
Computer Numerical Control of Machine Tools and Processes

Professor A Roy Choudhury

Department of Mechanical Engineering

Indian Institute of Technology Kharagpur

Lecture 14

Interpolators Curvilinear

Welcome to the 14
th

 lecture on the online course “Computer control of machine tools and

processes”. So here we are going to discuss about curvilinear interpolators which will include

circular interpolators and also curved interpolators for that matter say if you want to move

along a curve which is not a circle but definitely not a straight line. So it is much more

generic approach to interpolation. So in case you have to do that, what are the “ifs” and buts

and what are the things we have to be conscious about et cetera.

And before that I have also included a short discussion on some of the questions which I

could not discuss in the previous lecture I will just read out those problems to you and you

can do them yourself because they are extremely simple, they follow the logic of the

discussion which have taken place and also the logic of the previous numerical problems

which has been solved in the class. In the 15
th

 lecture I will discuss questions and answers I

mean multiple-choice questions and their answers from the last 4 lectures namely we have the

last lectures that we have discussed.

They include G and M code programming; they include off-line computer off-line

programming then linear interpolation of course and this particular topic of this lecture which

is curvilinear interpolation. On all these 4 topics I will be discussing questions in the 15
th

lecture, so let us start.

(Refer Slide Time: 02:36)

This was one of the problems which I wanted to discuss in the previous class, so I am going

to leave this to you let me read out the question. You join a company which makes escalators;

the escalators are being made where the prime mover is a stepper motor which gets pulses

from a digital differential analyzer. So the stepper motor is receiving pulses from a DDA and

the DDA has X = 13 and n = 5, X is the number which is put inside the counter of the DDA

and the counter has 5 bits, so the maximum number it can contain is 2 to the power 5 - 1.

So in this particular configuration it is sending pulses to the stepper motor at a definite rate

and there is a pulse frequency which is input to the DDA that is F, the DDA is run by a pulse

train of frequency F. One customer wants you to reduce the speed of the escalator to 13 by 32

13 by 32 of its present speed, so the speed which it was establishing with X = 13 and n = 5,

the customer wants you to further reduce it to 13 by 32 of its present speed, how you do it?

And no Gearboxes allowed, so you can give a solution like you can use a different DDA or

you can try changing the value of X in this particular DDA or you can add yet another DDA,

so let me give you the possible solution that you can provide.

Not all of them will work, but you can try one changing the number X in the present DDA,

adding second DDA in series or replacing this DDA by yet another one, yet another DDA

okay, please try out these 3 solutions and maybe in the next lecture I can I can design one

question as an MCQ on this problem model.

(Refer Slide Time: 05:20)

Next one, there are 2 motors in an experimental setup which should always have their speeds

the ratio 3:5, how can this be done by the use of DDAs? So think of it as you are having a

setup of some experiment in which there are 2 motors, their rotations per minute they have a

definite ratio. If you establish their rotational ratio with the help of gearbox okay if you

establish the rotational ratio with the help of gearbox it is something fixed, so that you want a

change in the gearbox ratio, you might have to go to the market, buy another yet another of

those Gearboxes which are quite expensive and remove the previous one and put the present

one in.

The problem is, such changes are very expensive and therefore in the problem we are

suggesting, put another DDA sorry make use of DDAs to solve the problem so that if you

require a different ratio, either in those DDAs you can make some change or you can remove

these DDAs and put some other one to serve your purpose, ok so this is the problem. And if I

if I can get the time, I will frame 1 MCQ to fit this particular type of problem, so with this…

Last of all, I have something else to discuss also.

(Refer Slide Time: 07:11)

That is, from the basic DDA that we have discussed there is always a possibility to make

decelerators with this sort of configuration, what is this configuration? This configuration

shows that there is an input frequency coming into the DDA and the DDA is sending an

output frequency corresponding to some number which has been kept in that counter okay;

the number inside the counter gets added to itself due to each and every pulse coming in at

the input frequency point. So in that case, if we want the rate of output pulses to

automatically go down in time say exponentially.

In that case there is a provision that parallel to the output going outside to serve whatever

purpose it is supposed to, parallel it can also be fed back to the input block point of the

counter, in what way? Just like we have down counters, these counters inside the DDA they

also have up counting point and their down counting point. At this moment it is shown to be

connected at the down counting point so that each and every pulse which is coming out as an

output from the DDA, that is also fed into the counter and eventually what it will do is, in this

configuration we have meant it to be down counting or decrementing the value X inside the

counter.

