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Hello and welcome to this lecture number 10 in the course of Robot Motion Planning. In the 

last class we looked at the topological configuration space that when you go from one space 

we have seen that we go from the Cartesian space which is the real world in which the robot 

is to the configuration space find the path in the configuration space and then come back to 

the Cartesian space again. 

 

So, this mapping from one space to another space is very important in robot motion planning 

and that is why we need to understand the topology of different spaces. So, today we will 

very quickly complete what we were doing in the last class and then we will continue with 

the next part which is the various methods of path planning to take the robot from an initial 

point to a final point.  

 

So, in the last class we were looking at topology of configuration space and very quickly we 

will revise what we were doing in the last class and then we will move on to various methods 

of path planning and today we will look at road map methods. 
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But before that let us very quickly complete what we were doing in the last class. So, very 

quick revision we said that the manifold is a topological space that locally resembles 

Euclidean space near each point. Now we have seen that for example we have a robot which 

is in the Cartesian space let us take the example of mobile robot which is in the space and this 

is my mobile robot and there is an obstacle here. 

 

And what we do is this is my Cartesian space this is my X axis and that is my Y axis there is 

a mobile robot and this is my Y axis and this is an obstacle. So, what we do from the 

Cartesian space so this is Cartesian space we move to the C-space in which the workspace 

become smaller and the obstacle becomes larger let us say the obstacle has become larger like 

this. 

 

And the robot becomes a point then what we do is this is my C-space. We find a path from 

the initial point to the goal point may be like this and then what we need to do is we need to 

come back to the real world again in which the robot moves. So, we have a forward transform 

which is given by Φ and we have inverse which is Φ
-1

 and this is the forward mapping and 

the inverse mapping between two spaces.  

 

Now you can very well understand why this is very important because if you find the path in 

C-space and you cannot come back to the Cartesian space it is of no use. So, we need to very 

carefully understand this topology of different spaces. Now a manifold is a topological space 

that locally resembles Euclidean space near each point. Euclidean space or Cartesian space 

they mean the same thing here.  

 

So, we say a manifold is a topological space that locally resembles Cartesian space. Now the 

structure of configuration space is a manifold that means it resembles Euclidean space near 

each point that means you can go from the configuration space to the Euclidean space. Now 

by definition a set k is a k-dimensional manifold it is locally homeomorphic to R meaning 

that each point in S possess a neighborhood that is from homeomorphic to an open set in R 

that means every point can be locally mapped on to the Euclidean space.  
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Now this is an example a circle. Now a circle is a manifold and that is topologically the same 

as the line of dimension 1. So, in terms of topology a circle and a straight line is the same 

anyway in terms of topology and every point on the circle can be expressed as that on a line 

say for example when we look at this black curve this circle here. Every point here can be 

projected on to a straight line that means this is locally.  

 

Hence, manifold is every point is locally can be mapped on to the Cartesian space. So, this is 

very important term here that a manifold is a topological space that locally resembles 

Euclidean space. So this term is very, very important here. So, if you locally look at this 

small region of a circle then each point here can be mapped on to a straight line.  
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Similarly, if you look at a sphere the Earth is a sphere it is spherical. Now how do you make 

maps? You locally map a local region to a flat map which is a flat surface. So, this is locally 

possible and that is why the term charts and atlas comes from. So, it is basically saying that a 

configuration space is a manifold and it is a manifold because it is locally like Cartesian 

space and that is why we can go from one space to another space.  
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Now connectedness a manifold is path connected or connected if there exist a path between 

any two points in the manifold. So, like what we talked about in the last class we said that 

this is my C-space and this is my Cartesian space. So this is my Cartesian space and this is 

my C-space. Now in this case we have three obstacles the pink one, yellow one and the blue 

one. So, we have a two-link manipulator here, this is two degree of freedom. 

 

And we can draw the C-space like this and in the C-space we have obstacles here so this is 

my obstacle, obstacle and obstacle. Now this is telling us a manifold is path connected or 

connected if there exist a path between any two points in the manifold. So, this point and this 

point there exist a path between these two points in the manifold and hence it is path 

connected.  

 

Now if I say this point and this point now there is no path from here and here it cannot go 

through an obstacle. So, these two are not path connected that is the meaning of path 

connected. Now why is this important? It is important because if there is no path between the 

two points then the robot cannot go in the real world between those two points. So, a 



manifold is path connected or connected if there exist a path between any two points in the 

manifold.  

 

The presence of obstacles can disconnect a manifold as shown here. Now very clearly please 

remember that how did we get the manifold we got a torus we cut the torus like this opened it 

made it into a cylinder and then what we did we cut it further and opened it like this so I first 

cut it like this open like this then I cut along the center of the cylinder opened it and we made 

it like this and that is what is shown here.  

