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Yeah, we will continue with our lecture 1 from where we stopped last day. So, last day we were 

discussing about the draw stress for homogeneous deformation for a non-work hardening 

material as well as the draw stress required for the homogeneous deformation for a non-work 

hardening material with and without friction and we ignore the redundant deformation in that 

case also. 

 

Because this redundant deformation is something, which we will discuss later, which is coming, 

earlier also we have discussed. 
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So, in the draw stress, we arrived at was sigma d = sigma dash log 1/1 – r. So, that is equal to 2/3 

into your uniaxial yield strength sigma 0 log 1/1 – r. So, if you consider friction, so with the 

friction, if you are considering with the friction, sigma D we can write it as sigma 0 dash into 1 + 

B/B into 1 – A final, the cross-section area, final cross-sectional area by initial cross-sectional 

area raise to B where B = mu cot alpha and alpha is the semi die angle. 
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              𝐵 = 𝜇 cot 𝛼     𝛼 = 𝑠𝑒𝑚𝑖 𝑑𝑖𝑒 𝑎𝑛𝑔𝑙𝑒  

This is what we have arrived last day and you will find that these are not the 2 expressions. This 

we can say 1 and this is equal to 2 where several expressions have been developed for the draw 

stress required and other things okay and if the material is work hardening because this is just for 

a non-work hardening material. If the material work hardening, then the sigma 0. If the material 

is work hardening, the 𝜎0′ in the above expression to be replaced by the mean flow stress  𝜎 , 

which you can get it. 

 

We have discussed sigma bar is equal to 1/epsilon B - epsilon A into say where sigma bar is 

equal to 1/epsilon A - epsilon B into sigma from epsilon B to epsilon A sigma d epsilon. So, 

these are the strain under which we have to study okay. So, this is a very, using the average the 

flow stress is a very convenient form of using that if you know because it is much more easy 

because most of the time we have this expression sigma is equal to A epsilon raise to n. 

𝜎 =
1

𝜖𝐴 − 𝜖𝐵
 𝜎𝑑𝜖

𝜖𝐴

𝜖𝐵

 

𝜎 = 𝐴𝜖𝑛  

 

So, from this know we can derive at it very easily. So, that is one very convenient form of using 

the average flow stress. If you have the flow curve of the material, that is the true stress versus 

true strain curve in the plastic region of the material, then this expression and replacing this 

stress component by the average flow stresses will be the most convenient thing and say there are 

many other expressions. 

 

If you are considering this friction as well as the redundant deformation, a large number of works 

has been carried out and with different materials, different die angles, different frictional 

conditions and you will find that there is a wide range of this expression because material 

properties are coming into picture. So, it becomes very difficult to have a uniform relationship 

for that. 

 

But in spite of that, the draw stress is necessary for the deformation for drawing, the stress 

necessary at the exit for the wire drawing considering say friction and redundant deformation, 

which has put forward by Siebel, which is of this form sigma D is equal to say sigma bar into 

this is a widely accepted relationship 1 plus mu by alpha into log A0 that is the initial cross-

sectional area divided by the final cross-sectional area plus 2 alpha/3 where mu is the 

Coulomb’s, mu is the coefficient of friction and alpha is the similar die angle. 

𝜎𝑑 = 𝜎 { 1 +
𝜇

𝛼
 ln  

𝐴0

𝐴𝑓
 +

2𝛼

3
}        𝜇 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛, 𝛼 = 𝑠𝑒𝑚𝑖 𝑑𝑖𝑒 𝑎𝑛𝑔𝑙𝑒 

 



So, that way we can find out this is one of the expression, one of the relationship which has been 

widely accepted but whatever be the type of relationship, when you are considering the friction 

and redundant deformation, the flow stress can be represented in a general way. 
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As sigma bar into 1 + B into phi where phi is your friction factor into your strain log Af/A0. This 

is a general expression which we can represent it considering friction and redundant deformation. 

So, it is equation number 4 and another expression is that say these are the 2 expressions, which 

we can get. One is 1+ B/B, so because we are introducing this term phi into 1 plus, this is the 

relationship which earlier we found without considering the redundant deformation. 