So if X goes down, ultimately the frequency of output that will also go down and it can be

shown very easily that is sort of configuration will result in exponential deceleration. If we

have exponential deceleration, we can achieve a number of things with that sort of a set, all

right. So let us complete our discussion on circular interpolators.

(Refer Slide Time: 09:26)

Circular interpolators, they have they are somewhat different from the linear interpolators,

this is their configuration. For example, we have seen that pulse rate is coming at the system

at the input to the feed DDA and this was the basic configuration remains the same whatever

was there for the linear interpolator, same thing is there for circular interpolators, whatever

was coming in as at the system clock I mean from the system clock whatever frequency of

pulses that are coming in, same pulses they are coming in here as well, so what is different?

In the feed DDA previously the S word which was put inside that has not changed, what is

that? That is now equal to 10 V by R, where R is the radius of the arc being cut if they are

having an arc of a circle, it has a particular radius. If we are interpolating along that arc, in

that case the radius of that arc comes into the picture and we have S word equal to 10 V by R

in in case of circular interpolation. So S word is different, what else is different, the pulses

which are output from the feed DDA and the ones which are going to X DDA and Y DDA.

The X DDA and Y DDA counter inputs where previously Delta X and Delta Y and therefore,

the frequency of pulses they were proportional to the incremental distances to be covered so

that we have velocity of the motors running due to these pulse trains, velocities are

proportional to incremental distances and we had velocity triangle similar to the displacement

triangle. In this case however, we are replacing Delta X and Delta Y by R Omega Sin Omega

T, where R is the radius of the arc being cut, Omega is the angular velocity. You know, we

are doing circular interpolation at constant angular velocity and therefore, R Omega Sin

Omega T replaces Delta X and R Omega Cos Omega T replaces Delta Y.

Okay, I mean a lot of combinations are there but this is a typical combination and in addition

to that, we are having feedback from the output pulses so that R omega Sin Omega T and Cos

Omega T get updated time so that the rates of the pulse output from the X and Y, they also

get updated in time. There if you have the same rate of pulses coming out and at X and Y,

you are simply going to cut a straight line. But if you can change them sinusoidal, then you

can get a circle so the pulse frequency becomes very high goes down gradually and comes to

its lowest value and that way it goes on fluctuating along X and Y where circle is being cut

okay.

While X becomes high Y becomes low, Y becomes high X becomes low, this is the typical

combination that we have for these 2. This is achieved by the feedback which has been

shown and the type of feedback is exactly the one which was shown in case of decelerator,

okay. The counters are updated or updated with the pulse rates coming out from the velocity,

but why so, what is the logic behind this thing, why are we doing this? These things can they

can all be derived, it is already present in the reference which is mentioned at the bottom, so

we are not going into the elaborate derivation of these expressions but we can work well this

particular basic knowledge of these basic changes from the linear interpolator.

(Refer Slide Time: 14:04)

So we have just summed up the changes that we discussed just now, ‘S’ word changes to V

by R instead of V by L, 10 is just a constant multiplied to it, it is not affected. Contents of the

registers in the X and Y DDAs are now Sin Omega T and R Cos Omega T and they get

updated in time and there is also feedback. Feedback is to change the values of R Sin omega

T and R Cos Omega T. So R Sin Omega, if you have a look at this particular figure.

(Refer Slide Time: 14:53)

If you are starting from this point say and you are trying to reach this particular point, in that

this is R and this is Sin Omega T and R Cos Omega T. So these values okay in basic length

units they are fed into the interpolator and they get updated in time which means that suppose

you have reached this particular point therefore, this is the present value of R Sin Omega T,

this is the sorry Omega T. This is the present value of R Cos Omega T. So while R Sin

Omega T has increased, R Cos Omega T has decreased, from this value it has come to this

smaller value R Cos Omega T. So this may be fine that if you are cutting along a 2
nd

quadrant, R Sin Omega T goes on increasing while R Cos Omega T goes on decreasing.

So the same thing might not occur in this segment or this segment and while you are moving,

say here we are moving counterclockwise while you are moving sorry, we are moving

clockwise, so while you are moving in some other segment and maybe moving

counterclockwise, you might not always get this same combination okay. But this is what

happens, the number inside first we put this number and this number in basic length unit and

they constantly get updated in time, so this number becomes larger and larger, etc as you

move towards the target and this number becomes, R Cos Omega T becomes smaller and

smaller as you approach the target okay, so this way it works.