 

So, it basically means that this side is connected through this side so you can have a path here 

and here it can go like this and you can come from here also it is also path connected and 

from this side and this side are path connected, but this and this are not path connected. So, 

please do remember that this side and this side are connected actually as far as the manifold is 

considered.  

 

And in terms of the manifold, in terms of the torus this side and this side is also connected. 

So, this part and this part is path connected.  
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Now, embeddings of manifolds in R
n
 or in Euclidean space. Now a K-dimensional manifold 

can be represented using as few as K parameters, but doing so may require a multiple chart. 

So, the dimension of the manifold could be K, but you may not be able to represent. So, you 

may be able to represent using as few as K-parameters, but doing s may require multiple 

charts what does this mean let us take an example.  



 

For example S 1 is a one dimensional manifold now as far as topology is considered a circle 

is a one dimensional manifold it is only 1-D, but to represent a circle you actually need two 

parameters X and Y. So, I am drawing it there is X axis there is Y axis. So, to represent this I 

used two parameters actually you can see that this is the equation of a circle. Although a 

circle is a one dimensional as far as topology is considered one dimensional manifold, but to 

represent it you need two parameters that is X and Y.  

 

We cannot find the single chart for all S
1
. Similarly, we cannot embedded the torus one of the 

example was the torus very good example is this torus. So, we cannot embed the torus in R
2
 

we know the torus is basically made up of θ1 and θ2 that is how we got the torus by varying θ1 

and θ2 for a two degree of freedom system and when we draw the torus it is something like 

this, this is my torus.  

 

So, this side is θ1 and this one is θ2, but when I am drawing it if you note that you cannot 

draw it in 2D it has to be drawn in 3D or torus can be drawn only in 3D. This is my X, this is 

my Y and this is my Z. So, similarly we cannot embed a torus in 2D that is R
2
 we need to 

embed in 3D now. So, we can use multiple charts or use a single global representation by 

embedding the configuration space in the higher dimensional space.  

 

First example was that of a circle which is 1D, but you require two parameters to represent it 

then a torus which is 2D in fact you require three parameters to represent it. 
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And what about the rotation of a rigid body. Now to represent the rotation of a rigid body you 

need a 3 X 3 matrix so what you have seen is that if you have a rigid body like this and we 

have an axis X, Y and Z and we have a rigid body, how do I represent the rigid body the 

angles of a rigid body you fix another X is there X, Y and this is Z sorry let me follow the 

same convention.  

 

This is ', 'X Y and Z' and then what we do is we find the angles the X axis is making with the 

X, Y, Z of A this is A and that is B and then we write it as r 11, r 12, r 13, r 21, r 22 and r 23 and 

here it is r 31, r 32, r 33. Now what is this? This is the X of B on the X of A, Y of A and Z of A 

that is the meaning of this column and this is the Y of B on projected on to the X,Y, Z of A 

frame and this is the Z of B we project it on to the X, Y, Z of A frame.  

 

So, what we are seeing here is that you can represent the position of a point by three 

coordinates X, Y, Z, but to represent the rotation of a rigid body and space you need how 

many parameters? You need a matrix so this is a matrix that we have seen. So, this we have 

seen earlier in the first class I guess first or second class when we talked about 

transformations. 

 

Now this is showing that to represent a manifold you may require a higher dimensional space 

this is the meaning of the last statement here that you might need a higher dimensional space 

to represent the manifold.  
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Now when we are representing the rotation or multiple rotations we can represent as roll-

pitch-yaw. We can call this as rotation about the α about the X axis, Y axis and Z axis by 

angle α let us say, by an angle β and by an angle γ. So, I have two axes now and they are 

being rotated about a fixed angle. So, let us say this is my first fixed axis X, Y and Z and we 

have another axes which is the red colour which is going to be rotated. 

 

So, this is my axis B. So, first what I do is I rotate about the X axis by an angle α. So, what 

will happen is B will come here now so 'Y  and Z' just come here this is an angle α then what 

I do is I rotate about let me change the colour I rotate by an angle β about the Y axis. Now 

which Y axis this is called fixed angle rotation we are rotating so rotate about fixed axis. 

 

Rotating about fixed axis so I am rotating about the Y axis which is here so what will happen 

my X'' will come here Y''  will go there and ''Z  has gone there then number three is what 

number three is the rotation of γ about Z axis which Z this Z. So, what happens it goes here, 

here and here that is my X''' , Y'''  and '''Z .  

 

Now when I make the combined rotation matrix I am going to       xz yR R R    . So, I 

reverse the order so we reverse order of multiplication please note this. So, this is called the 

fixed angle rotation also called the roll-pitch-yaw rotation.  
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Now you can also rotate about the rotated system rotation of the rotated axes. These are some 

terms for Euler angles. Now in this particular case we are rotating about the rotated system 



that means the first axis is always going to remain the same. So, Rx α then we are going to 

rotate the Ry β and Rz γ. So it is my first, second, third that rotate about rotated axes. So, this is 

my X, Y and Z.  

