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 So this lecture we will be discussing about the various instabilities that can occur during 

the sheet metal forming. So the first one as we have discussed earlier, so that is if you 

write that Load instability and tearing. So let us see that. The instability of the sheet to 

transmit the required force that is what or so that is what when you are transmitting the 

load at some stage and instability sets in and the metal finally end up in tearing okay or 

any other type of defect which can happen. See if you are considering the case of a deep 

drawing process where your material is like this it is being drawn. And maybe the punch 

was here Okay. And your die, this is your die. at this wall region you will find that the 

force required see two things are happening one is the metal will have to because you are 

you are holding here and the metal will have to be drawn inside from the this side and 

here another is that here the strain has to take place tensile straining will be taking place 

on the side walls. So if the force required to draw the flange invert if this force is it 

exceeds the strength of this the cup wall. then what will happen is that it can fail there 

okay. So this will happen when the tension around this circumference reaches a 



maximum and will be seen as a maximum pungent force. So that is what happens. So 

when the load reaches the maximum value what will happen is that at this region the 

failure will take place okay. So deformation becomes concentrated at some diffused neck 

region okay and it is no longer uniform. At some specific area the deformation takes 

place and this is called as the global instability. There are two things which are coming 

into picture. One is the diffused neck and the local necking. These two things are going to 

happen. 

 

 So if you take a cylindrical piece which is loaded in tension suppose this was a 

cylindrical piece a tensile sample and when you are loading it after reaching the 

maximum value you will find the necking which is taking place over this area. So the 

total diameter gets reduced okay. So similarly so if this is the cylindrical piece similarly if 

you take a rectangular a flat specimen generally which is used for sheet metal operations 

okay where this is your thickness. What you will find is that at some stage similar to this 

you will find that okay let me just draw like this. So at some stage you may find that okay 

similar to here you will find a decrease in the width. This is called as the diffused 

necking. Whereas in addition to that now you may find here which is called as this is like 

deformation taking place along very thin narrow band. Like in metallurgical terms now 

you call it as loader bands. So this is called as a local necking. So this diffused necking 

may end up with a local necking. So that in sheet metal operation. So that is these are the 

two differences. This is the diffused necking and this is the local necking. So this one 

should understand what is happening okay. So in a diffused neck once it happen now this 

is like a global instability criteria which is going to take place. 

So we can just look at how this failure takes place is one is due to this diffused necking 

which is a global necking global instability criteria. So second is the localized necking. 

So when this happens in any localized area when this happen over an aeroband this will 

rapidly lead to tearing of the material and the failure will terminate there and that failure 

will terminate the forming process okay. So this is just a local instability criteria and 

another type of failure is your fracture, When you are deforming the material, it gets 

work hardened. When it work hardens, it gets brittle. 



 

 And at some stage, you will find that the material just fails in a brittle way. So that is 

called as the fracture mode, okay. So and another type of instability is wrinkling. So this 

is when one of the principal stresses in any element  is compressive then what happen the 

sheet may buckle or it may wrinkle that means it  thickness will get increase this is a 

compressive instability and resembles the buckling of a column so that is what. So the 

normal failure in sheet metal operation is instability which takes place is by any of these 

or it can be a combination of also but mostly it will be any one of this only okay. 
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So now when we have to look at it let us take one by one. So what are the theories behind 

this localized necking and diffused necking? Let us consider a uniaxial tension of a 

perfect crystal, perfect strip. So if you have a strip like this, and you are applying your 

load over this area P, this is your length, this may be your width and this is your 

thickness. So, if you just look at this in such a case in a normal sheet metal operation, the 

type of stresses we can see that it is along this one you can call it a sigma 1. And along 

this direction sigma 2 is equal to 0, sigma 3 is also is equal to 0. 

 

 This is the normal assumptions which we take it. So we can always write that since the 

volume remains constant say A into L is equal to A naught into L naught. This part which 

I am going to explain was discussed in the earlier class but still I wanted to bring it here. 



So that means you can just tell that from D A by A plus D L by L is equal to 0. Or DL by 

L we can say is equal to D epsilon 1 okay that is equal to minus DA by A okay. 

𝐴. 𝑙 = 𝐴0𝑙0 

𝑑𝐴

𝐴
+
𝑑𝑙

𝑙
= 0    

𝑑𝑙

𝑙
= 𝑑𝜖1 = −

𝑑𝐴

𝐴
 

 

 So, the load in the strip the load in the strip P is always equal to sigma 1 into A. say if 

you differentiate it, you can get it as dp is equal to d of sigma 1 into a, so is equal to 0, the 

maximum load. For the maximum load, this is the condition, okay. So if you just take 

that, that is dp by p is equal to d sigma 1 by sigma 1 plus d a by a, is equal to 0 for the 

maximum condition for at a maximum load. Equation number 1 and for a strain 

hardening material which follows that sigma is equal to k epsilon 1 raise to n which is the 

power power law we can substitute in this and we can get it as 1 by sigma 1 into  if you 

differentiate it. 

𝐿𝑜𝑎𝑑 𝑃 = 𝜎1𝐴            𝑑𝑃 = 𝑑 𝜎1𝐴 = 0 

𝑑𝑃

𝑃
=

𝑑𝜎1

𝜎1
+
𝑑𝐴

𝐴
= 0 

𝜎 = 𝑘𝜖1
𝑛  

 

 Differentiating we will get it as 1 by sigma 1 into d sigma 1 by d epsilon 1 is equal to 1. 

This is a general equation. So, this is one relation we are getting. This is the equation 1. 

And for this particular case, if you just take it as 1 by sigma 1 into n k into epsilon raise 

to n minus 1 is equal to n by epsilon 1. 

1

𝜎1

𝑑𝜎1

𝑑𝜖1
= 1 

1

𝜎1
𝑛𝑘 𝜖 𝑛−1 =

𝑛

𝜖1
 

 

 So, we can get this equation number 2. These two cases we are getting. okay and if you 



substitute from 1 and 2 we can get 1 by sigma 1 into d sigma 1 by d epsilon 1 is equal to 

n by epsilon 1 that is equal to n. So that means the strain at maximum load which we 

have discussed earlier so that strain at maximum load for a perfect at maximum load for a 

perfect strip. So that means we can say that this epsilon star is equal to n because we have 

got that epsilon is equal to at maximum at this one is equal to n that was good. 

