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Mechanics of Metal Working 

 

We will come to the next module, that is the mechanics of metal working. In mechanics of 

metal workings, we will be discussing mainly with the plasticity theory. So we will have to 

find out. So far, we were discussing about the simple tensile test, but in real case, when you 

are carrying out the metal working operations, may be, you may have to consider the two-

dimensional state of stress or a three-dimensional state of stress. So let us go to that. Before 

that, the yielding criteria where the metal deforms plastically, all those criteria we have to 

look into that. So, we will go to this.  
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See any engineering component, when external forces are applied on the component, it 

induces stresses inside the body and then you will find that these stresses are acting at each 

and every point in the body depending upon the cross sectional area, the orientation and other 

things. So, we have to discuss with respect to what is the stress at a point, the state of stress at 

a point, how it can be resolved into various components okay. 

 

So the total stress at any point can be resolved into, generally tend to resolve if you are 

considering a Cartesian coordinate system, the stress at any point can be resolved into say a 



normal component of the stress and also the shear component. So the shear components are 

coming into the picture. If you just take a box, an elemental parallelepiped region or a cube 

you should take it. We can see that on these faces, this plane, on this particular plane or any 

of the plane, we can find out what are the stresses and what are the component of that stress. 

 

The component of that particular stress in a direction which is normal to that plane. For 

example, if you take a normal to this yz plane and what are the components of the shear 

stresses which are acting on the plane, say for example in this the component are we can say 

xy and xz are the shear components of this stress. So we can resolve into these, on each face 

no, we can resolve into 3 components and if you just look at it, say you will find that there are 

9 stress components are coming into picture,. 

 

Say one is the normal component 𝜎𝑥 , 𝜎𝑦 , and 𝜎𝑧and the other is 𝜏𝑥𝑦, 𝜏𝑥𝑧 on this front plane, 

and 𝜏𝑦𝑥 and 𝜏𝑦𝑧 on this side face, and on the horizontal plane 𝜏𝑥𝑧 and 𝜏𝑦𝑧. So, you will find 

that so 3 normal stress components and 6 shear stress components are there. See out of this, 

you will find that 𝜏𝑥𝑦 and 𝜏𝑦𝑥, see, for example 𝜏𝑥𝑦 and 𝜏𝑦𝑥 sorry this 𝜏𝑥𝑦 and 𝜏 they are 

acting on these two sides and they are equal. 

 

So when you are trying to explain it, only one is known, the other is automatically we will be 

knowing it because they are acting one is on this plane, one is on this plane okay. So, since 

the magnitude is same, you need only one. Similarly is the case that 𝜏𝑦𝑥 and tau sorry 𝜏𝑧𝑦  

and 𝜏𝑦𝑧, see one is here, one is here, one is acting along this direction, one is acting along 

this direction. This causes the shear and so these two are same. 

 

So that way when you look at it, finally now out of the 9, you will find that only 6 are left, 

that is sigma x which is a normal component normal stress sigma x, sigma y and sigma z and 

the shear component that is 𝜏𝑥𝑦, 𝜏𝑥𝑧, and 𝜏𝑦𝑧. So, these are the 6 components and out of that 

if one of these can see like out of the 6 to specify the stress at a point, we need only 5 because 

once you have the 5 components, the sixth can be derived out of that. Thus, that is the 

advantage with this. 

 

So ultimately to know the state of stress, you need to have an idea about the 5 stresses which 

are acting on the component. Now let us just go through this, the state of stresses in 3 



dimensions. I am not going to discuss in detail because this part is always you might have 

studied in your solid mechanics course, but only just to brush up this thing only this part I am 

discussing.  
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So the state of stress in 3-dimensions. See you can just assume that state of stress is only 

along one direction may be a uniaxial tensile stress of a wire, if you look at it. The stress 

which is acting on the wire is only along one direction, the other path we can ignore it. It is 

not that it is not there, but it is negligible, so we can ignore it. Suppose you take a sheet of 

paper and then pull it, then you will find that on two sides you pull it, then you find that the 

stresses are acting only along the plane of that sheet. 

 

So we can have in any direction, may be x direction or y direction or combination of that we 

can have it, but that in that sheet of paper or thin sheet of metal when you are doing a foil, 

when you are applying a stress, the stress which is acting on that is only a biaxial state of 

stress provided you are applying the forces in two directions okay. So the triaxial state of 

stress is say like the principal stresses are unequal when you consider the principal stresses, 

they are all unequal, then you call it as a triaxial state of stress, a solid body when you are 

considering. 

 

Now there is a cylindrical if the two of the three principal stresses are equal, then you call it 

as a cylindrical state of stress. Hydrostatic, if all the principal stresses are equal it is a 

hydrostatic stress, if they are compressive of tension, then you call it as a hydrostatic stress. 

So the elemental free body diagram when you wanted to consider the state of stress, you have 



to consider an elemental body, the same cube which was there in the previous case. If you 

take a section like this from here as a plane, and that back side path if you just take it, so and 

that is what this is shown here along the x, y, and z direction. 