𝜎𝑑 = 𝜎  1 + 𝐵 𝜙 ln  
𝐴𝑓

𝐴0
  

 

 

So, in that also we can write but only thing is that you are just considering this phi term to take 

into account of the redundant deformation, that factor is called as a redundant work factor phi 

okay. So, this expression we can just write in a general form as d is equal to say beta because if 

you eliminate all other things into average stress into your strain okay that is log 1/1 - r okay. 

𝜎𝑓 = 𝜎  
1 + 𝐵

𝐵
 𝜙  1 +  

𝐴𝑓

𝐴0
 

𝐵

  

 

𝜎𝑑 = 𝛽 𝜎 ln  
1

1 − 𝑟
  

 

So, we can write in this form where beta is the factor, beta is a factor which takes care of your 

frictional loss and redundant deformation. So, that is why this beta is introduced and generally 

the value of beta is between 1 and 3, so where beta is nothing but the ratio of the total work 



including friction and redundant deformation to the work for homogeneous deformation. 

1 < 𝛽 < 3 

𝛽 =
𝑇𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑘

𝑤𝑜𝑟𝑘 𝑓𝑜𝑟 𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛
 

 

And this beta also, in some people they express it as an efficiency factor 1/eta where this eta is a 

product of 2 efficiency terms. One is say eta phi due to redundant deformation and this f due to 

frictional loss at the die workpiece interface okay. So, that is how this beta is termed okay. 

𝛽 =
1

𝜂
 

(Refer Slide Time: 10:04)  

 
  

The factor phi, it is a function of your alpha and r where alpha is a die angle and the r is your 

reduction. So, that is so we can call it as phi 1 which is nothing but phi 1 is called as the 

redundant work factor or that corresponds to the, so from this we can find it out the enhanced 

strain corresponding to the yield strength of the metal, which has been homogeneously deform to 

a strain of epsilon okay. 

𝑓𝑎𝑐𝑡𝑜𝑟 𝜙1 = 𝑓 𝛼, 𝑟  

𝜙1 = 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 𝑤𝑜𝑟𝑘 𝑓𝑎𝑐𝑡𝑜𝑟 

 

So, that is what from our earlier discussion, we have discussed it. So, that means and phi can be 

estimated from the displacement of a flow curve, after flow curve after tensile testing of the 

drawn wire, so you have the wire, so before the drawing operation, you conduct a tensile testing 

in an annealed condition and the same material you just do the drawing operation and that wire 

again you test it after the drawing for after some particular strain. 

 

And then you will find that the yield strength has increased in the drawn wire, so you just 

displace it towards the right, so that it matches with that and from that when it matches with the 



actual flow curve, what is that strain, that is the epsilon sharp. So, from that we have discussed 

this part earlier. So, how to calculate this redundant deformation that is another important 

because it is not that easy. 

 

What is this redundant deformation? When the metal undergoes deformation through the 

deformation zone for any material, so we are just now since we are discussing about the wire 

drawing operation in a conical die, the material is deforming. We mentioned that if it is a 

homogeneous deformation, the square grid will be distorted to a rectangular grid but depending 

upon the die angle and the friction conditions, you will find that okay it is not a homogeneous 

deformation which is taking place. 

 

If the die angle is very large, then actually what happened is after certain angle, die angle there 

will be an internal shearing of the material, so too much of extra work has to be done. So, it is 

very difficult to arrive at or derive an expression for this redundant work or redundant 

deformation. So, only way is that we have to carry out some experiment and then find out 

empirical relationships okay. 

 

So, there are 2, 3 methods by which this redundant deformation can be found out okay. So, one is 

we can find out the redundant work factor. So, that is phi by people have carried out this 

expression and then arrived at this relationship that is 1 - phi 1 = 1 - exponential - phi 2 B 

epsilon/1 - exponential - B epsilon into phi 2 to the power n. So, I will come to that what is phi 2. 

 

So, if the product this beta and epsilon, so if beta B into epsilon, it will be approximately equal to 

4 mu/delta where delta is deformations on geometry which we have refreshed earlier, we have 

come out across, I will discuss immediately also and if this is sufficiently small, then phi 1 will 

be equal to we can approximate just phi 2 to the power n + 1 where n is the work hardening 

exponential obtained for the material which is nothing but K epsilon raise to n, so n is equal to 

work hardening exponent. 