 

Now, if I take my first rotation I rotate about the X axis like this so this fellow goes there 

towards my B, 'Y so the first one is the same why because we are rotating about the fixed 

axes only because there is no other option initially they were the same. The second one now 

what happens is I am rotating about Y axis now. So, what will happen is Z will go there and 

X will come here and the third one I am rotating about the rotated Z axis.  

 

So, the rotated Z axis is this one so I am rotating like this now. So, what will happen is this 

will come here and that will go there X''' and Y''' , but in this case the order of multiplication 

remains the same. So, please remember that here order does not change. So, this is something 

you should note and why this happens because you have to be very careful about the order, 

but these are matrixes. 

 

So, rotations do not commute in space and there is something you have to be very, very 

careful about.  
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Now, these are some examples of robots and the degrees of freedom. So, let us look at the 

mobile robot translating in a plane. So, you have a plane which is x and y this is my x and 

this is my y and we have a mobile robot. So, there are two wheels here the Castor wheel is a 



point P. Now, it can only translate it is only translating in a plane. So, this point is translating 

it cannot rotate in that case degree of freedom is 2 so only x and y.  

 

Now mobile robot translating and rotating in a plane so it is 3. So, x, y and θ so that is an R
2 

which is x and y in Cartesian space and S is one rotation which is S. Now rigid body 

translating in 3D space so you have a rigid body which is translating in free space and this is 

also called a freely floating body. So, in this case how many degrees of freedom? It has three 

rotations 3 x, y, z and α, β, γ so this 6.  

 

So, rigid body only translating is 3 a spacecraft has 6 so 3 rotations and 3 translations, 3 

rotations. So, a rigid body is only translating then it has only three degrees of freedom my x, 

y, and z here it has x, y, z + α, β, γ. Now n-joint revolute arm it has T 
n
. A planar mobile robot 

with an attached n-joint arm has a mobile robot the planar mobile robot this is planar. 

 

So, it has a SE (2) and plus the arm has T 
n
. So, this is basically giving you an example of the 

degrees of freedom of different kinds of robotic systems.  
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Now, let us move on further from here and look at the path planning method and algorithms. 

As I said the whole objective of this course on motion planning or path planning is to write a 

program by an algorithm which is going to find the path that will take the robot from initial 

point to the goal point and to do that what we basically need is that we have to go to C-space 

the robot becomes a point and then we find the path and then it comes back.  

 



So, there are various methods of finding paths they are depending on situations and we will 

look at each one of them one by one. So, the first one is what we call road map methods. 

Road map method is the name suggested as the name suggests it is something like finding a 

road in a map like today we have Google maps we cannot find a road to go from one point to 

another point. 

 

Then cell decomposition where you are decomposing the cell or the work shell to different 

shells and then finding the paths. Sampling based planners where you do not have a map, but 

you start sampling and see where you can go and where you cannot go and try and make it 

connected graph. Potential field based planners we use potential field to guide the robot so 

this is basically to guide the robot to the goal using potentials that means, for example, the 

object has repulsive potential.  

 

So, when the robot goes near the object it gets repelled and the goal has an attractive 

potential. The robot is always pulled towards the goal wave front planners these are 

something like waves, the waves on the water they tend to move towards the lower potential, 

planning with kinematic constraint this is like cars we talked about kinematic constraints for 

example holonomic and non-homonomic constraints, like real cars they do not go sideways.  

 

So, planning with kinematic constraints involve holonomic constraints and non holonomic 

constraints and then we look last on interest on applications. So, we will start up today with 

the roadmaps in the next couple of lectures are on basic methods as I just talked about.  
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So, today we will start off with roadmaps. Now the basic idea of roadmap method is to 

capture the connectivity of free space by a graph or network of paths or roads. This is very 

simple to understand because this is we are very familiar with Google maps these days or if 

you look at any map how do you go from one place to another place you look at a map. Now, 

for example, on the left hand side here you see the Google map of New Delhi. 

 

Now you have to go from Connaught place to New Delhi railway station. So, Connaught 

place is there and New Delhi railway station is there. Now how does Google map find out 

which way you should go? So, what it basically does or what is a map or what is the 

roadmap? Roadmap is a set of connected graphs or connected roads. So, basically you can 

see that these are all the various roads in that area. 

 

And there is a network of roads and by following this network of road you can go from this 

initial point to the final point. Now there could be more than one road for example you could 

go from here like this, like this, like this then cross over from that side go like this and then 

go there. So, this could be one way. Now there could be other ways for example you go like 

this, like this, like this, like this these are small, small paths so you can find some part which 

will take you there. So, then the next question that come this which part will we take.  