 

So this plane, when it is a cube bisection and then you are taking this along this plane, see we 

can just see what are the state of stress. So you are just considering a principal, we are 

assuming that JKL is a principal plane. Principal plane means that, principal stress is that 

stress where there is no, where the shear component is zero okay, so that is what, but here we 

are taking this JKL is a principal plane and its let the area of JKL be A, capital area, and 𝜎 be 

the principal stress acting on this plane okay. 

 

So, that means, when it is a principal plane, the shear component on that is not there. So you 

can say that normal component is the 𝜎 which is coming in the picture and let l, m, and n are 

the direction cosines of this 𝜎, that means it is the cosine of the angle between the 𝜎 and x 

that is l, the cosine of the angle between 𝜎 and y axis that is your m, and the cosine of 𝜎 and 

your z axis that is the value of n. 

 

So, let l, m, and n are the direction cosines of 𝜎 and if you assume the body is in equilibrium, 

the forces acting on each of this faces must balance, the faces means one is KOJ, ZOL sorry 

KOL, LOJ, and JKL on this, forces acting on all these faces should be equal, that means that 

should balance. 
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So for the free body to the in equilibrium, forces acting on each of its faces must balance. The 

component of 𝜎 along each axes, say this component of 𝜎 along each axes to be just 

considered that we can specify it as 𝑆𝑥, 𝑆𝑦 𝑎𝑛𝑑 𝑆𝑧, that means along the x axis it is 𝑆𝑥, 𝑆𝑦 it 

is 𝜎 m, and 𝑆𝑧 it is 𝜎 n okay because l, m and n are the direction cosines. So areas of KOL, 

you can say that 𝐴𝑙 your direction cosine, similarly JOK = A into m, and JOL = A into n 

where A is the area of JKL. 

𝑆𝑥 = 𝜎𝑙 

𝑆𝑦 = 𝜎𝑚 

𝑆𝑧 = 𝜎𝑛 

Now, if you just summation of the forces in the x direction, along this direction, because that 

has to be under equilibrium, that should be equal to 0. So that way, we can write it as  

𝜎𝐴𝑙, 𝜎is the principal stress on plane JKL – 𝜎𝑥  into 𝐴𝐿 okay, so that is along the direction 

which is coming, the direction cosine you are taking, then −𝜏𝑥𝑦  into 𝐴𝑚 okay, so that is 

along the y direction the component you are taking it and −𝜏𝑥 , the shear component so you 

are taking it 𝜏𝑥𝑧  into 𝐴𝑛 = 0. So this, if you just you can write it in this form itself is equal to 

that is equal to 𝜎 –sigma x into 𝟏 − 𝜏𝑦𝑥  into m– tau zx into n = 0.  

= (𝜎 − 𝜎𝑥)𝑙 − 𝜏𝑦𝑥𝑚 − 𝜏𝑧𝑥𝑛 = 0 

So that is one equation. Similarly, you can just sum the take the summation of the forces in 

the y direction, along this direction, and then you will get this equation – tau xz into l– tau yz 

into m + z –z z into n that is = 0 and the next equation is that if you are just summing the 

equations along the z direction, so the same thing you are getting this equation. 

 

−𝜏𝑥𝑧 𝑙 − 𝜏𝑦𝑧𝑚 +  𝜎 − 𝜎𝑧 𝑛 = 0 

−𝜏𝑥𝑦 𝑙 +  𝜎 − 𝜎𝑦 𝑚 − 𝜏𝑧𝑦𝑛 = 0 

So similarity is there, just shifting, one is y –yz, okay sorry, this is along the z direction, this 

is along the y direction, I just I am sorry, it got interchanged okay. So, these are the thing. So 

these 3 equations if you look, it is a homogenous equation in terms of l, m and n. So, you may 

have to solve it. 

(Refer Slide Time: 11:28) 



 

So you can write in the matrix format the solution of equation 1, 2, and 3 can be obtained by 

setting the determinant of the coefficient of l, m, and n equal to zero 0. So that means, we can 

write it in this form. So, sigma – sigma x, tau yx,– tau xy, tau zx,– tau xz, then tau yz, okay 

by mistake this part has come. We can see these two are same and these two are same and 

you can write in the determinant form, the matrix format. So solution of this equation results 

in the cubic equation. 

 

If you just do that, the value of the determinant when you take it, you get a cubic equation 

okay. There is sigma cubed – sigma x + sigma y + sigma z in the sigma square + sigma x 

sigma y + sigma y sigma z + sigma x sigma z – tau xy square – tau yz square – tau xz square 

x sigma, so you are getting this cubic equation and three principal stresses if you assume that 

instead of sigma x, sigma y, sigma z is there, then you can write as if you write it in terms of 

principal stresses, this shear components vanishes. 

