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Expression 

 

Welcome to week 7 of our NPTEL course on Muffler Acoustics. Here, we have 

Application to Automotive Exhaust Systems. Now, in this week what we are going to do 

week 7, we are going to for the first time introduce the effect of mean flow on the 

acoustic performance of mufflers.  

And before we do that, actually it is a little bit involved topic, because now, we are going 

to see the effect of mean flow on the perturbation quantity and how all these things are 

going to affect the muffler performance. So, what we need to do first is that we need to 

sort of develop new variables called aero acoustic state variables, and before even we do 

that what we need to do is basically consider some expressions for the acoustic intensity 

due to flow in a pipe, when we consider the mean flow effects.  

So, let us see how we do it. What we will do is that the flow that is let us say M, being 

the rate at which the flow occurs, mass flow rate in a long pipe something like this. So, 

we have velocity u, u can actually vary, small u over the cross section.  

 

𝑀 =  𝜌 න 𝑈(𝑟)2𝜋𝑟𝑑𝑟 
ௌ

   

So, now, typically when you have flow over ducts, we have a profile you know let us 

denote the mean flow Mach number which is a function of radius as  
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    𝑆 =  𝜋𝑅ଶ    

where u bar as a function of r is nothing but, your average velocity. And typically, this is 

usually taken as  

𝑀(𝑟) =  
𝑈ഥ(𝑟)

𝐶
= 𝑀  ൬

𝑟 − 𝑟

𝑟
൰

ଵ


   

So, basically this expression, what it does? It gives us good idea about how the Mach 

number varies over the cross section radius r and taking into account the effect of 

boundary layers and all that. So, this is typically, valid for fully developed turbulent 

flows at the Reynolds number of the order typically,  

𝑅𝑒 ≃ 10ହ         

or one-tenth or you know something like that.  

This is typical in internal combustion engine exhaust pipes of internal combustion 

engines. And what we also observe that the average value of the Mach number is 

typically about 0.85 𝑀, Mach number observed at the right at the center. 

So, the flow profile will be something like, if I draw allow me to draw an exaggerated 

view, so it will be something like this sort of a thing you know this. So, here we are 

talking about M0 here.  

 

So, here we have average Mach number. I am talking about is something.  

𝑀௩ = 0.85 𝑀 
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Now, what about expression for the average acoustic intensity for the waves that flow in 

a moving media? So, let us denote this by  

𝐸 = න 𝑁 𝑑𝑆 

the intensity over a small elemental area d S when you have this is the circular part, so 

something like this. So, Ni dS something like this. So, we have this kind of a thing, E is 

equal to Ni dS. 

Now, basically, we have this. So, Ni is the instantaneous energy flux that is normal to 

the surface element.  

We have that sort of a thing. We can write this Ni as enthalpy J Mi, ok, where Mi is the 

mass flow rate and J being the enthalpy. 

So, what we do is basically, put energy as integral over the cross section area  

𝐸 =  න 𝐽𝑚𝑑𝑆 
ௌ

  

where i really means some i-th element in a big complicated muffler. There is nothing 

very secret about the number i.  And J is the stagnation enthalpy that is if the flow were 

to be very gradually bought down to rest.  

𝐽 = ℎ +
𝑉ଵ

ଶ

2
 1       

  𝑀 = 𝜌𝑉ி   

= 𝜌𝑉𝑆        

we have this. And the mass flow rate is nothing, but density times volume velocity. So, 

this is nothing but rho u S. So, when we combine these two things we get this. 

So, enthalpy stagnation enthalpy, I would, let me write down this thing more clearly. 

Stagnation enthalpy is the sum total of the enthalpy of the flowing fluid plus the 

velocity head term that is with the flow were to be brought down to rest and what about 

M i?  
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  𝑀 =  𝜌𝑉 

So, we have really got two variables. Now, what we are interested in acoustics is really 

the perturbation quantities. So, how do we describe that or how do we? Let us first of all 

denote these perturbation quantities. So, we denote the perturbation quantities as  

𝐽ᇱ, 𝑉 = 𝑈 + 𝑈෩   

And let us first also look at the volume velocity term. We can write this as the mean flow 

velocity that is u naught that is that sort of an average velocity over the pipe plus your 

perturbation acoustic velocity. 