1

𝜎1
.
𝑑𝜎1

𝑑𝜖1
=

𝑛

𝜖1
= 𝑛  

𝜖∗ = 𝑛 

 So diffusion diffused necking cannot occur in one region that is another thing. This 

diffused necking cannot occur in one region. So in a perfect crystal or a strip the load to 

deform the strip we can get it as P is equal to sigma 1 a  So you can write it as sigma 1 is 

equal to k epsilon 1 raise to n and a is equal to because a into l is equal to a naught into l 

naught. So we can say this a we can write it as a naught l naught by l. So that we can 

write it in this form as k a naught epsilon 1 raise to n l naught into l naught by l 1. 

𝑃 = 𝜎1𝐴 = 𝑘𝜖1
𝑛𝐴0

𝑙0

𝑙
= 𝑘𝐴0𝜖1

𝑛 exp(−𝜖1) 

 

 So, we can write that it as exponential minus epsilon 1. equation number 2 that is 

because since epsilon 1 is equal to say log L by L naught. So for the tension in a perfect 

crystal you find that it is epsilon star is equal to n and you are getting this relationship p is 

equal to k a naught into epsilon 1 sorry epsilon 1 raise to n into exponential minus epsilon 

1. 

(Refer Slide Time: 13:35) 



 

Now let us take the case of a tension in an imperfect crystal. See this tension in real 

material it is never perfect even if you just assume that okay it is well polished sample 

and other thing even surface also is never perfect when you look at the at a macroscopic 

level. 

 

 But most of the sheet metal when you look at look at this microstructure there are some 

imperfections inside. It can be voids, it can be very fine second phase precipitates which 

will behave in a different way. So you will find that no material is a perfect crystal. So let 

us for our analysis, let us assume a case where there is a small imperfection and we 

assume that imperfection is due to the minimum reduced area, cross sectional area where 

stress concentrations are taking place okay. 

 

 So if there is a void inside okay that that means effective cross sectional area that section 

is less okay. So that way we can just in a material let us introduce let us introduce a small 

imperfection. See basically if I just consider this as a material let me just consider like 

this. So, this is an imperfection area whereas here it is a perfect area. So, A 1 sigma 1 and 

epsilon 1 and we are loading along this direction P in a tensile sample. 

 

 We are using a tensile sample having a small imperfection. So, in this region let us say 

that A plus D A A1 plus dA1. So, sigma 1 plus d sigma 1 and epsilon 1 plus d epsilon 1. 

These are the conditions which are there. If you assume such a case, that means here a 

small reduction in area is there and you are applying a load P across this. 



 The same load is transmitted through equally through the two sections. So, one is the 

section is the imperfection here and this is a perfect it is not crystal we can say what is it 

called strip perfect strip perfect strip okay. So we are having this 2 region one is a perfect 

strip where the cross section area is large. So when this external load is applied along it is 

equally transmitted through this section A and B okay. 

 

 So, in such a case, this equation 2 will become, we can write for the two cases. Equation 

2 gives, say one is p is a constant. So, we wrote that k a naught into epsilon 1 raised to n 

into exponential minus epsilon 1. So, that is for this perfect size. Now, that should be 

equal to whatever be the stress and strain at the imperfection area. So, we can say that K 

is a constant for the material. So, we can say A naught plus D A naught into epsilon 1 

plus D epsilon 1 raised to N. into exponential minus of epsilon 1 plus d epsilon 1 okay. 

We are getting this okay. Here it is not clear I will write it. This is equal to k a naught 

plus d a naught  where d A naught is negative into epsilon 1 plus d epsilon 1 raise to n 

into exponential minus of epsilon 1 plus d epsilon 1. 

𝑃 = 𝑘𝐴0𝜖1
𝑛 exp −𝜖1   

= 𝑘 𝐴0 + 𝑑𝐴0 .  𝜖1 + 𝑑𝜖1 
𝑛 exp(−(𝜖1 + 𝑑𝜖1) 

 

 So, this is equation number 3. So this is for the case of imperfect strip and this is the case 

for that means at this section it this is this right hand side is true whereas for this section 

where the perfect strip is there this this one is true okay. So this is the thing. So if you 

look at the load versus strain curve okay if you just plot this load versus strain curve for 

the two sections. when your load is coming maybe one it will come like this okay this is 

for the uniform region see perfect region we are calling it as uniform area uniform region 

whereas for this part it will be in a imperfect region you will find that okay it is 

something like this. See what happens is that load increases and at some point here say let 

me just say it as G for the maximum load and the maximum load which can reach that is 

the maximum load which can be taken by the piece at any point. 

 

 So that will be this value corresponding to this whatever you are getting is the maximum 



load. So, but because here this is a cross sectional area when it reaches the maximum load 

no it will be the so that corresponding to that on your perfect crystal it will be you will 

have a strain of epsilon 1 u which will be less than the strain corresponding to this on 

your reduced to cross sectional area that strain will be corresponding to your n okay. So, 

this will be epsilon 1 plus d epsilon 1. So, when that value reaches this n it is. 

 

 So, your maximum load can be this P max. Because in your perfect strip or uniform 

region, the cross section is very large. It will not go beyond this. Rather, in this region, 

when the stress reaches, the stress corresponding to this maximum load reaches here, it 

will start deforming. And that will be the strain which you will be showing as epsilon 

plus d epsilon 1 here. Whereas that corresponding to that external load, your strain in the 

uniform region will only be epsilon 1 u we are just defining it as epsilon 1 u maybe u 

should be the suffix okay I am just putting like that that is maximum load u corresponds 

to the maximum load in that so that is the thing generally the notation which is used. 

 

 So the strain in the imperfection corresponding to this maximum load okay so 

corresponding to P max strain in the imperfection is equal to epsilon 1 plus d epsilon 1 

okay and that will be equal to n because epsilon star since epsilon star is equal to n we 

previously got so that should be corresponding to your n. but that n value it will never 

reach for your perfect crystal okay. So that means in the in the uniform region the load 

corresponds to only g where the your strain the strain epsilon 1 u is less than your n okay. 