 

Now, in the Google map one of the parameters could be the distance, but as you can see that 

it has different colours, it has orange colour, it has blue colour and it has red colour. Red 

colour means it is very congested road so we will take more time. So, you have to worry 

about time. So, it is not only a question of finding a path it is a question of how you are going 

to go on the path which one is going to take which has a longer distance to a travel which is 

going to take more time to travel.  

 

The particular distance could be less, but the time could be more. So, this is basically a very 

brief idea of how roadmaps work. Now on the right hand side we have a problem of a mobile 

robot. So, we have a mobile robot which is an initial point let us call it a mobile robot. So, 

mobile robot and these are obstacles which are called CB 1, CB 2, CB 3. Now the mobile 

robot is a point and I want to go from one point the initial point to the goal point here.  

 

The initial point is here goal point is there. Now you can see that this free space the first thing 

that you should note here is that this is free space where it can go, and a couple of other 



things. This is flat ground so it is 2D. So, 90% of the algorithm we will talk about for 2D 

applications not for 3D and most of 3D also can be reduced to 2D. So, there is free space and 

obstacle space this is what you are seeing here. 

 

So, the free space is connected based network of path so this is a network of paths. This is 

already connected by network of paths. How do we get these paths that we will come to later. 

So, we have given this network of paths now what do I do is I know this is a network of 

paths. So, what I will do is from initial point I will connect to this network of paths here and 

from the goal point also I will connect to the network of paths.  

 

Then how many ways are there to go from the initial point to the final point there could be 

more than one. For example I can go like this, like this, like this, like this or I could take 

some other path and go like this, like this, like this, like this, like this I could take even more 

paths other paths are there. So, then the next question comes that which path will you take? 

So, the first thing that we need to know is whether a path exists. 

 

So, in this particular case we can see that the path exists. Number two then which path? Now 

for us having eyes it is very easy to see and say okay this is a path just connect it and it can 

go from like this, like this it will be shorter, but this poor algorithm does not have eyes. So, 

an algorithm is a program a program will be run and the program output has to be that this is 

the path and this is how you should go.  

 

What is the input of the program? Now you can guess from here that the input to the program 

is the geometry of space that means where is the robot, where is the obstacle, where is the 

work space. So, essentially path planning is a geometrical problem we solve it geometrically. 

So, we have eyes so we can see very easily and say whereas for a robot which does not have 

eyes it has to geometrically figure out or the algorithm has to systematically figure out how 

many paths are there, which path I will take and should not hit obstacles that is the whole 

objective of writing an algorithm or a program for path planning. Let us proceed.  
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Now the definition of a roadmap is that a road map is a union of curves such that for all start 

and goal points in free space that can be connected by a path it has accessibility that means 

there is a path from qstart which belongs to Qfree to some 'q  which also belongs to the 

roadmap. So, accessibility there is a path from the start point which will join the roadmap. 

Departability there is a path from the ''q  to the road map to goal.  

 

So, from 'q  it has joined at ''q now from ''q  which belongs to the roadmap to the goal there 

is a free path and connectivity there exists a path in road map between q and ''q . Now please 

note this is one dimensional. This path is one dimensional in terms of topology, but to 

represent it you need 2D, but the path itself is 1D only.  

 

Now, this is very easy to understand accessibility, departability and connectivity. So, 

accessibility essentially means that from here you should be at this point you should be able 

to access the network. Departability you should be able to go from here and go to the goal 

point and connectivity is this connection should be there between the accessibility and the 

departability. So, that is the basic idea of a road map.  
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Now visibility graph methods. So, how do you make this road map that is what we are 

looking at now. So, we tried to get the road map we know once we have the road map so we 

have the road map like this. Now once you have the road map then you can go from the initial 

point join the network then go towards the goal points and from that you can depart again and 

then go to the goal.  

 

But then you need the network of paths how do you get that. So, there are some methods of 

getting the network of paths. So, the first method we look at is called visibility graph method. 

So, the basic idea is very simple you see what is visible as you stand at start point and then as 

you proceed towards the obstacle. So, this means that basically you stand suppose I am at this 

point this is my initial point or start point.  

 

And there is an obstacle let me draw it with some other colour so there is an obstacle here and 

there is another obstacles here. It says that we are standing, imagine yourself standing here so 

this we are standing there and this is your eyes and from there you can see. Now what is 

visible to you is this is visible to you that is visible to you, this is visible to you. So, these are 

visible to you as you are standing there.  

 

So, what is visible as you stand at the start point and then as you proceed towards the 

obstacles. So, we can see what can you see you can see this obstacle here you can see this 

side, you can see this side. Now when you proceed towards the obstacle you come here and 

from here what can you see we can see this you may be able to see that so you can see this, 

you can see that.  