So, if this situation is something similar to like a person, you are observing the person on 

the ground and the train is sort of moving and there is a there is a passenger in the 

compartment. So, it is doing oscillation from one seat to another seat. So, you would still 

see a net movement of the particle or of the person, but it is also oscillating. So, that is 

sort of an situation. 

So, let us focus back on this equation. So, we have this sort of a situation then where Vi 

or the let me write it properly Vi is sum total of your u naught that is the mean flow mean 

flow velocity and your small perturbation velocity. We also used to call it u tilde, so, I 

will sort of retain the same convention. So, what happens then to the perturbation 

stagnation enthalpy?  

So, you know when you have a small perturbation over the ambient thing then we can 

write this as, 

   𝐽 + 𝐽ᇱ = (ℎ + ℎᇱ) +
1

2
 (𝑈 + 𝑈෩)ଶ  

= ℎ + ℎᇱ +
1

2
൫𝑈

ଶ + 𝑈෩ଶ + 𝑈෩൯
ଶ
 

 

=>     𝐽 + 𝐽ᇱ = ℎ + ℎᇱ +
𝑈

ଶ

2
+

𝑈෩ଶ

2
+ 𝑈𝑈෩  

So, then we can sort of regroup the terms and write these guys as. Another thing that I 

want to point out that 𝑈෩ being small, 𝑈෩ଶ will also be very small, so we tend to sort of 
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neglect that as we have done in the first week of the course when I introduced these 

perturbation quantities and talked about how small they can be. So, the second order 

terms will be you can neglect it with respect to the first order terms. And you can again 

sort of regroup this and  

=>     𝐽 + 𝐽ᇱ = ቆℎ +
𝑈ଶ

2
ቇ + ൫ℎᇱ + 𝑈𝑈෩൯  

And so, basically what we get after doing all this algebra is that we get  

=>    𝐽ᇱ = ℎᇱ + 𝑈𝑈෩ 

 So, we get this perturbation stagnation enthalpy. Similarly, we can also get the mass 

perturbation mass thing and that is 𝑀ᇱ.   

𝑀 + 𝑀ᇱ = (𝜌 + 𝜌)𝑆 ൫𝑈 + 𝑈෩൯  

So, if we were to systematically multiply the terms, so this is your average thing and this 

is your perturbation thing. 

  𝑀 + 𝑀ᇱ = 𝑆൛𝜌𝑈 + 𝜌𝑈෩ + 𝜌𝑈 + 𝜌𝑈෩ൟ 

𝑀 + 𝑀ᇱ = 𝑆𝜌𝑈 + 𝜌𝑆𝑈෩ + 𝜌𝑆𝑈   

  =>          𝑀ᇱ = 𝑆𝜌𝑈෩ + 𝜌𝑈                        (1) 

  𝐽ᇱ = ℎᇱ + 𝑈𝑈෩                                           (2) 

So, we have another relation between the perturbation mass flux, is your M dash is equal 

to S times cross section times 𝜌𝑈෩ + 𝜌𝑈 and this is these things. So, I will rewrite this 

stagnation thing again, perturbation stagnation enthalpy that is your h dash like this, ok. 

So, this is what we get.  

Now, once we have these two quantities, so now, is a time when we go back to the 

expression for the or probably we write the equation for the energy total acoustic power 

coming out of the duct carrying a mean flow as something like this.  

Average  
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< 𝐸 > =  න(𝐽ᇱ𝑀ᇱ)𝑑𝑆       

ௌ

 

So, intensity clearly means is  

𝐼 = (𝐽ᇱ𝑀ᇱ)              (3) 

So, we have this sort of a thing. So, what we need to do is basically, in order to develop 

an expression for the intensity that goes through the duct, you know acoustic power that 

goes through the duct, we will probably have to substitute equations (1) and (2) in 

equation (3). So, once we do that we will get your after some algebra I am going to sort 

of avoid doing that, we will do those things.  