So, it will never reach that value. So, whatever you are trying to apply the load the 

deformation will take place at the imperfect region. 

𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑃𝑚𝑎𝑥  , 𝑠𝑡𝑟𝑎𝑖𝑛 𝑖𝑛 𝑡𝑒 𝑖𝑚𝑝𝑒𝑟𝑓𝑒𝑐𝑡𝑖𝑜𝑛 =  𝜖1 + 𝑑𝜖1 = 𝑛 

 

 So this is the maximum uniform so you will find that this is always less than this your 

value of n okay because the load cannot go beyond that. So this is the maximum uniform 

strain since it is measured in the uniform region of the test. So uniform region cannot be 

loaded to a load more than g since any attempt to load beyond.  It will be transmitted to 

the imperfection and the region of the imperfection only will get strained. Okay? It will 



deform there and finally in an uncontrolled way it will go as instability will set in and 

then the material will fail there. Since all the tension strips which contain, any of the 

tension strips you take, any strips in real material when you are taking, it will contain 

some sort of imperfection. There is no doubt in that. You cannot tell that material is there 

without any imperfection. Maybe that dA may be very small. That is all. So but in that 

case, it contains large number of imperfections in real materials. So the greatest 

imperfection will become the site for the diffused neck. 

 

 That is where. So wherever that an imperfection is there and the cross sectional area is a 

minimum, that will be the site for the diffuse neck. And once the maximum load carrying 

capacity is reached in the neck region instability will set in. The material at the 

imperfection region it will just start expanding or growing and then finally it will result in 

the failure like tearing and other things. So the difference between the maximum load in 

the uniform region of an imperfect strip and the strain epsilon 1 is equal to n at the 

maximum load in a perfect strip can be determined. So that means so what I said is now it 

is the difference between the maximum load or load maximum in the uniform region of a 

perfect strip and the strain where epsilon 1 is equal to n at the maximum load. Sorry 

imperfect of an imperfect strip. In a perfect strip that can be determined. So that can be 

determined can be determined by substituting epsilon 1 plus d epsilon 1 is equal to n in 

the imperfection side of equation 3 and epsilon u for strain in the uniform region. So, that 

we can find it out epsilon u by n raise to n into exponential n minus epsilon u is equal to 1 

plus d A naught by A naught. 

 
𝜖𝑢
𝑛
 
𝑛

exp 𝑛 − 𝜖𝑢 = 1 +
𝑑𝐴0

𝐴0
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 So in this real case, this n minus epsilon u and d A naught by A naught are very small 

quantities. So if you are just expanding this in the series expansion and taking the first 

term, you can get this relationship that is n minus epsilon u is almost equivalent to say 

minus n into d A naught by A naught. Now let us look at what happens to the strain rate 

sensitivity. So the effect of strain rate sensitivity. The initial lectures we have discussed 

that the strain rate sensitivity is very important bulk deformation of material at higher 

temperature because at higher temperature it becomes more of a strain rate sensitive. 

(𝑛 − 𝜖𝑢) ≈  −𝑛
𝑑𝐴0

𝐴0
 

 

 So at higher temperature for deformation processing this is very important. Whereas in 

the case of sheet metal forming even at room temperature also though you may feel that 

strain rate sensitivity is not coming into picture but depending upon the strain rate 

sensitivity of the material that has an influence on your defect growth okay or maybe the 

strain to failure and how fast it reaches that has an important influence. So let us look at 

that. So in normal strain rate sensitivity that expression for the flow stress say maybe for 

uniaxial strain so that can be written as B epsilon dot 1 raise to n m okay, where epsilon 

dot 1 is equal to d epsilon by dt and that is equal to dl by l by dt. So, that we can say it is 

equal to v by t where v is the cross head speed cross head or ram speed  cross head speed 

okay.  

𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑠𝑡𝑟𝑎𝑖𝑛 𝑟𝑎𝑡𝑒 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦      𝜎1 = 𝐵(𝜖1) 𝑛  



𝜖1 =
𝑑𝜖

𝑑𝑡
=

𝑑𝑙/𝑙

𝑑𝑡
= 𝑣/𝑡

 
 

So, it depends upon if you wanted to have a constant strength rate this is the expression 

which one has to get it. And the forces when you are transmitting it across these two 

sections you know we can still write it as P is equal to sigma 1 a. So, is equal to sigma 1 d 

sigma 1 into a plus d a. So this will be for an imperfect crystal and this will be for an 

imperfect strip and this is for a perfect strip. Or maybe this will be for the uniform region. 

So this is the case. So from this now we can write it as d sigma 1. So, load is the 

maximum load. So, d sigma 1 by sigma 1 is equal to minus d A by A. That is the 

difference between the stresses in the uniform region and the region where any perfection 

is there. 

𝑃 = 𝜎1𝐴 =  𝜎1𝑑𝜎1  𝐴 + 𝑑𝐴  

𝑑𝜎1

𝜎1
= −

𝑑𝐴

𝐴
 

 

 So, that is what we are getting it. So, now from this from this relationship if I just put it 

as what let me put it as equation number A. So, from A you substitute it into this taking 

the derivative and other things we can get it as d epsilon dot 1 by epsilon dot 1 is equal to 

1 by m into d sigma 1 by sigma 1 from this if you take the derivative differentiating. We 

will get this relationship, okay. So that is equal to, because d sigma 1 by dA1 is equal to 

minus dA by A, so minus 1 by M into dA by A. So this we can get it as five, equation 

number five.  

𝑑𝜖1 

𝜖1 
=

1

𝑚

𝑑𝜎1

𝜎1
= −

1

𝑚

𝑑𝐴

𝐴
 

Now, in this, if you really look at it, the difference for a given imperfection the difference 

in the strain rate that is a d epsilon dot 1 between the imperfection the region of 

imperfection and the uniform region. So you will find that that is that is that d epsilon dot 

1 is inversely proportional to the strain rate sensitivity index okay so that is rate 

sensitivity index no that that that is one so it is inversely proportional that means if you 



have at some at room temperature if MA is very small and the difference in the strain rate 

is very large then the imperfection will grow very rapidly. So that is so if you are doing it 

at a very high strain rate and at a low strain rate and the M is a material property. So if M 

is small then it will have it will necking will take place at a much faster rate. The 

difference in the cross sectional area strain will be much higher. 