𝜙1 =  
1 − 𝐸𝑥𝑝 −𝜙2𝐵𝜖 

1 − 𝐸𝑥𝑝 −𝐵𝜖 
 𝜙2

𝑛  

𝑖𝑓 𝐵𝜖 ≈
4𝜇

∆
 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙, 𝜙1 = 𝜙2

𝑛+1      𝜎 = 𝑘𝜖𝑛  

So, this is what happens. Now, one should be able to distinguish very clearly between phi 1 and 

phi 2. Many books know sometimes it is confusing but one should be able to know what is the 

difference between this phi 1 and phi 2. So, phi 2 is the redundant deformation whereas phi 1 is 

the redundant work factor. The redundant deformation this phi 2 is the extra deformation. 

 

See for example phi 2, I am writing it clear, is the extra deformation or maybe say your this 

strain which is the equivalent strain sustained by the drawn piece compared to the nominal or the 

homogenous strain epsilon. 
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So, just like if you are doing this, so for example this is your basic flow curve. Suppose this is 

your basic flow curve of the annealed material. Now, the annealed material is subjected to say 

drawing operation and after a drawing with a reduction such that corresponding to a strain 

epsilon, then you take the tensile testing of that, you conduct a tensile testing and you will find 

that your this flow curve has, the yield strength has increased by some amount okay. 

 

So, this is the thing, so but if you have just shifting this curve, if you are shifting this curve 

towards the right, if you are displacing towards the right and so that now this comes and matches 

with this, then you will find that this is the total work done due to redundant deformation. So, but 

that corresponds to a strain, enhanced strain of a epsilon star though your actual strain, actual 

reduction during the drawing operation or strain but you will find that now this is an enhanced 

strain. 

 

So, that is the equivalent strain which we are considering to that. So, from this, phi 2 can be 

defined as epsilon star/epsilon this. So, that is the, it is an extra deformation which is taking place 

okay. Whereas this phi 1 is the stress due to the redundant work, the increase in stress due to 

redundant work. So, that is the difference. So, here you have an increase in the stress here okay, 

so that is what is phi whereas this is the strain which is coming. 

𝜙1 = 𝑓(𝛼, 𝑟) 

𝜙2 =
𝜖∗

𝜖
 

Now, you will find that if you find out, try to find out this the relationship between these 

deformations on geometry and the redundant deformation, you can always find it correlate in 

these forms, phi 2 = C1 + C2 into delta. So, that is what where delta is your geometrical factor, 

which is coming okay, it is the average thickness to the length of maybe of deformation zone, so 

that we have discussed earlier. 

𝜙2 = 𝐶1 + 𝐶2∆ 



∆=  
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑐𝑘𝑛𝑒𝑠𝑠

𝑙𝑒𝑛𝑔𝑡
 𝑜𝑓 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑧𝑜𝑛𝑒 

 

Now, another method is you are also finding out the stress-strain curve or the wire drawn under 

different conditions and these are compared to your stress-strain curve or the fully annealed wire 

okay. So, the same case which you have done. The flow stress of drawn wire is always higher 

than the annealed wire. So, that is what we have seen in the previous diagram. The strain is in 

simple tension of the drawn wire is thus equivalent to your epsilon star. 
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So, you will find that epsilon star is linearly related to the nominal stress as a function of nominal 

stress epsilon and die angle. So, that means this is linearly related that is K1 into epsilon w or 

epsilon, if it is wire only epsilon plus K2 into sin alpha where alpha is the die angle and since 

earlier we have written this is equal to epsilon to sorry phi 2 into epsilon. So, from this 

relationship, we can arrive at say like if you divide it by epsilon, then you will find this as phi 2 

into epsilon and divided by epsilon. 

𝜖∗(𝜖, 𝛼) 

Then, we can get it as phi 2 = K1 + K2 into sin alpha/epsilon where this K1 and K2 are 

experimentally determined constants. So, under different conditions, we can find out what are the 

value of K1 and K2 and phi 2 that we can find out if you know the value of alpha and then this. 

So, the advantage of this, the significance of this equation is that only 2 data points are required 

for one particular value of alpha. 