So, we will get  

𝐼 = 𝜌𝑈෩ + 
𝑈

𝜌
 𝑝𝜌 +  𝑈 𝜌(𝑈෩)ଶ + 𝑈

ଶ ൫𝑈෩𝜌൯        

Here 𝒑ᇱ and 𝑼ᇱ will be in general functions of the radius. It is quite natural to get that 

because; pressure and velocity will both gradually have a variation over the cross section 

area.  

So, basically what we can do is that we can box this thing. So, this is the average time 

averaged acoustic intensity that goes out of the pipe, but then again i is a function of r, 

because these variables will depend on the radius. So, now, in order to find out the total 

acoustic power that is radiated, so, we just need to simply integrate the intensity over the 

cross section area. So, once we do that we will get the following expression.  

𝑊 = න 𝐼𝑑𝑆

ௌ

 <>  →    time average or RMS 

So, we will get the expression which 

𝑊 =
1

𝜌
< 𝑝𝑉෨ >  + 

𝑀

𝑌
< 𝑝ଶ > +𝑀𝑌 < 𝑉ଶ >  +𝑀ଶ < 𝑝𝑉ଶ >൨ 

𝑀 = 0      
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𝑀 =
𝑈

𝐶
, 𝑌 =

𝐶

𝑆
                         (4) 

So, here v like I said is the acoustic mass velocity and M is the space averaged or the 

mean flow number that is averaged over the duct cross section area and y naught is your 

characteristic impedance.  

This is the total acoustic power time averaged. Remember this is much more complicated 

or it is more tedious I would say as compared to the case where the flow was not there. 

So, now, as a check of self-consistency if we put M = 0 that is this term is not there, 

when you put M = 0 no flow and all these things will go away. And what will be left is 

just this term. And if you remember recall this is your acoustic power that is radiating out 

of the duct, when there is no flow involved. 

𝑝  = 𝐴𝑒ିబ௫ + 𝐵𝑒బ௫ 

So, now basically, what we can do? One would naturally like to use this expression that 

is developed for the case of nonzero mean flow. And then put suitable assumption like, 

let us say pressure field at a particular we will put you know typically, we  

𝑝 = 𝑒ିబ௫ +  𝐵𝑒బ௫ 

So, here, we will put x is equal to 0 or z is equal to 0 whatever suits us and we have this. 

 
𝑝 = 𝐴 + 𝐵

𝑉෨ =
𝐴 − 𝐵

𝑌

ൡ ,
𝐵

𝐴
= 𝑅 =>   𝐵 = 𝑅𝐴 

And your this velocity is nothing but, A minus B by y. And we will assume that B by A 

is equal to R, meaning that reflected wave or backward propagating wave is reflection 

coefficient times the incident amplitude wave. Now, R is the reflection coefficient which 

can be complex also. So, this can be complex quantity much like your the progressive 

wave variables p and A ok.  

So, now, once we substitute these two guys in the big expression that we sort of 

developed here, and I am going to sort of avoid the algebra and just work on you know 

just present to you the final result of how it would look like. So, we will get the power, 

acoustic power that is radiated over duct as 
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𝑊 = 𝑊(𝑀) =  
1

2𝜌
 
|𝐴|ଶ

𝑌

{(1 + 𝑀)ଶ  |𝑅|ଶ (1 − 𝑀)ଶ}                              (5)   

𝑀 = 0  

So, we will get this sort of a thing. This is the expression for the total power radiated 

when you have nonzero mean flow. Clearly, when you have M = 0, so, this will and this 

should sort of reduce to the more familiar expression that 

𝑊 =  
|𝐴|ଶ

2𝜌𝑌

{1 − |𝑅|ଶ} 

 Now, if we just do some algebra take a inside this thing we will have mod A square 

minus mod of A into R whole square that is nothing your that is nothing but v.  

So, this is something that we have seen in the very first few lectures of this course. So, 

let me box this expression. So, this is something that we kind of we will be using when 

you want to develop the expression for the transmission loss, in the presence of mean 

flow. So, let us do that now, before we move ahead to the case of air acoustic state 

variables. Before that we probably would like to make some comments on the nonzero 

Mach number. 