 

 So failure will localized necking will take place and it can fail. But in certain cases like 

super plastic deformation where you can elongate it to maybe 500 or 1000 times or more 

than that in certain cases you have obtained even up to 4000 also super plastic. If you just 

take a glass rod and heat it at a higher temperature and then you try to pull it you will find 

that the elongation is very large so that is a typical place of a super plastic deformation 

that is why in glasses you know you can use this glass molding to glass blowing to obtain 

a very large shape and other things. So, so in metals also in ceramics also this type of 

phenomena is observed. So, where in such case so in super plastic materials under that 

conditions of deformation super plastic material say M is high that is more than 0.3 that is 

it is high. So in such case now you can just deform to a very large extent. So so M strain 

rate sensitivity even at room temperature also if the M value is less then it cannot deform 

much okay because necking will take but if M value is high even at room temperature 

also you will find that you can have a more strain or higher strain.  
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Now let us look at the next case that is tensile instability in stretching a continuous sheet 

stretching a continuous sheet. So in a tensile strip, if an imperfection is not there, is not 

present or it is not existing, then diffuse necking will start when the load reaches a 

maximum value. 

So when the maximum load is reached, the diffuse necking will place. So in case of a 

sheet stretched over a punch this diffuse necking is not generally observed in practical 

case okay. So the tension may reach a maximum but the geometry of the punch why it is 

not happening is that the geometry of the punch because on one side you are coming in 

contact with that. So geometry of the punch that it imposes constraint on the strain 

distribution. So the constraint by the due to the geometry of the punch you will find that 

okay this diffused necking is not taking place. So by theoretically you may find that it can 

take place but when it is just when it is stretched over a punch you know that that is not 

taking place okay. 

So, in a continuous state development of the local necks are necking are observed which 

are similar to that occur within a diffused neck of a tensile sample. So, when it is a 

continuous state this happens. So, width of this local neck necking which occurs is almost 

equal to the sheet thickness. So you can see that depending upon the sheet thickness more 

or less equal to that thickness will be coming okay that width of this because as I have 

mentioned localized necking means that like a band it is forming the width of that band 

will be equal to your thickness of the sheet though they do not contribute to the local 

necking they result in tearing of the material. 

 

 So global necking is your diffused necking. Diffused necking will be more or less, 

without the local necking will be almost about the sheet thickness, okay. And they do not 

contribute to global necking. They result in tearing of the sheet. That is what. So let us 

consider the condition for that when this can happen, okay. So how these things are 

formed. So we can consider a sheet deforming uniformly in a proportional process, okay. 

So like suppose you have a sheet like this. with a thickness t and this is your tension t 1 

and this is your t 2 this is your thickness t okay so if you just consider a unit size  where 



this is equal to 1 and this is equal to 1. So, in such case, you are assuming a proportional 

loading, deforming uniformly in a proportional process. 

 

 Proportional process means your alpha and beta are remaining constant. The stress ratio 

and the strain ratio, they are remaining constant. So, if you look at, I just take a small 

element from that in this case. okay and look at the stresses and stresses sigma 1 this is 

sigma 1 and this is sigma 2 this is sigma 2 and sigma this one will be 0 sigma 3 will be 0 

okay so this is the condition so the the the deformation in such case can be specified as 

one is stress condition conditions if you take there are the stresses are sigma 1 Then 

sigma 2 is equal to alpha sigma 1 and sigma 3 is equal to 0 because it is a very thin sheet 

we are assuming the stress across the thickness is 0. Whereas the strains are sigma 

epsilon 1 then epsilon 2 is equal to beta into epsilon 1 and the third epsilon 3 along the 

axis 3. So that will be is equal to minus which we have earlier itself we have described it 

is equal to minus of 1 plus beta into epsilon 1. 

𝜎1      ∶        𝜎2 = 𝛼𝜎1      ∶       𝜎3 = 0 

𝜖1     ∶       𝜖2 = 𝛽𝜖1     ∶       𝜖3 = − 1 + 𝛽 𝜖1 

 

 So if you know that epsilon 1 and sigma 1 then you can always describe this condition. 

So the principal tension in the sheet are the principal tensions. Tensions are T1 is equal to 

say sigma 1 into T and T2 is equal to alpha into T1 and that is equal to sigma 2 into T 

because sigma 1 and sigma 2 are there. So, we can write this. So, maybe this we can write 

it as equation 6. This is equation 7 if you write like this.  

𝑇1 = 𝜎1𝑡                 𝑇2 = 𝛼𝑇1 = 𝜎2𝑡 

So these are the state of stresses in this sheet. So the condition for local necking in this 

condition under these circumstances what are the conditions for local necking? The 

conditions which have been postulated is that local necking will start when the major 

tension reach a maximum. And see in this condition, since it is a proportional loading, 

alpha and beta remains constant. So, the local necking will start when the major principal 

tension reach a maximum value. So, that means by equation number 7, T1 should be the 



maximum or we can say if you take DT1 by T1 is equal to D sigma 1 by sigma 1  plus dt 

by t. So, that we can write it as dt by t is equal to epsilon d epsilon 3. So, d sigma 1 by 

sigma 1 plus d epsilon 3 we can write. So, this this can also be written as d sigma 1 by 

sigma 1 because epsilon 3 is this okay my into minus 1 plus b into epsilon 1 okay this is 

equation number 8.  

𝑑𝑇1

𝑇1
=

𝑑𝜎1

𝜎1
+
𝑑𝑡

𝑡
=

𝑑𝜎1

𝜎1
+ 𝑑𝜖3 =

𝑑𝜎1

𝜎1
−  1 + 𝛽 𝜖1 

Now when the tension reaches a maximum that means derivative of that should be 

maximum condition it should be equal to 0. So that means so for for the maximum 

tension d t1 by t1 should be equal to 0. So, that means from equation 8 we can reach if 

this is equal to d sigma 1 by sigma 1 is equal to this is d epsilon 1 sorry ok. So, if you 

bring that  d epsilon 1 to the left side, we can say that 1 by sigma 1 into d sigma 1 by d 

epsilon 1 is equal to 1 plus beta. And this is true for beta greater than minus 1 the strain 

ratio should be greater than minus 1 okay. 