 

𝜎 − 𝜎𝑥 𝜏𝑦𝑥 𝜏𝑧𝑥

−𝜏𝑥𝑦 𝜎 − 𝜎𝑦 𝜏𝑧𝑦

−𝜏𝑥𝑧 −𝜏𝑦𝑧 (𝜎 − 𝜎𝑧)
 = 0 

 

So then from that, now we can find out the roots of this equations okay. If you are assuming 

the principal stresses as considering 𝜎 when so substituting the principal stresses in equation 

5 five and we can solve for l, m, and n. Then, you will find that there are 3 combination of 

stress components which is coming and this specialty is that since its coefficients determine 

the principal stresses they don’t change, they don’t vary, it is a invariant. So, with respect to 



if you are just giving your cube a rotation and if you are writing the principal stresses, it 

remains the same. 
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For example, these are the 3 invariants are sigma x + sigma y + sigma z = 0, is equal to you 

call it as invariant 1, this is the invariant 1, I1 and the second part if you look at that this term 

when you take it that is invariant 2 because there the shear component is coming, so this is 

the invariant 2 and the third one is invariant 3, we call it as this and these three are there. The 

specialty is that in the first invariant, that I1 states that the sum of the normal stresses for any 

orientation of the coordinate system remains same. 

 

So, sigma x + sigma y + sigma z = I1. If you write it as sigma –x + sigma –y + sigma –z, 

these are rotating the coordinate system and that is equal to if you write sigma 1 + sigma 2 + 

sigma 3 that is not going to change, it is always going to remain the same, so that is why it is 

called as invariant. Similarly is the case for this also, irrespective of the coordinates, you can 

always write it. So you can write this in terms of principal stresses and get these values.  

𝜎𝑧 + 𝜎𝑦 + 𝜎𝑧 = 𝑙1 

𝜎𝑥𝜎𝑦 + 𝜎𝑦𝜎𝑧 + 𝜎𝑥𝜎𝑧 − 𝜏𝑥𝑦
2 − 𝜏𝑦𝑧

2 − 𝜏𝑥𝑧
2 = 𝑙2 

𝜎𝑥𝜎𝑦𝜎𝑧 + 2𝜏𝑥𝑦 𝜏𝑦𝑧 𝜏𝑥𝑧 − 𝜎𝑥𝜏𝑦𝑧
2 − 𝜎𝑦𝜏𝑥𝑧

2 − 𝜎𝑧𝜏𝑥𝑦
2 = 𝑙3 
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So in the plasticity theory, see unlike elasticity theory, it is well established, you can find out 

the relationship between the elastic deformation of a material when it is being stressed but it 

is not true with when you think about the plasticity theory because metals may be deforming 

in a different condition, different environment. You may have to know the history of the 

deformation, prior history of the deformation you may have to know. So let us see what are 

the theories which are there? 

 

So most of the plasticity theories are considered empirical, most of them are empirical in 

nature and because most of them are from the existing formulations and these are all 

approximate conditions okay, but you do a lot of experiments and from the experimental data, 

you arrive at some empirical relationships and for determining the stresses at any point along 

any direction in an elastic case it is very easy. 

 

You have to just connect the strain gauges and then you get it because the strains are very less 

and then you can find out the stresses when it is loading, but in case of plasticity, this is not 

true because the deformations are many times very large okay and you may need special 

equipment for getting this data like a strain during the deformation and the stress, stress of 

course, you can find out basically the strain in plastic deformation is very difficult to obtain, 

especially online and more than that the interpretation of the results are also required 

regarding the strain histories, you should also know about the earlier strain history also. 

 

If you are dealing with a material which has been deformed earlier, then that is also very 

important. Many times, when you buy a material from the market, this may be subject to hot 



working or working cold working cold deformation, so what was the amount of deformation 

which has been given so that we can find out okay what will be yield strength of the material 

or if it is too high, the strain is too high, then you may have to do a heat treatment so that no 

your amount of strain which can be obtained during deformation can be increased okay. 

 

So, these things are very much necessary. So we have to look at study something about the 

yield surface. If you just consider a sample which is shown like this okay in a cross way like 

this if it is there. So this is the case of a two dimensional state of stress. So we can just by 

applying some external load here, we can find out the stresses along the one direction and 

along the axis two direction we can find out, we can do that if you connect load cell on these 

two sides, then we can always find out what are the stresses in these directions. 

 

If you can independently change the stresses by your good equality setup, then you can 

always vary this stresses which is may be if you take for the case, which is here which is 

shown by A, a square plate is here, what are the stresses in that direction, you can always 

change in a biaxial state of stress by changing this load and this load, so it is 𝜎2  and 𝜎1 is 

there and these are two mutually perpendicular directions. 

 

So if in such a case, you are loading the material, and so you can find out this loading 

condition for this area A can be determined okay. So in this, let us say that the two cases of 

loads are 𝜎1 and 𝜎2 along axis 1 and axis 2. 
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In a tensile specimen okay, you are having a uniaxial load, but here it is a biaxial load, so 

something let us just take arbitrarily along the axis 2, you fix load 𝜎2′ okay. Once you fix that 

load, 𝜎2′and then keep on loading along the 𝜎1 direction, keep on increasing the load along 

the 𝜎1 direction, keeping the 𝜎2 fixed which is at 𝜎2′ and then you keep on increasing the 

load. 

 

Now, what happens is that when the say the load the stress versus strain curve will look like 

this what is shown here okay, it will look like this, may be after a small amount of strain, you 

unload it, it will come back to your 0 position. Again, you reload it to 2 and then unload it, it 

will again come back to initial stage and say 3, if you again unload it, it will come to the 

initial stage. These are the elastic regions. 