So, as we see here from this particular expression let me call this equations (3), this is 

(4), this guy is your (5). 

So, from 5 we get to see that W (M) or the acoustic power radiated out of a duct which is 

carrying a nonzero mean flow in general that is greater than the acoustic power radiated 

over the duct when you when you do not have any mean flow at all. So, that is for all M. 

𝑊(𝑀) >  𝑊 (0) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑀     

  𝑅௫    

And the error that would be caused by neglecting the mean flow for a given reflection 

coefficient would be positive and more significant around mod R which is approximately 

equal to 1 unity. Let us evaluate the expression for the maximum reflection coefficient R 

max. So, what we can do? So, R max then as we can see what is you know let us revisit 

equation (5) and figure out, what does this term mean. 
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So, as we discussed just a while back, this thing probably means that the acoustic power 

that is carried by the wave that is going in the positive z direction or along the duct as we 

can see and then so, this is what it is. And what about the wave that is travelling in the 

backward direction that is in this thing? So, that is basically or this part into this. That is 

your this guy is multiplied by this.  

So, it has certain meaning. So, you know we will keep this thing aside for a minute, and 

worry about the acoustic power incident that is  

 

   𝑊 =  
|𝐴|ଶ

2𝜌𝑌
   (1 + 𝑀)ଶ     

 

𝑊 =  
|𝐴|ଶ

2𝜌𝑌
  |𝑅|ଶ (1 − 𝑀)ଶ 

So, we have this sort of a thing. Now, clearly reflection coefficient can be maximum 

only when the incident thing  

𝑊 = 𝑊  

 

That is whatever in a duct carrying a mean flow whatever acoustic power is being 

transported by a wave that is moving in the positive x direction, the same thing is being 

reflected back by the wave that goes along the negative x direction. So, when that will 

happen, so, we have to really equate these two terms.  

So, when we do this obviously, your this will cancel and so, this will this, resulting. 

(1 + 𝑀)ଶ = |𝑅|ଶ(1 − 𝑀)ଶ     
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 𝑀 = 0    

So, this is your maximum reflection coefficient. Maximum because, I just explain the 

physical significance when this happens. Basically, you know your entire acoustic power 

that is being carried in the positive z direction is being reflected back. So, under such a 

situation  

=> |𝑅|ଶ =  
(1 + 𝑀)ଶ

(1 − 𝑀)ଶ
      

So, basically, this would mean, so this would mean  

   |𝑅|௫ |𝑅| =  
1 + 𝑀

1 − 𝑀
= |𝑅| = 1 

So, this is your maximum reflection coefficient. Now, clearly there are few interesting 

things I would like to talk about here. When M = 0, so, Rmax can just be equal to 1 when 

M = 0, is not it.  

We have just said M is 0 and you will get reflection coefficient R, maximum R that you 

can get is 1 and that is in consistency with our physical explanation that whatever 

acoustic power is being carried by the forward propagating wave seen the entire wave is 

being reflected back. So, reflection coefficient is 1. 

However, when you have a nonzero mean flow that is M, M is nonzero. It can be some 

number typically, you know in exhaust pipes it is about maximum is 0.3, 0.3 is really on 

the higher side, typically is about 0.15, 0.2. And once it goes in the chamber, because of 

expansion it is even smaller. 

Although, we would not really allow it to expand due to a number of reasons which will 

discuss in this week’s lecture, but all I am trying to say is that in the chamber it might be 

even lesser. So, under such a situation when you have a nonzero M, ok, so it can be even 

more, reflection coefficient can be more than 1. 

Let us,  

  
1.2

0.8
=

3

2
= 1.5 
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 Reflection coefficient would be about 1.5. So, the point is here is that when you have a 

nonzero mean flow, it means that reflection coefficient in terms of the classical variables, 

classical progressive wave variables can be more than 1.  

But that is probably the reason why due to number of all these things we it is a good idea 

to introduce some kind of a new variables, which are more suited for aero acoustic 

analysis. And we will refer to them as aero acoustic state variables, we will worry about 

all those things in the next set of lectures or next class probably. But what we can do now 

is just develop in the remaining time some expression for the transmission loss. 