𝐹𝑜𝑟 𝑡𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑒𝑛𝑠𝑖𝑜𝑛,
𝑑𝑇1

𝑇1
= 0 𝑖𝑠

1

𝜎1
 
𝑑𝜎1

𝑑𝜖1
 = 1 + 𝛽 

 

 So, if beta is less than minus 1 say what will happen is the sheet will start thickening. So, 

if beta is less than minus 1 the sheet will thicken. So because that is the ratio between 

sigma 2 and sigma 1 if it is less than minus 1 naturally it will be strain will be whatever it 

will start thickness will start increasing that is the thing. So and for a strain hardening 

material the tension will not reach a maximum for a general will not reach a maximum 

strain okay. So in such case where beta is less than 1. Since the sheet keeps on, thickness 

keeps on increasing due to a strain, due to a loading, it will never reach the value of 

sigma 1 because the stress inside that material will not increase. 
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 That is the main thing. So for a generalized flow stress, when you are having, we can 

have a generalized flow stress relationship. Generalized stress-strain relationship. is the 

effective stress we can write it is equal to your uniaxial flow stress is equal to k into 

effective strain raise to n. So if you just substitute the value of effective stress and 

effective strain from our previous derived equation and other things you know so this 

equation 10 will get the form of so it will that means that sigma bar is equal to say square 

root of sigma 1 square minus sigma 1 sigma 2 minus sigma 2 square or you can say 1 

minus alpha plus alpha square into sigma 1 root of 1 minus alpha plus alpha square alpha 

square into sigma 1. or similarly epsilon bar no it is root of 2 by 3 into epsilon 1 square 

plus epsilon 2 square plus epsilon 3 square or you can say root under root 2 by 9 into 

epsilon 1 minus epsilon 2 square. 

𝜎 = 𝜎1 = 𝑘 𝜖  𝑛  

 

 So that relationship if you substitute and then get it we can get this in this form sigma 1 

is equal to k dash into epsilon 1 raise to n okay. In this, This is the condition when you 

are having a proportional loading where alpha and beta alpha and beta remains constants. 

k dash is a material property and is a constant calculated from k, n, alpha and beta. 

𝜎1 = 𝑘′𝜖1
𝑛  

 

 You are just determining from the value of k, n, alpha and beta from that if you are 

getting. So, if you differentiate this equation one, we can write this 1 by sigma 1 into d 



sigma 1 by d epsilon 1 so that will be equal to n by epsilon 1 okay. So for the maximum 

tension if you are substituting this in the previous equation number 9 so substituting In 

equation number 9, 1 by sigma 1 into d sigma 1 by d epsilon 1 is equal to 1 plus beta. So, 

that is equal to n by, so now this is the maximum case, you know, when you are writing it 

epsilon 1 star. Star always refers to the case for maximum load condition. So that it 

implies that epsilon 1 star is equal to n by you are bringing 1 plus beta.  

1

𝜎1

𝑑𝜎1

𝑑𝜖1
= 1 + 𝛽 =

𝑛

𝜖1
∗  𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝜖1

∗ =
𝑛

1 + 𝛽
 

So if you know the value of beta and if you know the value of n the maximum strain 

along the principal direction 1 we can determine and also along epsilon 2 star is equal to 

beta into n by 1 plus beta. So, these two relationships you are getting. So, the strain at 

maximum at maximum tension that is epsilon 1 star plus epsilon 2 star is equal to n you 

are getting. So this value if you consider this epsilon 1 star and epsilon 2 the maximum 

strain in these two directions the sum of that should be equal to n that means epsilon 2 

star is equal to 0 epsilon 1 star is equal to n that means for a uniaxial  tension testing you 

will find the maximum strain is equal to n. 

𝜖2
∗ =

𝛽𝑛
(1 + 𝛽)

 

𝜖1
∗ + 𝜖2

∗ = 𝑛 

 

 But for biaxial and other conditions under different strain paths the total value should be 

equal to n. So let us see these two conditions okay. So in a tensile test when you look at it 

for a tensile test beta is equal to minus 1. We earlier discussed about tensile test beta is 

equal to minus 1. Hence, the maximum tension occurs when 1 by sigma 1 d sigma 1 by d 

epsilon 1 is equal to 1 by 2. So, that is equal to n by epsilon 1 or that indicates that in 

such a case epsilon star is equal to 2 n.  

1

𝜎1

𝑑𝜎1

𝑑𝜖1
=

1

2
=

𝑛

𝜖
 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝜖∗ = 2𝑛 



This is a very important point one has to look at it  So in the maximum tension condition 

it signifies that the onset of local necking that is the local necking strain in a uniaxial 

tension is epsilon 1 star is equal to 2n which is twice the strain for a maximum load and 

start of diffuse necking. So for a uniaxial tension it is twice the strain for a maximum load 

and where the start of diffuse necking takes place. So that is the condition which is 

coming okay. So you have to find out in this particular case you will find that in sheet 

metal operation you may get a strain which is much higher. 

 

 So you are going to get it at 2n and other. So by drawing say grid circles on a sheet, this 

is how the sheet metal experiments are done, this module itself lecture number 2 if I am 

right that grid circles we have demonstrated. So if you are drawing this grid circle we can 

experimentally determine the strain at the onset of local marking because under different 

conditions it is straining. So strain history at different places may be different okay. 

 

 So there we can study the minor and major axis of your ellipse and then find out what is 

the strain along epsilon 1 and epsilon 2. So we have discussed that maybe during if it is a 

circular circular grid it may just extend like this like an ellipse. So you measure this and 

this so after this so wherever the failure has taken place adjacent to that you measure that 

you may not be able to find it exactly at that split but very adjacent to that you measure 

the strains okay. So that will be the, because that is a region very adjacent to a local 

necking. So we can approximate that that is the region where the maximum straining has 

taken place or very near to that. 