 

The initial part you will see that Hooks law is applicable, but after certain stage, may be it is 

not linear, but nonlinear elastic comes, so you again increase the load, may be at 5, though 

there is a nonlinearity, but still it may come back to the 0 position and again you increase up 

to 6, there also it is unloading it, it is again coming back to the 0 position. So after 6, the 

material is elastic, initially it is linear elastic, then nonlinear elastic, but now you have some 

more increment in strain in 𝜎1, along the sigma along the one direction and in such a case, 

you reach up to load 7. 

 

When you reach up to load 7 and you unload it, then you will find that it is not reaching the 0 

position, rather a permanent amount of deformation has taken place, it is reaching at some 

value, so your strain along the axis 1 it has permanently deformed, so even if you unload it 

also, you will find that a permanent deformation has taken place. So, you don’t know from 6 

to 7 where exactly the plastic deformation has started, that you are not sure about it, but 

somewhere between 6 and 7. 

 

So 6 was the last point of elastic deformation, but if your strain increment was very less, the 

increment in the strain was very less, may be you may be able to find out exactly where it 

was, but that is a very cumbersome work because taking very small interval and carrying out 

that it will take lot of time. So, but in that case no, if you just put a limit, between say 6 and 7, 

the strain was there. So up to 6, it was elastic and when reach 7, beyond 7, it is plastic, so in 



between 6 and 7, somewhere it was, there is a transition from elastic to plastic behaviour. The 

material will not return back, so you don’t know the exact position of that. 
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So in such a case, we can take that case here. See let us say, this was the 𝜎2′, and this was the 

elastic region, this was the plastic region, somewhere in between was there. So now you just 

increase this load along the axis 2 𝜎2′ some other value, you take it somewhere here and 

carryout the same experiment, may be at say different value of 𝜎2, find out where the 

transition between elastic and plastic was taking place. So you can get a different value here, 

so that is what here you can get it. 

 

Similarly, you keep on changing that 𝜎2 value and again keep on increasing the 𝜎1 and then 

you can get like this. So for different values of 𝜎2′ in the tensile region and increasing the 

load along the 1 axis, you will get this one and now if you reverse the stress, 𝜎1, may be make 

it compressive here, then you will get different values. So there are 2 cases, so if you just spot 

that where the elastic last part of the elastic region was there, the elastic deformation was 

taking place and the first part or plastic deformation was taking place. 

 

So you can either join these points which I have been labeled as e or may be by p or in 

between I say midway between that also  you can take because you don’t know the exact 

value, so that and then plot with a difference, in this case it is tensile, this case it is 

compressive 𝜎2 along the vertical direction, it is positive here and this is negative direction, 

so you keep on changing with all these types of stresses and then joint that point, the locus of 

that points at which it is shift from elastic to plastic region. 



 

You will join all those points, the locus of the points, you will get a curve, arbitrary curve like 

this, this is an arbitrary curve, we will come to that exact shape what it will be, that will be 

coming in the subsequent lectures okay. So, this line which you join is called the yield 

surface or yield locus you call it as and what is important in this is as long as the material is 

inside this curve, the material is deforming elastically. 

 

So, it has nothing to do with your history of loading or strain history has nothing to do with it, 

but the moment, the boundary of that, when you reach that boundary, that is the point that 

which it is going to shift from the elastic to the plastic region okay. The transition is going to 

take place. So beyond that, whatever you are doing it is the plastic deformation which is 

taking place. So, this is that called as yield locus. Now, we wanted to find out what is the 

exact shape under different condition. So there are different conditions of yield criteria where 

the metal yields or deforms plastically, what are those criteria, let us look at that. 
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So for that, we will have to again come to the stress and strain okay, the state of stress at any 

point. So as discussed earlier, suppose we are considering cuboid like this and then you are 

applying certain loads okay, may be depending upon a 3 dimensional state of stress if it is 

there, you can have a stress tensor defined by 𝜎𝑖𝑗  because that based on the normal stresses on 

each face and the shear stresses which are there, so you can say that the normal stresses are 

represented by 𝜎𝑥 , 𝜎𝑦  and 𝜎𝑧 . 

 



The shear stresses on the respective planes x, y, and z you can say that𝜏𝑥𝑦 ,𝜏𝑥𝑧 , these 

symmetric tensor, so yz and 𝜏𝑥𝑦 , and 𝜏𝑦𝑧 , and 𝜏𝑥𝑧and 𝜏𝑦𝑧 . So, you can write in this second 

row of a tensor format, so you can write it. Now, later we will find that this 𝜎𝑖𝑗  defined in 

above equation depending upon any condition, we can have consider it as the sum of 2 parts 

depending upon what are the loads, what are the stresses in a material, may be you may be 

applying stresses from different directions and other things and then at any point depending 

upon a particular coordinate system, you may get these things okay. 

 

Now the thing is that this particular stress 𝜎𝑖𝑗  you can consider it as a sum of 2 components, 

one is a hydrostatic component 𝜎𝑚 , defined by say 1 by 3 into the average of the normal 

stresses and another is called the deviatoric stress tensor so 𝜎𝑖𝑗
′ okay. So𝜎𝑖𝑗

′ is defined, so that 

means 𝜎𝑖𝑗  is a sum of 𝜎𝑖𝑗
′  + 𝜎𝑚  where 𝜎𝑚  is the hydrostatic stress defined by 𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧  by 

3 and so if you subtract from that you will get the deviatoric stress. 