So, we saw from our I think from our week 4 or 5 I guess, probably week 4 I reckon. 

Week 4 we saw the transmission loss expression in terms of the 4 pole parameters that is 

you have your system. 

൜
𝑝ଵ

𝑉෨ଵ
ൠ  =  

𝑇ଵଵ 𝑇ଵଶ

𝑇ଶଵ 𝑇ଶଶ
൨   ൜

𝑝ଶ

𝑉෨ଶ
ൠ 

So, if we have a system which is being characterized like this, I would say 1, 2, ok, the 

transmission loss then is given by  

 

𝑇𝐿 = 20𝑙𝑜𝑔ଵ ൦ඨ
𝑌ଶ

𝑌ଵ
  

𝑇ଵଵ + 𝑇ଵଶ + 𝑌ଶ𝑇ଶଵ +
𝑌ଶ
𝑌ଵ

𝑇ଶଶ

2
൪ 

So, we have this. And here we have this sort of a thing is not it. This is for the case when 

you have no mean flow, that is 0 mean flow. But however, you like to extend all these 

arguments to the case when you have a nonzero mean flow, that is M is something like 

whatever we get typically in a automotive muffler. So, let us make use of our 

understanding for the using the expression that we just developed now, with the acoustic 

power carried by the wave when you have a nonzero flow. 

So, let us say we when we have a system you know, it can be any complicated muffler 

system. So, we have inlet port here, outlet port here 2, and in the classical state variables 
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that is p1 V2, p2 V2, the system is still characterized by this sort of representation ok. But 

here, you also have mean flow. In the inlet pipe let the mean flow be M1 and here it will 

be M2. So, it is pretty straight forward to see that the acoustic power that is carried by the 

incident wave variable that is the wave that goes in this direction is nothing but this term. 

So, we will write this as  

   𝑊 =  
|𝐴|ଶ

2𝜌𝑌ଵ
   (1 + 𝑀ଵ)ଶ    →  

𝑊௧௦ =  
|𝐴|ଶ

2𝜌𝑌ଶ
   (1 + 𝑀ଶ)ଶ 

We will have this sort of a thing. And the one that is incident that is going in this 

direction is that is basically transmitted, is basically your 1 + M2 whole square, is not it.  

This is the only thing that you need to worry about A1 and A2 can be figured out from 

this thing when you substitute back the classical variables A1 minus B1 by y1, and all 

these things here and same thing over here. So, basically, once you do that we will put 

these two expressions in the transmission laws and let us see how the expression for 

transmission loss here is modified.  

This is given by, 

𝑇𝐿 = 20𝑙𝑜𝑔ଵ  ቐඨ
𝑌ଶ

𝑌ଵ
    

1 + 𝑀ଵ

1 + 𝑀ଶ
|_____________|ቑ 

The big expression that we just mentioned here, this entire thing I am not going to write 

it here. So, you can also have a look at the book by Professor Manjal, in the third chapter 

where all these derivations are given in a greater detail. So, the point is that in the 

presence of mean flow expression for transmission laws will be pretty much the same, 

bearing the fact that there will be additional terms due to mean flow present in this thing.  

So, naturally one corollary that happens that occurs is that when the Mach number is 

same in both the pipes, which can be the case when the pipe has the same diameters. So, 

then you have this term basically goes away, and you get back the classical expression of 

transmission loss. So, now I guess I will stop here in this lecture.  
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And in the next class, class 2 of week 7 what we will do is that we will introduce for the 

first time air acoustic state variables. So, M′ and J′ is what we talked about and obtained 

expression for acoustic intensity in presence of nonzero mean flow. So, what if we if we 

basically do some manipulation of the terms, we will see that we can probably relate 

M′and J′ in terms of the classical variables, but then you have presence of mean flow, M 

terms, Mach number terms will be there.  

And we will develop some you know again expression for the acoustic power radiated 

and carried by the forward moving wave and that carried by the backward moving wave 

and all that. And possibly, talk about transfer matrices for tubular elements or extended 

outlet elements and do all those sort of things. So, that will be the focus of the next 

lecture or something like that.  Thanks. Stay tuned.  
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