 

Now the edges here are also visible there because from standing here you can see that also 

then you move here and from here you can see that, you can see that. So, it is like saying you 

are standing at the start point looking at the obstacle then going to vertices to this obstacles 

and seeing what more can you see and whenever you see a vertices whenever you see a 

vertex basically you are connecting back with a straight line which is your road. 

 

So, this basically means that the robot is a point in C space and you basically stand and see it 

is very easy to understand whenever you see a vertex you know there is an obstacle and the 

obstacle has a vertex. So, you go to that vertex and then you see again what more can you see 

and then you connect all of these vertices by straight lines and that is where you get your 

collection of paths.  
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Now in the visibility graph methods this is defined for polygonal obstacles, there are various 

obstacles which you can see Q 1, Q 2, Q 3 then nodes correspond to vertices of obstacles. So, 

each of these nodes are the vertex of the obstacles, the vertices. Nodes are connected if they 

are already connected by an edge or an obstacle. So, you can get connected nodes, nodes are 

connected if they are already connected by edge of an obstacle so you have a node here, node 

here and this is already connected by the edge. 

 

The line segment joining them is in free space not only is there a path on this roadmap, but it 

is the shortest path. Now, if we include the start and goal nodes they are automatically 

connected. Algorithms for constructing them can be efficiently written. So, you can have a 



computer program, what is the input to your program? So, the input to the program is a work 

space plus vertices. 

 

Once you give this to the program the computer program knows that these are the vertices 

and these is the work space. So, what it can do is it can connect all the nodes by straight lines 

and then from the initial point we can connect to the goal point by following one of the road 

maps that is how we got our road map let us see how this is done.  
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First of all draw lines of sight from start and goal to all visible vertices and corners of the 

world. So your start point here. So, we are drawing straight lines to all the visible vertices. 

So, what can you see you can see this one, you can see this one, you can see this one, you can 

see this one, this one, this one that is visible. So, first of all draw lines of sight from those 

start and goal to all visible vertices and corners of the world that we have done that is the 

corner of the world this line should have been here.  

 

Let me just correct it so the corners of the world is here like this and that part is now there. 

So, this is not there. So, we are drawing lines from the start point to all the vertices that are 

visible. 
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Then what we do is draw lines of sight from every vertex of every obstacle like before. 

Remember lines along edges are also lines of sight. So, first of all you see which vertices are 

you can see then you go to that vertex and what more can you see. See from here you can see 

this, you can see that, you can see that, you can see this, you can see this. So, this vertices we 

can see and you are also supposed to draw lines along the edges. So, you can see this also.  
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Now, continue doing that now draw lines of sight from every vertex of every obstacles. 

Remember lines of edges are also lines of sight.  
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So, if we do this what will happen is what we will see is a total connected ray of lines.  
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And finally what we get is this. Please ignore this line, this line is not there. So, the visibility 

graph is complete now. So, this is showing your complete network of paths. So, this is giving 

you a complete, complete network of paths. Now once you have got the network of paths 

now what you can do is you know you have to choose you want to go to the goal point. So, 

how can you go to the goal point? 

 

There would be so many you can go this, this, this, this, that or we could go this way, you 

could that way, you could that way, you could go in so many ways here. The next question 

would come in terms of distance, so which is the shortest path may be. So, this is basically 



called the visibility graph method where we have done the visibility graph simply by 

connecting all the vertices by straight lines.  

 

It is like you go and stand in the vertices and which are the vertex is visible to you just 

connect it with a straight line.  
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Now, this is a visibility graph where we have drawn the complete graph. Now we have to 

find a path now what you can do is you can look at the path length so this path length here to 

here to here probably be the shortest. How do you know? Probably this is the if you draw 

straight line like that the one closer to the straight line will probably give the shortest 

distance.  

 

So, this is the probably the shortest distance path. This is the straight line that was 

connecting. Now, so this is geometrically how it is done. 
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Now let us look at in terms of an algorithm when we are drawing this connection of graph 

interconnected road map the algorithm that works is basically which is called the sweep line 

algorithm. Now assume that a ray of light is shining from start point and it is rotated through 

space covering the full range of 360
0
. So, imagine we are standing here start and there is a ray 

of light that is shining from start. 

 

And it is rotated through space covering the full range of one 360
0
. So, let us say this is my 0 

and this is a ray of light it is like saying we can consider this to be a torch. Suppose you are 

shining a torch and this ray of light is rotated to full 360
0
. Now what is it that you will see. As 

you start off from 0
0
 you will first hit this obstacles then as it is moving upward what will 

happen you will see okay the logical the way it works. 

 

But in this particular case you are standing here the example that is shown here so we are 

standing here this is my start point and shining a ray of light. So, what we are seeing is that it 

is hitting the obstacles like this, like this, like this, like this. You can see that vertex how 

many vertices you are shining this ray of light and how many vertices can you see? So, you 

are seeing one is an edge that is e4 and there is a vertex which is let us say v3.  