𝜎𝑚 =
1

3
(𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧) 

 

So here, this hydrostatic stress, it does not contribute to the deformation okay or change in the 

shape of the material during plastic deformation, but it only contributes to the change in the 

volume of the material, so it has nothing to do with the deformation, whereas the deviatoric 

stress component or stress tensor 𝜎𝑖𝑗
′  that is the component which contributes to the shape 

change during plastic deformation when you are applying a load okay. So, we can just 

consider this. 
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If you consider instead of the general Cartesian coordinate, you reorient the coordinate 

system so that the 𝑥1, 𝑥2, 𝑥3 are oriented along the principal stress directions, 𝜎1, 𝜎2𝑎𝑛𝑑 𝜎3 

and then that stress tensor, so that stat of stress at any point can be, say what I was 

mentioning is that it is the sum of the hydrostatic component along this direction, which is 

equal here sigma m and the deviatoric component defined by 𝜎1′, 𝜎2′, and 𝜎3′okay. 

 

So, in that case, this deviatoric stress which contributes to the plastic deformation can be 

written as sigma ij – sigma m x your conical delta that is delta ij okay, so that way we can, or 

comparing the if you are looking at the component 𝜎1 or 𝜎1′ = 𝜎1 – 𝜎𝑚  and = 𝜎2 dash = 𝜎2 – 

𝜎𝑚  or say 𝜎3′ = 𝜎3 – 𝜎𝑚 , that way also we can write it. So individual components if you look 

at it, that way we can write it, but in the general tensor format, it can be written like this. 

𝜎𝑖𝑗
′ = 𝜎𝑖𝑗 − 𝜎𝑚𝛿𝑖𝑗  

So, the deviatoric stress contributes to the plastic deformation of the material whereas the 

hydrostatic stress contributes to the volume change, not to the change in the shape. 
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Now, so we have to look at various criteria for yielding, how the metal will deform when you 

are causing the yield locus okay, when you are outside the yield locus. So you have to, so 

what is the exact condition the boundary between the elastic and the plastic region, that is 

what we have to find out, so that is what the yield criteria for ductile material. We will be 

discussing with the ductile material, not brittle material okay. So in plasticity problems, 

predicting the condition at which materials begins to deform plastically is very important 

okay. 

 

The yield criteria are empirical relations developed from a number of experimental 

investigations and some of the assumptions while developing or certain things which are 

going to assume are that pure hydrostatic stress does not cause yielding, so as we have 

mentioned. Hence the hydrostatic component of the state of stress does not influence the 

stress at which yielding occurs. So whether you have the hydrostatic component higher value 

or lower value that is not going to contribute the yielding okay. 

 

Second the deviatoric component of the state of stress cause the plastic yielding and for 

isotropic materials, the yield criteria must be independent of the choice of the axis okay, so 

that is also another thing, that is the yield criteria must be an invariant function of the stress 

deviator. So these are very important point we have to do. So, it will not, it is independent of 

the choice of the axis and that means it is one of the invariant function of the stress deviator.  

 

Since the plastic response of the metals is often observed to be the same in tension and in 

compression in metallic material, so one of the assumptions which we are having is that 



Bauschinger effect is almost absent in the material, so that is the one we have to consider this. 

So under these conditions only the yield criteria has been developed. So let us do the two 

main important yield criteria for defining the plastic deformation are the von Mises strain 

energy criteria and the Tresca criteria okay. So, let us see that what are they.  
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Von Mises proposed that yielding occurs when the second invariant of the stress deviator J2 

exceeds some critical value K, says it is a stress deviator of the, second invariant of the stress 

deviator, earlier we were talking about the 𝜎𝑖𝑗 , but here it is about the 𝜎𝑖𝑗 ′, it exceeds some 

critical value, that means so he saying another way it can be when the shear strain energy 

exceed a critical value, the plastic deformation, plastic yielding of the material takes place. So 

that is a different way of telling it. 

 

So, in terms of the principal stresses, 𝜎1, 𝜎2, and 𝜎3 where 𝜎1 is greater than 𝜎2 and 𝜎3 is the 

lowest principal stresses. Then this J2 can be written with the derivation we are not going 

here, it can be written as 1 by 6 into sigma 1– sigma 2 square + sigma 2 – sigma 3 square + 

sigma 3 – sigma 1 square, the whole square, so that is the J2. When this right hand side 

reaches a critical value K or some constant value, then we can say that okay it is plastic 

deformation or plastic yielding of the material thing that is the boundary point. 

𝐽2 =
1

6
  𝜎1 − 𝜎2 

2 +  𝜎2 − 𝜎3 
2 +  𝜎3 − 𝜎1 

2  

  𝜎1 − 𝜎2 
2 +  𝜎2 − 𝜎3 

2 +  𝜎3 − 𝜎1 
2 = 𝐶1 

 



So determine the consent C1 in the above equation, we have to first consider the case of 

yielding in a uniaxial tension, so we can find out in a uniaxial tension, putting up the 

conditions and then we can find out what how we can get this value of C1 okay. So, in a 

uniaxial tension test, what happens, when you are deforming, say for example if you take a 

wire, a long wire and deform it, then the material will deform only and you are considering 

the tensile axis as your principal stresses, other 2 principal axis, the stresses are almost 

negligible we can say. 

