐴𝐵

𝑠𝑖𝑛𝜓
         𝑜𝑟     

𝑉𝐵𝐶

𝑉0
= (

𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜓
)

𝑉𝐴𝐵

𝑉0
 

𝑖𝑛 𝜃 = 90°,
𝑉𝐴𝐵

𝑉0
= 0.577 

 

So, that is equal to 1.154 your are getting. So therefore, P exit by 2K is equal to summation, so 

that means you will get it at it is 0.577+1.154 by 2 = 0.866 because this 2 is coming here okay 

so because you are getting P is equal to say K into okay. Rate of in internal work is there. Rate 

of external work dW by dt = Peh0V0 h not v not, this should come here okay, so h0V0, so that 

from that we can say Pe by 2, K we can calculate, so this is 1 and this is 2. So, equate 1 and 2, 

1 and 2 and determine Pe by 2K. So Pe by 2K = 1 by 2 h0V0 into V Star AB into AB + V Star 

BC into BC. So something has gone wrong, I will just. 

𝑓𝑜𝑟 𝜓 = 30°,
𝑉𝐵𝐶

𝑉0
= (

𝑠𝑖𝑛90

𝑠𝑖𝑛30
) × 0.577 = 1.154 

𝑃𝑒

2𝐾
=

0.577 + 1.154

2
= 0.866 



𝑅𝑎𝑡𝑒 𝑜𝑓 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑤𝑜𝑟𝑘   
𝑑𝑊

𝑑𝑡
= 𝑃𝑒ℎ0𝑉0 

𝑃𝑒

2𝐾
=

1

2ℎ0𝑣0

(𝑉𝐴𝐵
∗  𝐴𝐵̅̅ ̅̅ + 𝑉𝐵𝐶

∗  𝐵𝐶̅̅ ̅̅ )  

 

So this rate of internal work, internal energy dissipation due to this shearing process that we 

got this relationship as equation number 1. Now this you have to equate it because by the very 

first assumption itself, we said first you calculate the rate of internal energy dissipation then 

you find out the rate of external work, so that is that way by due to the external work done due 

to this force P dW by dt, we can write that it as Pe into h0 into V0 where V0 is your initial 

velocity, h0 is the height we are taking it here as unity, but width also you are taking unity 

under plane strain conditions or per unit volume you are calculating it. 

𝑑𝑊

𝑑𝑡
= 𝑃𝑒ℎ0𝑉0 

 

So from this, so this is equation number 2. So now equation 1 you equate it to equation 2 and 

calculate the external force Pe which is required for the deformation. So that means, we can 

say by non-dimensionless value we can say Pe by 2K. So that is P or pressure you can say, Pe 

by 2K, not force it is the pressure. Pe by 2K is equal to from this you will get it as 1 by 2 h0 

into that is initial height into V0 into VAB into AB, the length AB here in the figure, + VBC 

into the length BC of your physical diagram, upper figure. 

𝑃𝑒

2𝐾
=

1

2ℎ0𝑉0
(𝑉𝐴𝐵 𝐴𝐵̅̅ ̅̅ + 𝑉𝐵𝐶  𝐵𝐶̅̅ ̅̅ ) 
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Now this you can calculate either by measuring from this velocity diagram, from the 

hodograph, or you can do it by analytical method also or from physical method also. However, 

it is easier to evaluate it by analytical method because you can just take h0 by AB = sin theta 

and then h0 by BC = your sin psi okay. So from that if you do it for a 50% reduction and semi 

die angle alpha = 30 degree. Applying law of sin you can say V Star AB or VAB by sin 30 

degree = V0 by sin 

 

So from here V0 by sin theta – 30 degree or you can say that VAB by V0 = sin 30 degree by 

sin theta – 30 and VBC by sin theta = VAB by sin phi because it is a tangential velocity 

discontinuity, we have to always put V star AB and V star BC, but I am not using it here for 

simplicity in this one, but actual case it should be there okay. So that means, here now you will 

get V star VBC by V0 = sin theta by sin psi into VAB by V0. Now the magnitude of the value 

of Pe by 2K, it depends upon theta value, so that is there actually. 

ℎ0

𝐴𝐵̅̅ ̅̅
= 𝑠𝑖𝑛𝜃    

ℎ0

𝐵𝐶
= 𝑠𝑖𝑛𝜓  

𝑓𝑜𝑟 50% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑠𝑒𝑚𝑖 𝑑𝑖𝑒 𝑎𝑛𝑔𝑙𝑒 , 𝛼 = 30°, 

𝑉𝐴𝐵

𝑠𝑖𝑛30°
=

𝑉0

sin(𝜃 − 30°)
           

𝑉𝐴𝐵

𝑉0
=

𝑠𝑖𝑛30°

sin(𝜃 − 30°)
  

𝑉𝐵𝐶

𝑠𝑖𝑛𝜃
=

𝑉𝐴𝐵

𝑠𝑖𝑛𝜓
          

𝑉𝐵𝐶

𝑉0
= (

𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜓
)

𝑉𝐴𝐵

𝑉0
 

𝑃𝑒

2𝐾
 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑢𝑝𝑜𝑛 𝜃 

 

So, you are arbitrarily choosing this inclination okay, it can may be from here to here, it can be 

there, it can be here, so like that you can have, you can assume different inclination 𝜃 value. 

So for each value, you will get a different value, maybe now you may have to assume that at 

which the case it is the minimum value which gives because as per the law of nature itself no, 

it will always take that path that which energy is minimum, so that is also there. 

 

So in that case no, so you may have to determine for different values of theta and then 

determinant, so you can, it is a question of optimization also or minimization problem also, but 

maybe let us assume one particular case if theta is equal to 90 degree. So, assume if 𝜃 =90 

degree, so that means it is vertical this one there will be say what you call it as a dead metal 

zone and other things may come. So 𝜃 is equal to 90 degree means, it will be like this. The die 



will be like this, straight, and metal which is coming it will just flow like this, internal shearing 

is taking place okay. 

 

This will be the dead metal zone which you will find, here also, that in actual case, theoretically 

okay you can always take it as theta is equal to 90 degree okay. So if theta = 90 degree, then 

VAB by V0 = sin 30 by sin 60 and that is equal to 0.577. Similarly VBC by V0 = sin 90 by sin 

30 thirty into 0.577, and if AB = B C = h0 if you take it, that means it will be vertical okay. 

Therefore P by Pe by 2K = 0.577+1.154 by 2 because that equation we are getting, that distance 

also you have to take it okay, equation 2, so that you are getting. 

𝑉𝐴𝐵

𝑉0
=

𝑠𝑖𝑛30°

𝑠𝑖𝑛60°
= 0.577 

𝑉𝐵𝐶

𝑉0
= (

𝑠𝑖𝑛90°

𝑠𝑖𝑛30°
) × 0.577 

𝐴𝐵 = 𝐵𝐶 = ℎ0 

 

So that you will end up with the 0.866, but with the different values of theta if you are just plot 

it no, you will get the value of something like this. It will reach a minimum value and so the 

sum minimum value you will say if it is Pe by 2K with different theta value if you just plot it, 

some minimum value get, that you can minimize it and optimize the problem and take it. So 

this is how you calculate it. So once you know that P2 by 2K, you can calculate Pe = 2 into 

shear stress of the material into 0.866, so that way you can calculate it okay. Thank you very 

much. 

𝑃𝑒

2𝐾
=

(0.577 + 1.154)

2
= 0.866 

𝑃𝑒 = 2 × 𝐾 × 0.866 