𝜖∗ = 𝑘1𝜖 + 𝑘2 sin 𝛼      sin 𝜖∗ = 𝜙2𝜖 

 

So, if you just look at it, you will find because in this case you know, from this you can find out 

what is the value of phi 2 with different strain values and if you get 2 points you know you can 

easily get it and enable K1 and K2 you can just find it out and hence phi 2 can be calculated for 

so for determination for K1 and K2 to be determined only 2 data points are required for a 

particular value of alpha. 



𝜙2 = 𝑘1 +
𝑘2 sin 𝛼

𝜖
 

 

So, hence this phi 2 can be calculated, can be determined for all die angles and reduction. This is 

the biggest advantage with this because it is a straight line equation which is coming. 
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Now, coming to this delta, so delta as we have discussed earlier, delta is nothing but the average 

thickness ratio of the average thickness of the deformation zone to the length of the deformation 

zone okay. 

∆=
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡𝑒 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑧𝑜𝑛𝑒

𝑙𝑒𝑛𝑔𝑡 𝑜𝑓 𝑡𝑒 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑧𝑜𝑛𝑒
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Now, see this is the thing, so if this is the wire drawing operation, you can have say maybe one is 

the plane strain condition, so you can find out whether it is diameter or height. So, if it is a strip 

drawing, then you consider this h0. If it is a wire drawing, you take this d0 and finally the 

corresponding value at the output will be h1 and d1 respectively. So, we can find out this sigma s 

by this relationship alpha/r into 2 – r okay. 

∆𝑠=
𝛼

𝑟
(2 − 𝑟) 



 

So, that is based on the plane strain condition where r is equal to say we can say rs = 1 – h1/h0. 

For strip condition, it will be based on this height h at the beginning at the initial whereas if it is 

for wire drawing operation which is the diameter which is taking place, so you will consider that 

rw is equal to this one. So, this r will be rw here, here it will be rs, so rw is there. 

𝑟𝑠 = 1 −
1

0
 

 

In that condition, you are getting this relationship, the deformation zone geometry delta = alpha/r 

into 1 + under root 1 - r the whole square. So, for wire drawing operation, this is the general 

relationship which people use it and then you will find that in different books different ways it is 

being used okay, but from this you can also have a simplified form of delta is equal to 4 alpha by 

your strain. So, that is how you find out these deformations on geometry. 

𝑟𝑤 = 1 −  
𝑑1

𝑑0
 

2

 

∆𝑤=
𝛼

𝑟
 1 +  1 − 𝑟 

2
 

∆=
4𝛼

𝜖
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Now, when you consider this, there are 3 factors. One is the homogeneous deformation where 

there is no friction, there is no redundant deformation. If you just pull the wire, how it is 

happening and what is the energy required for that, so that is called as a work for plastic energy, 

we can say energy for homogeneous deformation, plastic energy we can say where there is no 

friction, there is no redundant deformation. 

 

You just pull it and from that you find out for a strain how much is the energy required, so that is 

the 𝑈𝑝 . Now, if you just look at it with a die angle, let us say a conical die angle is coming, so 

this with the die angle decreasing, 2 things are happening. See for example, I am just getting 



from say maybe diameter of this to a diameter of this, so this is the reduction which is taking 

place and I can say that okay this is going to be my die angle okay. 

 

So, this is your 2𝛼, this is the 2𝛼 angle. Now, if with alpha decreasing, when it is alpha 

decreasing suppose let us say we want the same diameter. So, this will be 2𝛼2, this is 2𝛼1 let us 

say. So, if these diameters are same, the output reduction is same but with a different die angle. 

With lower the die angle, you will find that the contact area between the die and the workpiece is 

higher for lower die angle. 

 

Whereas the die angle increasing this distance, the deformation zone length keeps on decreasing, 

so when the deformation zone length keeps on decreasing, the total contact area between the die 

and the workpiece that decreases because it say as per this relationship, this figure say these 2 

cases are there, this is 1 and this is 2 case, second case is coming. So, that means with the 

increase in the die angle the frictional loss keeps on decreasing. 

 

Because the total contact area decreases but you just consider the case with the increase in the 

die angle what happens is that maybe the one is the die angle is like this, another is the die angle 

is like this okay. So, in this case, the metal has to come like this and deform like this, here it is 

that, so there is a sharp deformation which is taking place. So, I will just draw it in a better way. 