 

So, this one and this one and then as a sweeping mode that side it is hitting this edge which is 

e8 and it is getting the vertex v7. Now sweep a little bit more in this point what is happening it 

is hitting no edge, but is hitting the vertex v4 that was hitting v4. Further we sweep mode we 

are hitting v8. So, in this way the ray of light is being rotated by 360
0
 and we are making this 

if it is an edge or a vertex or only a vertex that we are noting as it is making a full sweep. 



 

Now, in this what we can do is wherever there is a vertex plus an edge we can remove 

because it is going through the edge it cannot go through the edge, but geometrically 

basically the ray of light is a ray of light. So, this is equation of straight line. So, we are 

basically drawing a straight line and then seeing whether this straight line is intersecting this 

edge or it is hitting that point.  

 

So, geometrically we are doing this and we make these pairs and whenever we have a vertex 

plus an edge we remove so we are left with only the vertices. So, the vertices which can be 

seen so the vertices which only can be seen those are the ones that we are keeping.  
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So, let me draw it again just explain this is a very simple method a very nice geometrical 

method. So, here we have one obstacle here I have another obstacles this is an example and 

we started off by using a ray of light like this θ = 0
0
 then we start sweeping it like this 360

0
. 

So, wherever it hit an edge and a vertex we record and keep. So, this is a straight line and 

these are all straight line and edges.  

 

So, geometrically we can find out the intersection to it. So, as it is going up what we are 

seeing is that it is going like this and then it hit that one it hit that, but it is also hitting this 

edge let us call this e1 and let us call this v1 so e1 v1 is there then it goes little bit higher it hits 

v2 so there is v2, but there is no edge then goes little bit higher it hits that one it hits the inside 

fellow first this one, but it also hits this edge.  

 



Then what we do is we make this full sweep and make this wherever it is hitting the edge and 

the vertex then we remove. So, if I remove this what will be left only this vertices will be left 

because the vertices through which there is no edge and vertex there is one here and one here. 

So, my sweep line is often is basically giving me the connection between the start points and 

the edges. 

 

Then what do I do this is step number one, step number two is I come to the edge one at a 

time I come to this edge this is the first one then I do the same thing sweep line algorithm 

now I start sweeping from here to 360
0
. What does it see? It sees that edge then where do I go 

I go here it sees this edge it also sees the edges. So, it goes here it sees that edge and then 

basically what it can do is suppose my goal is somewhere here it connects it with that.  

 

So, this is basically giving us the sweep line algorithm which basically tells us what are the 

various interconnections between the nodes and that is giving my road map. So, in the 

previous example we said that how to get the road map this is how we can get the road map. 

Basically we can shine a ray of light and see wherever it is hitting and identify this vertices 

then this is actually like a ray of light so it is hitting that, it is hitting that, it is hitting this.  

 

So, that is like a road in the road map and we are making the connections to all of them. Now 

something which you have seen here is that there this network includes a lot of roads for 

networks. Now all of them are useful is getting very clumsy and congested. For example you 

may not need in this particular case. 
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Suppose I want to go from the start point to this goal point.  I could have gone like this, like 

that, like this, like this and then gone like that or I could have gone from here to here and here 

to there and there to there then there to here and there to here and then there that is also a part 

it is possible, but something that we notice here is that I if you use the sweep like algorithm 

or this method the current graph has too many lines that means there is just too many lines.  

 

Now something that you will note very easily is that whenever you have concave there is no 

point in going there. So, the lines that go into concave vertices actually not of much use 

because they only lengthen the path they do not make it shorter. So, the next step is to reduce 

the visibility graph and this is called the reduced visibility graph. So, a reduced visibility 

graph consists of nodes that are convex. 

 

Edges that are tangent and do not hit into objects at either end points. So, first of all we are 

reducing it such that anything that is roads which are going into the concave path we will 

remove it because they are taking more distance the increasing the length without doing 

anything useful.  

(Refer Slide Time: 41:38) 

 

So, how do we do that we use the supporting and separating lines. This is called supporting 

line between any two obstacles let us call obstacle 1, obstacle 2 that is a supporting line and 

these are separating lines which are separating these two obstacles. Now, if you can imagine 

if you want to go from here to here then this is the shortest path similarly if I want to go from 

here to there this is the shortest path. 

 



Whereas if I want to go on the outside if I want to go from here to here then this is the 

shortest path or from here to here this is the shortest path that is the logic of the separating 

and the supporting edges. So, basically if you just have supporting edges and separating 

edges you do not need any other lines because any other line coming in between we will just 

add length nothing else. Suppose, from here I go here then I come there this is longer than 

going straight like this.  
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So, what I can do is I look at all the concave path use separating and supporting edges and 

remove the other lines. So, in this particular case which is my supporting line? This is a 

supporting line and which is a intersecting line? Intersecting line will be this and that one 

supporting and separating. So, whatever else is coming I remove it especially which is here 

that is removed you see this is removed here and this one is removed that one is not there.  