 

That means, the material will yield which 𝜎1 reaches the yield stress sigma not. So this sigma 

not is the yield stress of the material and in that condition, the other two principal stresses in a 

uniaxial tensile test where the gauge length is very large, the sigma 2 and sigma 3 are 

considered as 0, is equal to 0. So if you substitute these conditions into this equation number 

11, so we can say that 𝜎1 is substituted by sigma 0 – 0 square + these two are 0 + 0 – sigma 0 

square = 2 sigma square. 

  𝜎0 − 0 2 +  0 − 0 2 +  0 − 𝜎0 
2 = 2𝜎02  

 

So from that, if you, that means the right hand side of this equation comes to say 2 sigma 

square for a uniaxial testing, so that means sigma 0 is equal to if we substitute that, the yield 

strength of the material is 1 by root 2 into sigma 1 – sigma 2 square + sigma 2 – sigma 3 

square + sigma 3 – sigma 1 square of whole raise to 1 by 2, so that is what we will get that. 

𝜎0 =
1

 2
  𝜎1 − 𝜎2 

2 +  𝜎2 − 𝜎3 
2 +  𝜎3 − 𝜎1 

2 
1
2 
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The other condition Tresca criteria or maximum Shear stress criteria is that it assumes that 

yielding would occur when the maximum shear stress reaches a critical value. If you look at 

the Mohr’s circle value know that maximum shear stress in a 2D space no, you will find that 

sigma 1 is the largest and sigma 3 is the least and sigma 2 if you assume it as 0, then T max = 

sigma 1 – sigma 3/2, so that is a constant value. So when this shear stress, maximum shear 

stress, when it crosses certain value due to your state of stress, then yielding will deform. 

𝑇𝑚𝑎𝑥  =
𝜎1 − 𝜎3

2
= 𝐶 

 

So for a uniaxial tensile test if you just consider the same condition, tau max = k where the 

plastic deformation occurs when tau max = k where k is the shear yield strength of the 

material okay. So, that is what we will get. So tau max in that case because sigma 3 = 0 in a 

uniaxial tensile test, it will be sigma 1/2, so sigma 1 = sigma 0. So you will find that k = 

sigma 0 by 2 under the Tresca criteria okay or under the maximum shear stress criteria, you 

will get this condition. 

𝜏𝑚𝑎𝑥  =
𝜎1 − 𝜎3

2
= 𝜏0 = 𝑘 =

𝜎0

2
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Now, we wanted to have a correlation between the tensile and shear yield stress, under these 

2 conditions, so that is very important okay. So, the von Moses criteria, we have mentioned 

sigma 1– sigma 2 square + sigma 2 – sigma 3 square + sigma 3 – sigma 1 square = C1, so 

that means when it reaches a critical value, it deforms and Tresca criteria is sigma 1– sigma 3 

by 2 = C, that means when that reaches a critical value, the deformation takes place okay. 

 



So for applying the yield criteria, it is necessary to know the constants in equation 11 and 15 

okay for the given material. So again if you look at this condition, say this we have arrived 

earlier itself. 

  𝜎1 − 𝜎2 
2 +  𝜎2 − 𝜎3 

2 +  𝜎3 − 𝜎1 
2 = 𝐶1 

 

𝜎1 − 𝜎3

2
= 𝐶 
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Now let us consider the case of yielding under pure tension, torsion sorry, yielding under 

poor torsion, and if you look at the Mohr’s circle representation for a 2-dimensional k, this is 

a 𝜎1 and this is 𝜎3 and 𝜎2 is equal to 0. So, for the k if you look at it, these are the state of 

stress, here the k is there, shear stresses are there, but if you look at the principal stresses, 𝜎1 

and 𝜎3, it will be looking like this. 

 

So, the maximum shear stress k = sigma 1 – sigma 3 by 2, so that is what sigma 1 = k from 

this condition and sigma 3 = –k okay because this is the 0 value and sigma 2 = 0. If you 

substitute that in equation 11, you will get the C1 as k that is equal to 6 k square okay and the 

value of C1 in the von Mises criteria is independent of the type of loading conditions, so you 

get in the right hand side of equation 16 and 17, the other case say it was 2𝜎0
2 and here you 

are getting it as 6 k square. 

 

𝑘 =
𝜎1 − 𝜎3

2
 

𝐶1 =  𝑘 − 0 2 +  0 + 𝑘 2 +  −𝑘 − 𝑘 2 = 6𝑘2 



2𝜎0
2 = 6𝑘2 

So 2 sigma square = 6k square or from that, you can find out that for von Mises criteria, the 

shear yield strength is equal to your uniaxial yield strength/root 3, so that means sigma 0/root 

3 where sigma zero 0, the uniaxial shear strength of the material, tensile strength of the 

material, uniaxial yield strength of the material whereas if you substitute that sigma 1 – sigma 

2 by 2 where sigma 1 = k and sigma 2 = 0, sorry sigma 3–k, then from that 2k = sigma 0 you 

will get or k = sigma 0 by 2. 