 

The metal flow will be like this, it is going like this. So, this is the inlet and this is the outlet we 

are pulling like this. This is your die, so there is a sharp turn, change in the flow direction if the 

die angle is large, so whereas the diagonal was if it was small, then you will find that okay, you 

will see a very smooth flow of metal is there inside the die whereas this is your die. So, in this 

case with the die angle larger, the redundant deformation will be very high. 

 

And if the die angle exceeds a certain value, then you may find that there is an internal shearing 

of the material which can take place and forming a dead material and so. Suppose my die was 

like this say where die angle 2 alpha is 90 degree, so what happened, when the metal is pulled, it 

will just deform like this and you will find that here there is a dead metal zone which is not going 

to flow at all depending upon your frictional conditions and the die angle. 

 

So, beyond the certain increase in the die angle, this internal shearing of the material will take 

place, that means your redundant deformation has to be very high because there is an internal 

deformation and change in the direction of the material flow is taking place, so that will result in 

a very higher amount of energy which is required. 

 

So, in that case, so with increase in the die angle, so as the die angle increases, so you will find 

that one is that as a die angle if you are plotting this energy required for this alpha versus alpha, 

your energy for plastic deformation remains constant okay. It has no relationship between your 



alpha okay, it remains constant but whereas with increase in the alpha you will find that the 

frictional energy loss increase in the alpha value, increase in the die angle it decreases. 

 

Because why, the contact area between the workpiece and the die material that decreases, so 

your frictional energy decreases whereas the redundant deformation, the energy due to redundant 

deformation, with the work the deformation energy, the redundant work increases as the die 

angle increases. So, these 2 things are happening. So, one is as die angle increases one is the 

redundant work increases and second is the frictional loss decreases. 

 

And these are the plots, so you will find that the work for plastic deformation or homogeneous 

deformation, it remains constant and this is the frictional energy with the die angle increasing 

and this is the redundant work which increases with the die angle okay. So, you will find that the 

total energy, which is required, will be a sum of all these things. So, that we will just keep on 

increasing, as keep on decreasing as die angle increases it reaches a minimum and then it again 

increases. 

 

So, there is an optimum die angle for depending upon your frictional component and other 

things. So, you have to optimize the die angle and there are certain lot of work has been derived 

and people have arrived at certain relationship for the die angle. So, a simple expression I will 

tell you that for obtaining the optimum die angle okay. A simple alpha star is approximately 

equal to your root of mu into your reduction divided by 1 minus r okay. 

𝛼∗ ≈  
𝜇𝑟

1 − 𝑟
 

 

So, this is a very useful relationship for a first-hand approximation, estimator of the drawing 

stress, that way it is very useful. Only thing is over a large value there may be some inaccuracy 

or the accuracy may get reduced with a very large value of alpha okay. So, in this alpha star does 

not depend on the precise work hardening behavior of the material or on the type of the material 

that is the biggest advantage. 

 

It already depends upon the frictional condition mu and the reduction. So, it is not dependent 

upon the material that is what this relationship has come out okay. This is from the literature you 

get it, so that means with this you can have a first-hand estimate of the die angle. 
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Now, we have found that there is an optimum die angle for this, whatever be happening we have 

also arrived at different relationship for the limit of drawability for the draw stress okay. The 

thing is that most of the real material say like there are different models, some are say may be 

perfectly elastic and perfectly plastic, then elastic plastic, elastic work hardening. So, most of the 

engineering materials for structural use is elastic and work hardening material. 

 

That is what the case which comes, so with the each deformation with each amount of increase in 

the strain, plastic strain the yield strength keeps on decreasing and that is what we get the flow 

curve of that. So, if this is the typical flow curve of the material given by this curve and you will 

find that earlier also I am again writing that the draw stress sigma d = sigma bar into 1 + B into 

phi 1 into log A0/Af. 

𝜎𝑑 = 𝜎  1 + 𝐵 𝜙1 ln  
𝐴0

𝐴𝑓
  

Again and again I am writing this, this is a general expression. See this we can almost write it in 

this general form sigma d is equal to 1 by an efficiency factor eta into integral sigma d epsilon, 

this we can write okay. So, where this efficiency is nothing but your ratio of plastic work that 

means for a homogeneous deformation to your total work this is the thing. So, when you look at 

this, the flow curve is like this. 