 

So, this is a reduced visibility graph this is reduced visibility graph. Now in this reduced 

visibility graph now if you want to go from some point to some point you can simply take 

this route, this route, this route, that route you need not go from here to here go there, go here 

these are not required. So, we can have a visibility graph and then we can have a reduced 

visibility graph by simply using separating lines and supporting lines.  
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So, remove lines that are not on supporting or separating edges to get the reduced visibility 

graph. So, this is also another example which is showing a visibility graph this showing a 

reduced visibility graph. So, we can see all unnecessary lines have been removed here.  
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Now visibility graph method is a very simple method to find the roadmap and then take you 

from point to another point as we can very easily find which obstacles to avoid the obstacles. 

So, this is a very interesting and very easy method, but if you think a little bit suppose you are 

going from one point to another point suppose you are starting from this point and you are 

going from this point a human being or maybe even a dog. 

 

Well it is a dog, a dog is going from the start point to the goal point would it follow a path 

like this if I have to ask you would a dog this path or would a human being take this path 



which path will you take. Now we would not take this path now why would not you take this 

path why is this actually that path. Okay we have found it using visibility graph, using sweep 

line algorithm and all that, but then why if you think a little bit why is this a bad path?  

 

Now this is a bad path because it is going to the edge of the obstacle here, here, here. When 

you go from one point to another point you do not go and brush against an obstacle. You go 

far away from the obstacle why because it is safer. This is not safe why is it not safe? 

Because the robot is going to the vertex and the vertex is on the obstacle. So, if there is any 

sensor noise or there is any kind of problem in estimation then the robot is going and hit the 

obstacle. We know that in the real world there are always errors.  

 

So, the sensors which are there on the robot would have little bit of error. Let us say sensor or 

positioning sensor so if there is small error also it will go hit the obstacle and that is also one 

reason why human beings, humans, animals do not do this. We look at the obstacle may be 

make road maps, find the path and then go, but that path will not be going and touching the 

obstacle because that is a bad idea.  

 

So, the next thing that we do is we look at what is called the Voronoi diagram. So, the 

generalized Voronoi diagram is a set of points where the distance to the two closest obstacle 

is the same. So, here reduction from 2D to 1D. Now, if I go back to this earlier example again 

of a human being which path would you take. So, we will probably take this path we go like 

this, like this, like this and go there. So, what we did is we were equidistance from here if you 

see carefully.  

 

We now go to close to that obstacle we were equidistance from the obstacles that is the safest 

path. Now, if you look at this deformation retract example of cotton candy or sugar candy 

you might have seen that if you have the sugar candies which are like this. So, this start 

shrinking from both sides what will happen is they will go somewhere in the center. Now, if I 

have an obstacle like this so obstacle 1 and I have another one like this. 

 

Which is in between both of this so the path right in between both of this would be here. So, 

it is like we are going it is like this is shrinking this side this is shrinking that side and then 

what is coming from 2D it has become 1D. Now this is basically how we produce a Voronoi 

diagram. 
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For different kind of obstacles we have two features. We have edges and we have vertices. 

So, any kind of obstacle would be made up of vertices and edges and if you want to find a 

distance relationship which is equidistant now that is very easy. So, basically what we are 

trying to do is we are trying to get a set of points equidistance. Now suppose this is an 

obstacle and this is an obstacle and this is another obstacle which is the path which is 

equidistance from here.  

 

So, if you have a vertex here, vertex here very easy this point is equidistance and this line and 

this line is the same the angle is the same. So, it is like this is the path which is equidistant 

from both these obstacles. Now, if you have a straight line this is an obstacle and you have an 

obstacle like this now which is first of all start with the vertex which is the equidistant point 

this is the equidistant point. 

 

Now this is inclined this is flat now what would be a set of equidistance point this is going to 

be curve like this. So, these points would be equidistant. Now, what about edge like this an 

edge like this. Now this is very simple it will be equidistant point will be equidistant from 

both these edges which is a straight line again. So, in polygonal spaces obstacles have two 

features they can be vertices and they can be edges. 

 

So, this obstacles are made to the polygonal they are made up of vertices and edges and we 

can have a equidistance relation between them very easily and another equidistance relation 

is going to be the path.  
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Now look at this Voronoi diagram these are called Voronoi diagrams and this is also called 

deformation retract. Why is there deformation retract because the example I just gave 

sometime back is that if you are thinking of this shrinking or deforming in that direction this 

is deforming in this direction what will be left with is this circle or this curve. So, from 2D it 

has become 1D actually and that is why it is called a deformation retract these are called 

retracts. So, we have one side here, another side here I will start from here.  

