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Lecture 18: Entropy And its Transport

So far we have discussed various phases of entropy transport and we will continue with that and

the specific agenda of today’s discussion we will to mathematically discuss the various aspects

that come with the deception of change in entropy of a system for a control mass system as well

as for a flow process so to began with I will try to draw your attention on the following in

equality.
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Ds system is ≥ ∂  Q / T so this is something which is I think the most important inequality that

we talk about when we discuss about the change in entropy so what is this T something which is

very important and we will go through that though various teasing questions and exercises in the



subsequent two three modules but this T conceptually is the temperature of the system bounded

here cross which this Δ heat transfer is taking this, so it is not any orbiter T it is the temperature

of that  system bounded here across which the heat  transfer is  taking place for which you're

calculating this ds system.

So now you can also write this or convert this inequality in the form of a equality so you can

write ds system is equal to ∂ Q / T + entropy generation which is ≥ 0m this is for a system now of

course  the  mathematical  objective  is  satisfied  here  that  we  all  are  understand  that  this

terminology  is  introduced  to  convert  the  inequality  to  1  equality  but  what  is  the  physical

significant of this in the context of heat and work we have to understand that entropy generation

is a general conceptual paradane it should not always be associated with heat transfer.

It could be associated with flow of information in an information system and so but here we are

considering the heat transfer as an example, so now we can write so let us do let us do a different

exercise let us write the 1st law for a system as ∂Q again we are not considering the change in

kinetic energy and potential energy because we are considering that the thermal effects are more

important.

So now in place of  ∂Q can we write TDS the answer is we can write TDS only for reversible

process if it is not reversible process we cannot write ∂Q = TDS now what is ∂W so in place of

∂W we can write the following the first question that let me ask me you that can be write this

Pdv, okay so can we write as Pdv what is your answer, so let think about it let us say that we are

instead of this we are writing ∂Q = TDS so if we do that then in place of ∂W we can write Pdv

with an understanding that we are talking about a simple complex substance.

So that the work is only Pdv work but the Pdv wok is not the work that you can get as output

when that you get as output when the process is irreversible so the question is when the process

is irreversible what is the work that you get when the process is irreversible the work that you get

as an output should be less than Pdv that means because of irreversibility the irreversibility may

be associated with fraction free expansion whatever you are losing an opportunity of doing work

so you can write Pd vans your actual ∂ W + some δLW which is something positive so the last

work is 0 when it is reversible process.



So that it will be pdV but if it is not a reversible process then you have last work, so technically

speaking you cannot write LW = pdV always so when you write this TdS = dU + δW + δLW let

me show let me try to use here so dU + δW this together from here you can write δQ so TdS =

δQ + δLW, so that means dS so when we write dS we mean dS system not always we are writing

the sub secrete dS system so dS = δQ over T + δLW over T.

So now compare this * with ** okay compare the * with ** okay so we can write if you compare

the * with the ** we can clearly write that this entropy generation is nothing but this LW/ T that

means entropy generation is always associated with the last opportunity of doing one that can be

taken as a physical interpretation of entropy generation in a  system where you are trying to use

some heat transfer to convert that into work so if you are using some heat transfer to convert that

into work there is a maximum potential of that heat to be converted to work, but you may not be

able to utilize that maximum potential.

Because of entropy generation or irreversibility in the system, so physically you may have last

opportunity of doing work for last work, so this is the first physical interpretation that I want to

give and then using the same inequality let me try to give you a different prospect let us give an

example.
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Where you have process with P = P0 and T = T0 that is pressure and temperature they are kept as

constant but still  there is  a change within the system how is it  possible,  remember that for

system to be in equilibrium it has to be mechanically equilibrium thermal equilibrium and phrase

and chemical equilibrium, so these two indicate mechanical and thermal equilibrium but it does

not guarantee in phase and chemical equilibrium, so they are put still be a change within the

system even if you keep.

These two same and let us consider certain such a change so we can write again for such a

system dS > = δQ over T and again this T is absolute temperature by this time you know very

well that in when you are considering something in the context of second law that T is absolute

temperature, so now you can write δQ < = TdS if you apply the first law in place of δQ you can

write dU + δW neglecting changes in kinetic energy and potential energy when can you write

this δW as pdV.