𝜎𝑑 =
1

𝜂
 𝜎𝑑𝜖 

 

But in an ideal process, this sigma d epsilon curve will come like this but because there is a 

friction and redundant deformation, the curve of the flow curve of the drawn wire will be 

following like this, so that we can write it in this form as this with a strain increasing. So, this 

will be that curve and now the thing is that as the material is being deformed through the die, 

strain hardening occurs. 

𝜂 =
𝑈𝑃

𝑈𝑇
 

And if the material is severely strain-hardened, the necking occurs resulting in final fracture but 

when you are pulling this material for the wire drawing operation, the weakest part or weakest 



link; it is a point where the material exit out of the die that is the weakest part, inside it is 

compressive stresses. The other part it is already having sufficient strength but basically at that 

part which is about to exceed that is the part which is the weakest material, weakest part of the 

link okay. 

 

So, for a strain-hardened material, it is at that part a necking may take place when it reaches the 

limit of drawing okay and once the necking takes place and you are pulling it, the necking is 

followed by a sudden fracture. So, drawing limit is reached, when this condition is met. So, at 

that part of the exit, when the stress is equal to your drawing stress, so the stress due to your 

drawing operation is equal to your draw stress, then the fracture will take place. 

 

Because beyond to that if you look at that, this is a drawing stress with a more strain, this will be 

higher than your flow curve okay, flow curve of the material. So, when it is higher than the flow 

curve of the material, naturally that part will just deform of and then necking will start. As long 

as, it is below the flow curve, it will not fail because once you cross that it just want to deform 

and necking will take place and it will fail at that point. 
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So, in that case, the drawing limit, what is the drawing limit, that is what we wanted to find 

where sigma d will be equal to sigma epsilon, sigma epsilon means from the flow curve what is 

that value, when these two equals the same, then you will have it. So, if we can write that sigma 

epsilon is given by the Hollomon relationship by K epsilon raise to n, so this is suffix is equal to 

K epsilon raise to n. 

𝜎𝑑 = 𝜎𝜖          𝜎𝜖 = 𝑘𝜖𝑛  

 

So, we can write this relationship sigma d = 1/eta into 1 by this efficiency factor into sigma d 

epsilon. So, that will be equal to 1/K epsilon raise to n d epsilon from this equation you will get 

it. So, that is equal to 1/eta into n + 1 into K epsilon raise to n + 1 but K epsilon raise to n + 1 is 

equal to K epsilon raise to n that is this one into epsilon, so that is what. So, that means that will 

be equal to say we can say it sigma d = 1 by into n plus 1 into sigma into epsilon. 



𝜎𝑑 =
1

𝜂
 𝜎𝑑𝜖 =

1

𝜂
 𝑘𝜖𝑛𝑑𝜖 =

1

𝜂(𝑛 + 1)
𝑘𝜖𝑛+1 

 

So, we can say sigma e epsilon oh sorry into epsilon and this is the condition for failure. So, that 

means sigma d, so this will get cancelled off, so you will get that the maximum limit from this 

the limit of drawing limit epsilon max is equal to so that means here we can say and this one will 

get cancelled, so is equal to eta into n + 1. So, that is the maximum limit for the drawing 

operation. 

𝜎𝑑 =
𝜎𝜖 . 𝜖

𝜂(𝑛 + 1)
 

𝑑𝑟𝑎𝑤𝑖𝑛𝑔 𝑙𝑖𝑚𝑖𝑡 𝜖𝑚 = 𝜂(𝑛 + 1) 

 

And since this epsilon max is equal to log Ab/Af or maybe you can say this is Ao/Af starting and 

final, so that is the thing. So, we can write that that is equal to so log Ao/Af = eta into n + 1. So, 

we can write in this form E exponential and we also have the relationship r = 1 – Af/Ao, so that 

way we can write r = 1 – 1/e raise to eta into n + 1, r max so that is the limit of, so that means r 

max. 