𝑘 =
𝜎0

 3
 

So if you look at that for the von Mises criteria, the shear stress you get a relationship for 

sigma 0 by root 3 whereas for under Tresca criteria you get sigma 0 by 2 okay, so this is 

lower than this value. So, these two values you are getting. 

𝑘 =
𝜎0

2
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Now we have to come to the exact shape of the yield locus, so that is why we were discussing 

about all those things. So for a biaxial plane stress condition when you assume 𝜎2 = 0 and 

applying the von Mises criteria, you will get this relationship, sigma 0 square = sigma 1 

square + sigma 3 square – sigma 1 sigma 3. So this relationship it is an equation of an ellipse 

okay on the 𝜎1𝜎3 plane, so that is what you are getting that ellipse. 

𝜎0
2 = 𝜎1

2 + 𝜎3
2 − 𝜎1𝜎3 

 



It is having a major axis of 2 root 2 𝜎 0 and a minor axis of 2 root 2 by root 3 𝜎 0 or we can 

say the major semi axis is root 2 𝜎 0 and the minor semi axis is root of 2 by 3 into 𝜎 0. So, 

you will get this one on the 𝜎1 𝜎3 plane and 𝜎2 is perpendicular to that, normal to this plane, 

so that is what. The plot of this equation is called as yield locus and is shown in figure. So 

yield locus means, so inside it is exactly the elastic deformation taking place whereas outside 

it is the plastic deformation which is taking place. 

 

So once you cross this boundary, that is the onset of plastic deformation, whether, however, 

you change it, 𝜎1 or 𝜎2 or 3, you give a different set of values and other things the moment it 

crosses that. So as long as you are inside it, there is no problem, you really unload it, it will 

again come back to that, but the moment you by any means if you cross this, this red line, this 

is the yield locus, so by von Mises criteria, this is the condition and now the yield locus of the 

Tresca criteria also you can get it in this form, this is like a hexagon type thing you are 

getting it. 

 

So, that is what you are getting, so say here you will find that for uniaxial case no when you 

are applying the load along this direction, it deforms at this place whereas along this direction 

it deforms at this case, the same thing is there, but in between you will get these two. When 

you are varying 𝜎1 and 𝜎3, so you will get in a different way.  
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So here, the two conditions, the von Mises criteria and Tresca criteria we are just 

superimposed each other and it is shown here. The red line corresponds to von Mises criteria 

and the blue line corresponds to the Tresca criteria okay. So, yield locus for the biaxial stress 



state for both von Mises criteria and Tresca criteria superimposed is shown. The two criteria 

predict the same stress for yielding under certain conditions. So mainly, they have the same 

values for uniaxial loading, you see that if it is only along 𝜎3 = 0  and 𝜎1  is then. 

 

For von Mises criteria and Tresca criteria, you will get the same value of the yield strength, 

similarly is the case here also, whether 𝜎1 is 0 and 𝜎3 is positive, you will find that okay this 

is the same value for the material to yield and these are for isotropic material. Similarly, if 

you are just reversing, in metallic material, you will find that the yield strength in tension and 

yield strength in compression is more or less same okay, so there is not much variation 

compared to some anisotropic material okay. So here, that is the case. 

 

So, here you will find that whether it is 𝜎1 is the negative direction or just compressive in 

nature and 𝜎3 is 0, then you will find that for von Mises criteria and Tresca criteria, they are 

same. Similarly here also, it is considered same and there also same for the balanced biaxial 

stress, that means when 𝜎1 and 𝜎3, 𝜎1 = 𝜎3, then also it is same okay. So, same case is here 

also, say 𝜎1 and 𝜎3 when they both compressive in nature also, yielding will takes place, you 

will get as per von Mises criteria and Tresca criteria, you will find that they are same okay. 

 

Now for pure shear, the deviation, deviation will be when 𝜎1 = – 𝜎3 for the pure shear stress, 

you will find that the deviation is the largest at this condition okay so and similarly here also, 

this, this is the largest deviation is at this point. So that means, 𝜎1 = 𝜎3. In this condition, the 

yield stress predicted by von Mises criteria is almost 15% higher than that predicted by 

Tresca criteria because this red line, it gives the locus of the yield criteria as per von Mises 

criteria and this red line gives that for the Tresca criteria. 

 

The highest value you will get when it is 𝜎1 = – 𝜎3. So when you look at this, under these two 

different criteria, inner plane, we are not considering the deviatoric stress, so this you call it 

as pi plane also, this is also called pi plane okay or deviatoric plane you call it as. So, you will 

find that, see earlier we discussed that the hydrostatic component of the stress is not going to 

contribute to the change in the shape of the material or plastic deformation. Hydrostatic 

component contributes only to the change in the volume of the material, not in the change in 

the shape or it is not contributing the plastic deformation okay. 
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So if you look at this condition, this what you call it as, the von Mises yield criteria, you got 

this expression 2 sigma square = sigma 1 – sigma 2 square + sigma 2 – sigma 3 square + 

sigma 3 – sigma 1 square. This is an equation of a cylinder okay, so that is also there. Now if 

you just keep on an axis which are mutually inclined to all the 3 axis, so this will be that 

particular case, you call it as hydrostatic axis okay, so that is equal to sigma 1 + sigma 2 + 

sigma 3 by 3. 