 

 So and in a similar way you measure this strain for different strain paths. Because you 

can always by measuring the circular this one you can measure the strain path at different 

places and in both the quadrants of a strain diagram okay we can establish a foaming 

limit diagram. So after measuring this for different strain paths in quadrant 1 and 

quadrant 2 of the strain diagram. We can just look at a what is called as a forming limit 

diagram which delineates the boundary of uniform deformation and onset of nexus. So 

the point which you are going to get it very adjacent to the failure or even some means if 



you can measure that the failed region also the minor and major axis if you can measure 

though it is very difficult at least that point you you know that okay this is the boundary 

between the for the strain path particular strain path with the epsilon 1 and epsilon 2 

combination of that this is the region where the failure will take place. So at different 

places if you measure it and then you plot all these things you can just get a two region 

one where the failure can take place and the other where failure cannot take place. 

The boundary between that is the safe region so that we can get it. So this is called as the 

forming limit diagram.  
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So, that if you look at it, it will be something like this. So, this is for your epsilon 2, this 

is for epsilon 1 and you will find that this is for 0. is a continuous sheet and you will find 

that the you can just draw this maximum tension line like this for a combination of 

epsilon 1 and epsilon 2 maximum tension line. The maximum tension line will intersect it 

at the value of n and if you just  join this maybe for any condition no you can just draw 

this for any condition so that means this you will find that the slope is 1 and a half here 

okay. So whereas for the actual case so in the second quadrant no it is okay you are 

finding it safe but if you look at the actual case real material you will find that in the first 

quadrant it is not so okay here you are getting up to here it is true up to this is up to n 

value this is epsilon 1 and this is epsilon 2 but here instead of directly coming like this so 

you will find that it is it is coming something like this. 



 

 So there is a region here where it is not matching. So this is the value of n. So in this case 

when you look at it for materials with the same value of n the forming the following 

observations can be made one is the four same value of n the strain path in the second 

quadrant. That is this is the second quadrant here this is the second quadrant the strain 

path  In the second quadrant is that is for beta is equal to less than 1, the experimental 

FLC is coinciding with the maximum tension line. The strain path in quadrant 2 that is 

for beta less than 0, the experimental  FLC that is where FLC is equal to forming limit 

curve is coinciding  with the maximum tension line whereas, for both epsilon 1 and 

epsilon 2 positive that is in the biaxial stretching. That is in quadrant 1, epsilon 1, sorry, 

not sigma, epsilon 1 and epsilon 2 are positive and beta greater than 0. 

 

 This experimental forming limit curve or FLC, it do not follow the maximum tension 

line. That is what we can see here. See here, it is not following the tension line. The 

maximum tension line is this dotted line. But you will find that it is at a higher value. 

 

 So that means this indicates that there is some process which retards the necking in the 

biaxial tension condition. The biaxial stretching condition, there is some reason which 

retards or which slows down the necking process after it has reached the maximum 

tension line. So, that is one thing. So, how that is taking place we will have to look at it.  
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So, let us for that particular case let us just assume a case in a material say a sheet like 

this the let us assume that the necking is taking place in along this region. So, whereas 

this is your sigma 1 and this is your sigma 2 and if I just take a section along this cross 

section area you may find that okay just do like this this is the section if you just take  It 

is a reduced section that necking has taken place and if you just look at this as y and this 

as x the local coordinates axis if you take like that and see if this is inclined at theta okay. 

So, we identify the uniform region as A and an imperfection as B so that means this 

region as A and maybe this region as B if you identify that. For analysis of the necking 

process the assumptions are if you just consider assumptions. One the stress and strain 

ratios remain constant alpha and beta are constant before and after and during necking 

process. Second assumption is for necking process to to be local the necking process 

should not affect the boundary conditions okay. 

 

 The necking process the process to be for the process to be local the necking process 

should not affect the boundary conditions. That is the strain increment in both the region 

A and B along the y direction that must be 0 that is the strain increment along y direction 

that is along the groove if you assume it is a groove along that groove in that direction y 

direction in both A and B region must be 0. It is going to be the same, So from a Mohr 

circle representation now we can just draw the Mohr circle representation for the state of 

stress in this case and strain in this case sorry the strain and d gamma if you just find out 

this this is the circle circle will come like this okay and this is the center so so center we 

can just write this as 2 theta okay and this is 1 this is 2 So, beta d epsilon 1 and this is 

equal to d epsilon 1. 

So, this is the, so from this mahar circle, we can find that center of the circle. So, this is 

equal to 1 plus beta by 2 d epsilon 1 that is center of the Mohr circle is equal to is at 1 

plus beta by 2 into d epsilon 1. and the radius of the circle from this itself radius of circle 

is 1 minus beta by 2 into d epsilon 1. So the direction of 0 extension d epsilon y is equal 

to 0. So that that you can get it from the circle okay. So that the direction of 0 extension  

of 0 extension that is d epsilon y is equal to 0 is given by cos 2 theta is equal to 1  by 1 

minus beta we are getting equation number 13 ok. From this what we are getting for a 



uniaxial tension beta is equal to minus half for beta is equal to minus half hence  theta is 

equal to 55 degree. So, for a plane strain condition beta is equal to 0. For plane strain 

condition beta is equal to 0. 

𝐶𝑒𝑛𝑡𝑟𝑒 𝑜𝑓 𝑡𝑒 𝑀𝑜𝑟 𝑐𝑖𝑟𝑐𝑙𝑒 𝑖𝑠 𝑎𝑡  
1 + 𝛽

2
 𝑑𝜖1 

𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑐𝑖𝑟𝑐𝑙𝑒 𝑖𝑠
1 − 𝛽

2
𝑑𝜖1 

cos 2𝜃 =
1 + 𝛽

1 − 𝛽
 

 So, theta is equal to 90 degree. So, that is perpendicular to the principal stress. That is 

maximum principal stress, okay. And if beta is greater than 0, there is no direction in 

which the extension is 0. This is the thing. There is no direction in which extension is 0. 