(Refer Slide Time: 17:02)

And at any point in time when this is the point which has been reached, this is the resultant

velocity and these are the 2 velocity components. And output pulse rate of that particular

interpolator, they become exactly these values, okay. So output pulse rate, they are fed to the

control loops, at the same time they are also fed back so that they update the values of R Sin

Omega T and R Cos Omega T, this is how it works. No coming back let us now discuss

something which is little more general that is instead of cutting straight lines and circles, et

cetera, do we do something else?

(Refer Slide Time: 17:56)

And in addition to that, are we always using hardware interpolators? Is there anything called

software interpolator? There is; software interpolators are very much there and software

interpolators for example, reference pulse interpolators in a way they mimic the the working

of the hardware interpolator. Inside the hardware interpolators were having sequentially an

overflow of the feed DDA going to the going to the X DDA and Y DDA and their turn they

are producing overflow pulses and these overflow pulses are sent to the control loops.

In the same way, we can have the working of the software program in which the control 1
st

goes on doing some kind of virtual addition inside a feed subroutine, which when it

overflows a certain limit, it goes to the X subroutine and Y subroutine and addition takes

place there also and they produce the respective outputs and then if an overflow takes place, a

pulse is sent to the X or Y motor whichever is the case. So in that case there are certain

developments in case of software. In case of software the advantage is that, while hardware

interpolator always has the counter size et cetera, always fixed, in the software integrators

such restrictions are not there.

Like in the hardware interpolators you always have to have size of the interpolator to be 2 to

the power n - 1, such restrictions are not there in case of software interpolators okay. So in

many cases we can we can have lot of flexibility in the software interpolators and that way

we have the reference pulse interpolator working in in software and working on the principle

of the hardware interpolator. And instead of achieving just linear and circular interpolation,

we can also have software interpolators for parametric curves, what is the meaning of this?

So if I have a curve which is neither a circle nor any of the common geometrical curves that

we come across; ellipse, parabola, hyperbola, et cetera, but these parametric curves are free of

any mathematical form, they are also sometimes called Free form curves and say the

movement of the cutter has to take place along these. In such cases also we have interpolators

and these interpolators can work off-line as well as online, now what does this mean? An

interpolator which is working off-line it means that away from the actual point of machining,

it is doing some calculations and finding out some points through which the cutter has to

move and these points are then finally dumped to the machine memory.

So when these points are dumped to the machine memory, the machine simply goes through I

mean leads the cutter through these points and whatever curve is being machined that

machining can be done very easily, this is off-line. Online means that when I am at a

particular point on the curve, I do calculation to compute the next point by some sort of you

know, some sort of very fast routine. Why fast because if I moving from one point to another

and the distances are typically very small, in that case I do not have much time at my disposal

to calculate the next point, so some very fast calculation is done like some tailor series

approximation is resorted to in order to find out the next point.

Once the next point is found, again the next point, calculation for the next point takes place.

And if there is some provision for some error correction, because whenever you are trying

move to a particular position, in that case there is always a chance that you will be making

some error and feedback might be telling you that you are away from the target by this

amount, so this is the typical working of the online curve interpolator. But why at all has

there been a branching of into 2 types of interpolators? So obviously, there must be some

disadvantage for off-line and some disadvantage for online as well, let us have a quick look at

that.

(Refer Slide Time: 22:56)

So in case of off-line software interpolators, the point on the curve of movement are selected

through the application of some Criteria, so what do we mean by that? There is a particular

arbitrary curve and on that I select certain points through which I am supposed to move. For

example, we might see the division of the actual path of the other okay, the cutter is always

moving straight line I mean it it it approximates a curvilinear motion by breaking it up into

small straight lines, let me quickly draw and show you an example or do I have an example

here? Yes.

(Refer Slide Time: 23:38)

This curvilinear path okay, this is the path which is the path which should ideally be taken by

the cutter, it is a parametric curve, so this particular parametric curve is our goal, the tool

should be moving along this particular path. But as the tool can only move in straight line, it

is moving like this, this is the path of the tool. It is going this way, then is going this way,

then it is going this way, these are the pathways of the tool. However, there is a deviation you

cannot avoid deviation if the tool is moving along straight line segment and the path to be

taken ideally is a curve. So we observe that these segments which are building up the tool

path, they are unequal segments and these deviations which are shown, these are equal, why

so?