2𝜎0
2 =  𝜎1 − 𝜎2 

2 +  𝜎2 − 𝜎3 
2 +  𝜎3 − 𝜎1 

2 

𝜎𝑚 =
1

3
(𝜎1 + 𝜎2 + 𝜎3) 

So whether you are increasing it, only thing it will be shifting towards that thing. So, the 

entire thing for different values of hydrostatic stress sigma m, you will find that you are 

getting the case as a cylinder okay and the equation for a cylinder which is equally inclined to 

three axis 𝜎1, 𝜎2, 𝜎3 and this is your yield surface, this shown by the red line, corresponds to 

the one which is yield surface okay, so that is a cylinder. 

 

Now that is the case when the material is going to deform, but after deformation what 

happens, you unload it, you will find there is a permanent deformation has set in and now 

since the positive strain has taken place, may be the work hardening has taken place, so your 

yield strength will increase. So, you will find that in such case are there when the material 

deforming, your deviatoric plane that also just expands outward during the plastic 

deformation. 

 



So, the condition state of stress inside the cylinder, the von Mises criteria, inside the cylinder 

whether whatever be the value of your hydrostatic stress, you will find that your cylinder, its 

cross section is an ellipse under that thing if you take a section, it is elastic, the moment the 

surface of that you crosses, it is a plastic deformation, the yielding is initiated or it is the onset 

of yielding, so that is the case. So, as the state of stress reaches the surface of the cylinder, 

plastic yielding of the material begins. 

 

The surface of the cylinder is called the yield surface and the radius of the cylinder is the 

stress deviator okay. So, all these combinations are being found out. The axis of the cylinder 

is the hydrostatic component of stress given by this relationship and since the hydrostatic 

component does not contribute to a plastic deformation, the yield surface is a cylinder. So 

when you are, when the plastic deformation takes place, you will find that your pi plane or 

the deviatoric plane, it expands outward okay. 

 

So, then you may get, once a plastic deformation has taken place, then new set of plane you 

will get it with the different values okay, so that is the thing. Now since the yield surface as 

per the maximum shear stress criteria, you will find it is a hexagon. So, for von Mises 

criteria, it was a cylinder whereas for this particular case under Tresca criteria, you will find it 

as a hexagonal prism. So, immaterial of what is our hydrostatic axis, it is not going to change, 

only different is only in this okay.  

 

Initially, we discussed about how the yield surface is looking, now we came to the shape of 

the yield surface, depending upon whether you are following the von Mises criteria or you are 

following the Tresca criteria, here also the blue line represents the case of Tresca and red line 

corresponds the von Mises criteria and then you will find that okay this is the hydrostatic axis 

which is equally inclined to the triple directions. So, now let us look at other conditions. 
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See if you look at during elastic deformation, we wanted to discuss also about the Levy-

Mises rule. So during elastic deformation, the strains are determined from the stresses by 

using the Hook’s Law. So you can find out if the stresses is this much, these are the strain, 

may be along this direction, that direction, so may be direction one or axis 1, axis 2, or axis 3 

or principal strain directions, these are the strains which are there, we can always find out. 

 

It is very well established, and in that case, there is no need for you consider the particular 

state of stress, how which was achieved, what was the strain path it is not important to know 

about that in elastic deformation okay. So that means, a loading history is not that important 

whereas during plastic deformation, the case is entirely different. The strains are dependent 

upon the entire loading history, how you reached it, the plastic strain. 

 

So the incremental plastic strain, when you look at it, the plastic strain increment we have to 

look at, whether it was towards one direction, you elongated it along one direction and then 

applied a compressive stress and then compressed it, so these things are very important okay. 

So the incremental and the total strain will be the sum of the incremental plastic strains 

during the entire loading path, you have to consider that okay, so that is how you get the final 

total strain. 

 

So this Levy-Mises equation or the Flow rule provides the relationship between stress and 

strain for an ideal plastic solid, that is the elastic strains we are considering it is negligible, 

and in that case, the Levy-Mises equation which is also called as the Flow rule, so it explains 

that it gives you the relationship between stress and strain for the ideal plastic solid that 



deforms under a constant volume. As the hydrostatic stress has no influence on the plastic 

deformation, it is only the deviatoric component of the stress that causes the shape change. 

 

So that repeatedly I am telling it and the Levy-Mises Flow rule it states that during plastic 

deformation of an ideal plastic material, the ratio of plastic strain increments to the current 

deviatoric stress remains constant, so that is it, for the instantaneous value of the deviatoric 

stress, the ratio of the plastic strain increment d epsilon 1 by sigma 1 dash = d epsilon 2 by 

sigma 2 dash = d epsilon 3 by sigma 3 dash and that remains always a constant which is the d 

lambda. So this is the Levy-Mises Flow rule which is applicable for this. Ya, for today, this 

is. 
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