So that is from this we can get that. So if there is a direction which there is no extension 

then local necking along this direction is possible when the tension reaches a maximum. 
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 If there is no direction of 0 extension that is by a stretching process where beta is greater 

than 0, The strain at which tension is maximum is given by earlier we found that it is 

given by epsilon 1 star plus epsilon 2 star is equal to n. So that means there is no direction 

of 0 extension. That happens when beta is greater than 0 for the stretching, biaxial 



stretching process. Strain at which tension is maximum is given by this one. 

 

 However, geometric constraint permits, prevents the instantaneous growth of the local 

neck. So in this previous figure, if the line shows maximum tension in both quadrants but 

only indicate local strain in the second quadrant where minus strain is epsilon 2 is 

negative. So also for plane strain beta is equal to 0 and epsilon 2 is equal to 0 for the 

plane strain condition. The major strain at necking is the minimum. This is the condition 

where you are getting okay.  

Now if you look at for a biaxial tension necking and biaxial tension. So, in the strain 

diagram, we found that for epsilon 1 and epsilon 2, both are positive. There is no zero 

extension in the first quadrant. That is for beta is greater than zero. However, when you 

do the experiment, still necking occurs under biaxial tension. So, though in the strain 

diagram, there is no zero extension in the first quadrant. First quadrant means this is 

greater than zero. Experiment shows necking under biaxial stress. So, at a strain greater 

than the attainment of maximum tension along a line perpendicular to a major tensile 

axis. So, this experience shows necking under a biaxial tension occurring  one at a strain 

greater than that of the attainment of tensile axis and along a line  perpendicular to the 

major tensile axis. 

 

So, that if you look at if you just consider this as a figure below here if you just consider 

a figure like this. So, this is your sigma 1 and say maybe this is sigma 2 and if you take a 

region where there is a imperfection say area this is the uniform region and B is the 

imperfection region this is the uniform region. So, we can say that B is the imperfection 

region and A is the uniform region. And if you assume that the imperfection as a group 

shown by this dashed line with the thickness TB. 

 

So, if I just take the cross section of that, this is TA and this is TB. cross section and this 

imperfection see it is very difficult to characterize an imperfection but let us assume that 

imperfection is characterized by a homogeneity factor given by F0 which is equal to Tb 



by Ta at the initial case okay at 0 and this normally you know typically we can assume 

that F0 is of the order of 0.001 that also we can assume.  

𝑓0 =  
𝑡𝐵
𝑡𝐴
 

0

 

So when you are loading it strain in the region B parallel to the group would be 

constrained by the uniform region A. So that the compatibility condition sigma 2B is 

equal to sigma 2A. So strain in region B  parallel to the group will be constrained by 

uniform region. So, that now we can say sigma 2 b is equal to sigma 2 a which is parallel 

to the group. That is one thing. So, in that case now we can just assume that the 

proportionality condition if it is there we can say sigma 1 a is the and sigma 2 a which is 

equal to alpha 0 into sigma 1 a and the third is sigma 3 a is equal to 0. Now, the strain 

epsilon 1 a  Another is epsilon 2a is equal to beta naught into epsilon 1a and epsilon 3a is 

equal to minus of 1 plus beta is not represent the initial condition epsilon 1a. 

𝜎1𝐴 ∶    𝜎2𝐴 = 𝛼0𝜎1𝐴     𝜎3𝐴 = 0 

𝜖1𝐴   ∶     𝜖2𝐴 = 𝛽0𝜖1𝐴     𝜖3𝐴 = − 1 + 𝛽 𝜖1𝐴 

 

 So, you can write this as 16. okay but the case is not true when you are loading it in this 

direction 1 this is your direction 1 and this is your direction 2 so this is 1 and this is 2 so 

when you are loading it in the direction 1 the strain will be different in both the places 

stresses also will be different okay.  
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So the same tension in direction 1 is transmitted across the region both the region so that  

the same tension is directed in direction one is transmitted across the region such that T1 

is equal to sigma 1 A into T A and that should be equal to sigma 1 B into T B. So, stress 

will be different in both case and T B by T A is equal to you will get it as from this T B 

by T A is a sigma 1 A by sigma 1 B. So, that it comes T A by T B is equal to F know. So, 

you get it as equation number 17. So, if you consider the initial yielding know, if you just 

consider the stress diagram, if this is sigma 2 and this is sigma 1, and if this is your yield 

locus you may get it here this is this will correspond to your sigma 1. So, here it is equal 

to 1 by alpha 1 by alpha naught and this point if you give it as a, this is a uniaxial stress is 

equal to sigma 0 if you put it here. Then on loading the groove will first reach the yield. 

So groove is going to reach first the yield okay. So that means in this condition so from 

17 you can get it as so in the uniaxial yields if uniaxial yield strength is sigma naught on 

loading  will first reach the ill surface because their cross sectional area is less. 

𝑇1 = 𝜎1𝐴𝑡𝐴 = 𝜎1𝐵𝑡𝐵       𝑎𝑛𝑑      
𝑡𝐵
𝑡𝐴

=
𝜎1𝐴

𝜎1𝐵
= 𝑓 

 

 So, so that means from from 17 equation number 17 what we will find the sigma 1 b is 

greater than sigma 1 a for f less than 1. So, that that is what so since sigma 2 a, is equal to 

sigma 2 b in the both the case material in the groove cannot deform that was a constraint 

condition due to a geometric constraint. So, that is what happens since so you will find 



that so this is your b naught and here it is 1 by alpha and this will be your sigma 1 b your 

stress in sigma 1 b will be much higher than in sigma 1 a so that is what it is coming so 

you you will find that this one this slope also is changes okay so since sigma 2 a is equal 

to sigma 2 b the material in the groove cannot deform due to material constraint. 

Therefore, as the stress in A increase to reach the yield locus, when the stress in the A 

increase to reach the yield locus, the point representing B  will move around the yield 

stress yield locus to B naught. So that means when this in area in the region A where 

there which is a uniform region when the stress is trying to reach the yield locus which is 

represented by A since a cross sectional area in region B which contains the imperfection 

so it will reach the value of B. So that means it has to just rotate okay it will move around 

the yield locus to B naught So if you just consider the incremental deformation which is 

taking place this is your d epsilon a which is normal to your locus this is a0 and maybe 

we are just finding it okay it is something like this okay and maybe here this is d epsilon 

b which is B not here maybe this has to be normal to this okay. 