𝜖𝑚 = ln  
𝐴0

𝐴𝑓
  

ln  
𝐴0

𝐴𝑓
 = 𝜂(𝑛 + 1) 

𝐴0

𝐴𝑎
= 𝐸𝑥𝑝(𝜂(𝑛 + 1)) 

𝑟 = 1 −
𝐴𝑓

𝐴0
 

I will write it better way that the limit of this one is equal to 1 - exponential - eta into n + 1 okay. 

Now, when you are having a repeated reduction through a series of dies, the n will keep on 

decreasing because even though you are having repeated deformation also you know the strain 

keeps on decreasing and work hardening keeps on decreasing. This is the general nature of the 

material. 

𝑟 = 1 − 𝐸𝑥𝑝(−𝜂(𝑛 + 1)) 

𝑟𝑚 = 1 − 𝐸𝑥𝑝 −𝜂 𝑛 + 1   

So, if you look at the work hardened rate versus strain, you will find that it decreases. Initially, 

you have a very high work hardening rate but with the increase in the strain, it will just saturate 

off, so it will keep on decreasing and then it will remain constant. So, if you want a material 

which is not work hardening, the best way is that you do some large amount of plastic 

deformation. 

 

Only thing is that ductility will be very poor but you will get that the material is not work 

hardening, so that is one way of carrying out experiments with the samples which are not work 



hardening or with the different work hardening rate if you wanted then these are the methods by 

which people do. So, when you are repeatedly doing reductions and other things what happens is 

that the n will decrease to 0 almost to 0 and allowable reduction keeps on decreasing in this case 

from this expression. 

 

Now, the thing is that if you just look at the maximum strain, which is possible during the drop, 

if you make a comparison for the maximum strain in drawing with that of stretching, stretching 

means tensile testing. 
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So, if you do a comparison between maximum strain possible between drawn wire and stretched 

wire, so you will find that the strain ratio of drawing by stretching is equal to 1 is this eta into n + 

1 and another is n okay. So, why this is coming, because in a tensile pulled sample, you will find 

that the maximum necking will take place when strain is equal to your n, so your maximum 

strain was over the, the strain at maximum load at which that is where the instability sets in that, 

we have discussed in the earlier classes. 

𝜖𝑑𝑟𝑎𝑤

𝜖𝑠𝑡𝑟𝑒𝑡𝑐 𝑖𝑛𝑔
=

𝜂(𝑛 + 1)

𝑛
          𝜖 = 𝑛 

 

At the instability where it starts, that means at the ultimate tensile strength, the value at that case 

your true strain is equal to that means is equal to your work hardening exponent for a material 

which is following the Hollomon relationship. So, if you just do like this, this is the relationship 

and then you will find that the stretching is the effect of work hardening exponent on this 

drawing and stretching, how it is influencing the, having a very high influence on the maximum 

strain, which is possible okay. 

 

Now, if you look at that these are the limits which have been obtained. Now, we will just come 

to the analysis of tube drawing okay. 

 

(Refer Slide Time: 45:27)  



 
 

So, analysis of tube drawing is basically based on the plane strain conditions and with analogue 

with the draw stress for wire drawing, the stress for tube drawing with a plug. So, you can say 

the stress for I am not going into the derivation, detailed derivation and other thing for tube 

drawing with a plug because we have found that we have discussed the 4 types of tube drawing. 

 

One is the drawing with the fixed plug, drawing with the floating plug and drawing with a 

mandrel, so these things we have discussed and sinking also, but all these drawing relationship 

which is almost similar, it is having an analogue with the case of which we have discussed earlier 

for drawing relationship. Only difference we can say is that the sigma drawing for a tube can be 

approximated as 1 is sigma 0 star which is 2/root 3 into your uniaxial yield strength of the 

material plus instead of 1/B we have to put 1/B dash. 

 

B is replaced by B dash, that is the only difference, otherwise so 1 – ha/hb raise to B dash. There 

are 2 things, which are happening in a plug okay. In a plug, there are 2 interfaces coming, the 

interface between your die and the workpiece material, the tube material. Secondly, the interface 

between the tube material and the plug, these 2 are coming, so you have to compensate for this 

thing. 