This is not arbitrarily happening, but this is what we try to do at least I mean this equality of

the deviations we try to achieve, once again why? This is because whenever we are accepting

the fact that we have to deviate from the path, and then from formed tolerance a particular

value of the maximum deviation is stated. So suppose we say that okay we accept that the

tool will be deviating, but this deviation should always be equal to 50 microns. Mind you, not

feed in but we are suppose saying that it should be equal to 50 microns, let us see what these

leads do.

So in that case what we do is, we do some sort of calculation in off-line computing system,

you have all the time to do all these calculations and what we do is, we set up a target and we

decide okay, this is my point and then you make a calculation okay this is my deviation and

therefore, you find that it is not equal to 50 may be it is equal to 45, so you can do some sort

of iteration that means repetitively you can use the results of last calculation, update your

calculations that way okay and ultimately you will always try to achieve a deviation of 50

microns by placing the target point of the cutter for this 1
st
 cut at some change point.

So this way say after 5 or 6 such iterations, you hit upon a deviation of 50 microns that is

very good. And suppose you find that this particular segment length is equal to say X, for the

next segment once again this is the maximum deviation and this is say this you equate to 50

microns by calculations and come up with another segment and therefore there is absolutely

no reason why these should be equal to each other. If they are completely, they have no

relation to each other, they are completely arbitrary that way and therefore we understand that

these 2 these 2 segment lengths, they are not necessarily equal to each other.

So I have segment 1, segment 2, segment 3, segment 4 coming up and they are of different

lengths, while I have deviation 1, deviation 2, deviation 3, et cetera equal to each other and I

am satisfied. Deviations are the same as laid down by the programmer, so what is wrong if

these segments are not equal? The problem is, if we have different values of these segments,

these segments have to be covered in the same time intervals, why? Because velocity values

can only be imparted to the machine controls at the end of a machine cycle, a machine has a

definite number of cycles and at say we assume at each machine cycle start, we are setting a

different value of velocity for that particular machine.

So at this point say first machine sorry here starts the 1
st
 machine cycle and it is of T seconds

and for that we set a particular velocity ratio so that this is the resultant velocity. After T

seconds is over, we set up another velocity and this way at after 2T we are here and we set up

another velocity ratio of the axis velocity, at 3T we set up yet another one, so far so good

nothing is wrong, but the problem is, if these are different then the velocity value has to be

different in order to go through these points because the time interval we are setting the same.

At the end of equal machine cycle intervals in time, I am setting up different velocities to

attend different directions.

But since these distances are different, they have to be I mean the velocity values have to be

different. Now comes in the machining from the from the machining accuracy point of view,

he will say that if you do not set up equal feed velocity in these cycles, you will have a

problem, what is that problem? If you say feed fluctuation occurs, surface finish cannot be

maintained to be the same therefore, if you have to have maximum deviation always

occurring so that you are working with maximum efficiency, in that case you have to allow

for feed rate fluctuation between these and your surface finish would be non-uniform okay.

Next, so apart from the rate fluctuation suppose you say that okay I am going to tolerate

different values of this particular deviation okay, I am going to tolerate different values of

this particular deviation and that way keep feed to be the same. In that case, you have

different contour error all through the contour. At one place you will have 50 microns, at

another place you will have 25 micron. If you have no problem with different deviation, then

okay you can accept it, but if you want the deviations to be same, you have to allow some

feed rate fluctuation.

Secondly, if there are wide variations of the contour; I mean if this curved portion has very

high curvatures, etc, in that case contour error might be occurring because this simply cannot

restrict the deviation to this particular value for a reasonable segment length okay, so their

contour error will be uncontrollable. Also, if this sort of a scheme is working, in that case we

have to tolerate with a large value of formed tolerance, we have to we have to accept a large

value of tolerance, why? Because for an extended length of this parametric curve, we can

well have huge number of points if the tolerance is small, so we have to off-line calculate all

these points and that will make up a very large data file size.

So in order to keep data file size within limits, generally the amount of variation of the cut

profile from the ideal profile that is very large. For large tolerance values have to be accepted

if you go for off-line calculations because if you are uploading a huge file it is difficult for the

machine to handle because of memory size restriction okay, thank you.