 

 So let me just draw like this. So that is this is 1 by alpha slope is 1 by alpha and this is 1 

by alpha not you are getting this. So this is the strain field which you are getting d epsilon 

b and d epsilon b. So if you consider the increment in the deformation now d see epsilon 

2a is equal to epsilon 2b.  The increments parallel to the groove is the same that is strain 

increment parallel to the groove is same that is true. So, we can see that strain vectors are 

perpendicular to yield surface in this case. Since each region is deforming with a different 

strain rate, so you will find that both the regions are deforming with a different strain rate, 

the strain ratio, not strain rate. 

 

 The strain vector for the groove has rotated to the left. So since each region is deforming 

with a different strain ratio, strain vector for the groove has rotated to the left and for 

strain increment parallel to the group. Whereas the strain increment across the group will 

be greater in the imperfection than in the uniform region. So, if you just draw that part, 

you will find that in this, if this is d epsilon 2, d epsilon and this is equal to d epsilon 1 b. 



So, this is 1 by b naught b naught beta naught and this is equal to 1 by b 1 by beta. So, 

this is what you are going to get the strength.  
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So, you will see that in such a condition  homogeneity will be greater that is the F will 

finish that means you will find that D epsilon 1 B is greater than D epsilon 1 A. The 

strain in the groove will increase because basically if you really look at your cross 

sectional area is just that. So strain in the groove will increase compared to that in the 

uniform region. 

 

 And only slightly when the tension is increasing. See, when you increase the tension, 

you will find that it is increasing very slightly only. So, if you just really look at that, in 

this condition, when you do that, see, if it is like this, you have A naught the stress field, 

it will move like this. And this is your, this one. So, when the, as the tension is increasing 

slightly, you will find that it is increasing and the strain is increasing. So, if you just draw 

like this, if this is the case of epsilon 2 A 1 B and this is the  epsilon 1 A star I will just 

draw like this in region A and B how the strains are taking how the stresses are 

happening. 

 

 So, you will find that at some area it slowly increases slightly and then after some time 

now it just keeps on increasing and reaches this value okay. So this is the point for B and 



this is for the guys for A the strain field is like this okay. So strain in the groove it will 

increase compared to that in the uniform region only slightly when the tension is 

increasing okay when the tension is increasing it will increase slightly gradually it 

increases after the tension maximum has reached and then continuous till the groove 

reaches a state of plane strain that is at B f. that is once it reaches here BF it reaches a 

state of plane strain. At this stage the strain parallel to the groove stops. 

 

 So that is what is happening and the groove will then continue until failure and the strain 

is uniform in the uniform region it ceases. So that is what happens at this. The strain state 

just outside the neck is the maximum strain that can be achieved and the strain epsilon 1 

star A and epsilon 1 star B are known as the limit strains. The analysis repeated for 

different values of alpha naught and beta naught and a diagram for biaxial strain region 

can be established for this case. So if you do some experiments like this by doing for 

different strain history and other and plot this epsilon 2 and epsilon 1, you will get this 

forming limit curve. 

 

 So, when this is 0, this is epsilon 1, this is epsilon 2. So, depending upon this, this is n. 

So, here it is minus 1, it is plus So, in actual case what happened it instead of going that 

maximum tensile strain it follows this path. So, this may be your experimental things for 

different strain paths you can just get it and you will get this product. So this is the 

forming limit curve. So in this what happens is that this gives, it delineates the region 

between area where deformation is taking place. 

 

 So here it is a failed region whereas this is a sound region. If you have deformation, the 

combination of stress and say epsilon 1 and epsilon 2 is within this boundary which is 

drawn by this line, shaded line. So that is safe. The other region once you crosses the any 

of the strain it is higher than it will fail. So once you have for a particular material this 

forming limit curve is there if you know the value of n and then you get this then you can 

always restrict your deformation to such a value that the strain in the sheet is not 

approaching this limit curve bounded by this region. 



 

 So that is what is coming. So the second quadrant if it is there you can always tell the 

limit is always on the maximum tension line. Whereas in the biaxial stretching you will 

find that it is not so you have a better more value region you are getting it. It is not 

otherwise no, it should have come like this. But here you are getting higher. 

 

 You will get a higher strain in this case. But only thing is what is the maximum strain 

you can get as a combination of epsilon 1 and epsilon 2. So that limit should not be 

crossed. That is the advantage of using this. Now if you look at what are the factors 

affecting the forming limit curve, the two important factors, there are many factors but 

the most important factors are one is the strain hardening. So if you look at that the strain 

hardening n strain hardening say like this is your 0 and it is this when you are having a 

low strain hardening value it is like this okay maybe it will be drawn properly. 

 

 So for low strain hardening value, you will find it is like this. So this is n1. Whereas for 

high strain turning material, you will have still higher value. So this is n2, where n2 is 

greater than n1. So for biaxial stretching high n value is required so that now you have a 

large amount of strain which you can get it. So the material should have high n value or 

hardening exponent it should be higher. So if you are having a material having low or 

hardening exponent then for biaxial stretching it will create problem and then tearing will 

take place okay.  When n is equal to 0, the plane strain forming limit along vertical axis, 

that will be 0. But it can be stretched in fully biaxial stretching. That is the biggest 

advantage. So in plane strain condition, it may be difficult. 

 

 But in biaxial stretching, you can always deform to a very large extent. Another is the 

rate sensitivity. If you have, say, rate sensitivity also, so this is for one case. And the 

other case is like this. So you have a larger area. So this is high say m1 m2 m1 okay I will 

put follow the same m1 m2 so m1 m2 is greater than m1 in that case also you will have 

so in biaxial stretching this m will delay the growth of the neck higher m value will delay 

the growth of the neck that is one advantage with high strain rate sensitivity material. 

 



 There are other factors also but see like the other factors are you cannot characterize 

what is called as a defect. It is very difficult to characterize or imperfection. You cannot 

characterize it properly. Then failure of the material because it gets forgotten that also is 

very difficult to use in this cases. With this today it is over. Thank you. 