 

So, points which are equidistance from both these points is one line. Similarly it is one line 

there one line here, one line here this point are equidistance from two sides. Now there is an 

obstacle here so if you can imagine this obstacle is expanding and this is also expanding 

where will it come? It will come here so this is my network of path now which are 

equidistance from the obstacles and the sides.  

 

So, path equidistance to obstacles plus edges it is work space. Now this is basically called a 

Voronoi diagram. Now in this Voronoi diagram you are seeing that it is same because why it 

is going in between the obstacles is going in between the edge and obstacle also. So, it is not 

going very near to the obstacle or the edge. 
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And this is the deformation retract because you can think about this as the side is good it is 

deforming in this direction the object is deforming in that direction where they are meeting 

they are meeting in between there. So, this is basically called the deformation retract 

generating Voronoi diagram or this is called a generalized Voronoi diagram so this is very 

often called as generalized Voronoi diagram.  

 

Now once we have got the network of paths we got the network of paths which is my road 

map is called a RM then I can go from the start point and join. So, here I can suppose I am 

here initial point I want to go here this is my goal point what I need to do is try this node and 

go and join the node from here I can find the node and join the node and then I have different 

paths I can go like this, like this, like this that is my path. 

 

There can be more than one path so this is how we can find either by using the visibility 

graph we can use Voronoi diagram, we can use deformation retract Voronoi diagram or 

deformation retract they are more or less the same and to find network of paths once I have 

the network then it is a question of just joining the node the nearest to your start point and 

then from the goal which is nearest to the goal and then you can follow the path and go from 

the start point to the end point.  

 

Please note here again that the robot is a point and we are basically dividing into free space 

and obstacle space that is how we are operating.  
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Now these are some examples another example of finding equidistance point between 

obstacles is by what is called the Bushfire algorithm for finding retracts. Now this is very 

easy way of doing it because in the earlier case you saw that it was something like it was 

continuous space. So, what you have this is a geometrical problem why you have the 

equation of this line, you have the equation of this line.  

 

Now, if you take points one point here, one point here then find equidistance point so we 

have to go point by point whereas suppose we can decide we can divide the whole space into 

grids then it is much easier for us the job is simplified and this is basically called Bushfire 

algorithm why Bushfire because you say for example you light a fire. So, we are lighting a 

fire here. 

 

And how the fire will spread is it will start spreading the fire spreads like in the forest so you 

start one point and then it start spreading sideways in all directions actually. So, what we do 

is we divide it into grids and you start putting the obstacle as one so obstacle is numbered by 

obstacles boundaries and numbered by one and increment each adjoining cell by one. So, this 

is 1 the next will be 2 in there will be 3 like that and this can be done very easily by the 

computer.  

 

So, this is 1, this is 2 so any program can do this very quickly. So, obstacle was 1 the next 

one was 2, then 3 then 4 like that.  
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Now, if you see this kind of a numbering it would automatically when you have covered the 

full grid the highest numbers will cross point to in between points. This is 4, this is 5, 5, 5, 6 

now this is automatic. So, between this subject and this subject you see this is a deformation 

retract actually now that is automatic because wherever the number becomes highest, it can 

go anymore and it is going in both direction from here and here.  

 

So, the highest number is the one that is in the middle. So, we basically have made a road 

map as shown here. So, this is a road map which you have made by in this grid format. Now 

you can start from the start point join to the node from the goal point you can join to the node 

and then follow the path.  
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Now here we can also have a 3D so what I just explained was in 2D we can exactly do this in 

3D also. So, in 3D case what we do is we deform it in this direction and this is the wall the 

side wall and this is the obstacle. So, when we are deforming it this is my retract now. In case 

of 3D how will it come you can see that this is a side wall is there, this is the floor. So, we 

have three lines now one line here, one line here, one line here the three. So, deformation 

retract what will it look like? 
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So the deformation retract will look something like this, this line is equidistant and the central 

line is here. Now there is of course at top also there is a cover is also there of this. So, this 

line is giving you the equidistant line from there. Now, if there is an obstacle there then this is 

my for the obstacle this will be like that.  
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So, at the end of the day what we get so it is going to deform like this, like this and what we 

get is my deformation retract which is like this. These are set of points which are equidistant 

from the site and the obstacles. So, we will stop here today and in the next class today we 

looked at manifold then we looked at the rotation matrix and from the rotation matrix we then 

moved on and looked at the roadmap method. 

 

And with the road map method we basically saw that once you have a roadmap then the 

roadmap from the start point we can connect to the road map and from the goal also we can 

connect with road map and then find different path that we get here from the initial point to 

the final point and we looked at a few methods of finding the road map for example using 

visibility graph then by using deformation retracts. So, we will stop here today and we will 

continue in the next class. Thank you.  