𝜎𝑑 = 𝜎0
′

1 + 𝐵′

𝐵′
 1 −  

𝑎

𝑏
 
𝐵′

  

 

So, in tube drawing, in this tube drawing know, you will find that this relationship, so B dash in 

this relationship is nothing but your mu 1 so 2 frictional constants are coming by tan alpha minus 

tan beta. These 2 things are coming. So, this is where you will find that mu 1 is equal to 

coefficient of friction between tube and die material and mu 2 is a coefficient of friction between 

your tube and the plug. 

𝐵′ =
𝜇1 + 𝜇2

tan 𝛼 − tan 𝛽
 



 

Alpha is the semi die angle or cone angle and beta is the semi angle of plug. If it is cylindrical 

plug, beta is equal to 0, so that will come. So, if now the thing is that see if you just look at this 

you have a plug maybe let us say plug is like this. So, this is the die, this is the plug and this is 

the die okay and this is your tube. So, in this case what happened, there is a friction here. 

 

So, this is the mu 1 which is coming, so there is a friction here, which is mu 2, so this is mu 2 

here, mu 1, so this is what. So, this mu 1 is the coefficient of friction between the tube and the 

die material and mu 2 is the coefficient of friction between the plug and the tube. So, these 2 

things are coming and of course if you make a different plug angle and other things, you will 

have die angle is same, so that is the thing which comes. 
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Now, if you are using that stress for a mandrel, a moving mandrel, the stress for a, when you are 

considering the frictional forces at the considering moving mandrel, there are 2 things which are 

happening. The frictional forces at stationary die-tube interface is directed towards the die 

entrance. Second, the frictional forces at mandrel-tube interface is directed towards the die exit. 

 

This is because the mandrel is moving at the velocity equal to x velocity, exit velocity of the tube 

whereas at the inlet it is only very less, so you will find that with the when you are drawing the 

operation, the material which comes out is having a higher velocity, but the inside velocity is 

high but the diameter is very large and due to which there is an accumulation of material at that 

side. 

 

And that is not going to affect the direction of the velocity, frictional force at the die-tube 

interface but at the mandrel-tube interface you will find that it is directed towards the exit. So, in 

that case know, you will find that the beta dash = mu 1 – mu 2 because change in the direction 

takes place by tan alpha - tan beta. See if you just look at the previous case, you will find that 

beta; relationship for beta dash is here. 

𝛽′ =
𝜇1 − 𝜇2

tan 𝛼 − tan 𝛽
 



 

And that is mu 1 + mu 2 but the difference here it is mu 1 – mu 2 because these 2 are the 

opposite direction and since the velocity is higher than the velocity of the material confined in 

the die channel, so that is what is going to happen. The mandrel is moving at a velocity which is 

equal to exit velocity of the tube and it is higher compared to inlet velocity, so that is higher than 

the velocity of the material confined in the die chamber. 

 

So, there is a forward frictional drag at the mandrel-tube interface. So, this tends to cancel the 

backward frictional drag between the die and the tube okay. So, that is one advantage, that way 

that is going to be very helpful because you need only less power for drawing with the mandrel if 

it is properly designed, then you will find that you need less power because the forward frictional 

drag at the mandrel-tube interface it cancels the backward frictional drag between the die and the 

tube. 

 

And if you say that if mu 1 = mu 2 then beta dash = 0 and then the differential equation you will 

get it as hd sigma + sigma x + p dh = 0 which you can solve it in a very simple way and then do 

it, in the similar way we can do it actually okay. So, integrating we get the equation of ideal 

homogeneous deformation in this equation if you do it, so that is the condition, then simple idea 

of homogeneous deformation will come. 

𝑖𝑓 𝜇1 = 𝜇2        𝐵′ = 0 

𝑡𝑒𝑛, 𝑑 +  𝜎𝑥 + 𝑝 𝑑 = 0 

 

So, that means if you are able to have this frictional coefficient same, then redundant 

deformation and that frictional and those factors will be get nullified. So, you will need only 

lower stress which is equal to your homogeneous deformation. It is also possible for the 

coefficient of friction on the mandrel that is at the side that is mu 2 to exit that at the die side, so 

by having a surface roughness and other things also, may be lubricating conditions if you do it 

properly, so that way it is. 

 

In such case, B tend to be negative resulting in a less draw stress than that required by 

frictionless ideal deformation condition. So, you may need only lesser conditions also for that 

case okay. 

 

 

 