When it is a internally  reversible process or pass equilibrium process so pass equilibrium or

internally  reversible these two terms are equivalent  or internally  reversible,  so now this  is a

process where T is kept as constant so you can write TdS or rather sorry I have written δU by

mistake, so dU d of U + now this pdV you can write d of P0V because P0 is a constant you can

take it within the difference here, so d of U + P0V similarly this you can write as d(TOS) so u+

P0V – TOS <= 0 this means d of what is u+ pv, U + PV is the enthalpy H so d(H) with reference



to pressure P0 – T0S <= 0, so here we come up with another mathematical function which is a

combination o properties this we call as Gibb’s function or Gibb’s free energy of the system.

So DG so that means we can say that any spontaneous process will take place if at a constant

temperature  and  pressure  the  Gibb’s  function  or  Gibb’s  free  energy  is  decreasing  so  a

spontaneous process cannot take place if the Gibb’s free energy is increasing and it comes to

equilibrium when it is a minimum that there is no further change in the Gibb’s free energy.

So why I am telling you this because in this particular course we do not have a lot of scope of

discussing about the Gibb’s function and its interpretation in the context of phase and chemical

equilibrium but  I  want  to  give  you a  very  basic  elementary  physical  picture  on  the  Gibb’s

function its physical interpretation so you can see that these G therefore is the driving force for a

chemical change to take place or driving force for a phase change to take place.

And we have already discussed that for a phase or chemical equilibrium the chemical potential

concept  with  the picture  and that  chemical  potential  is  linked with  the partial  moral  Gibb’s

function. Now in the two examples that we have consider in this today’s lecture so far we have

considered the cases of irreversible situations but let us consider an example where we consider

reversible adiabatic process of an ideal gas.
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So let us apply the first law and second law for this, so let us apply the first law. �Q = DU + �W

now because it is reversible you can write this PDV Ideal gas we consider it to be a simple

compressible substance with the pressure volume temperature changes are more important than

other changes and because it is adiabatic this is 0 so you can say so this PDV is for reversible and

this is for adiabatic.

So we have used both the considerations of reversible and adiabatic now for an ideal gas DU is

CVDT this we already discussed in one of our previous lectures and we know for an ideal gas the

equation of state is PV = RT so let us apply it for a unit mass so if you so this will be M CVDT if

it is total mass so if you apply per unit mass it will be CV0 = CVDT + P x d of specific volume,

right.

So for an ideal gas you can write P x specific volume = RT so if you take the differential of both

sides you have PDV + VDP is RDT. So you can write DT is PDV + VDP/R, let us substitute this

here so if you substitute this here then you get 0 = CV PDV + VDP /R + PDV. So you can write 0

= CV + R PDV + CV VDP, CV + R is CP and if you divide both sides by CV then you have

CP/CV = γ. So 0 = γ PDV + VDP so you can divide both sides by PV and what you get is 0 = γ

dv/v + dp/p  so you can divide both sides by pv and what you get is 0=γdv/v+dp+p so if you

integrate now you will get γlnv+lnp=lnc or this means pvγ=constant, so this shows that for a

reversible  adiabatic  process  of  an  ideal  gas  the  pressure  volume will  essentially  shows that

pvγ=constant.



With this back ground now let me give you a teaser, so let me relax the condition that it is a

reversible process, this is the next example it is an adiabatic process of an ideal gas but need not

be reversible that is the next example, so what happens here.
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So δQ=du+W by the way for the reversible adiabatic process of an ideal gas if you have pv γ=

constant the work done we have already seen that is integral pdv so p2v2-p1v2/1-γ in the chapter

of heat and watt we have derived this, we can example of a reversible polytrophic process we

have air we have use the index n here just use γ instead of n. Now we will find out the work done

here, so it is a adiabatic therefore δQ is 0 it is not reversible.

So we cannot write δW=pdv so W12=∫δW from state 1 to state 2 is equal to –du integral of this,

so –(u2-u1). So as an example, assume so du is what so this is per unit mass so m.du so m.u2-u1

so assume Cv=constant, so this if you assume Cv=constant this is then becomes mCv(T2-T1). So

now you know that you can write Cp/Cv=γ and Cp-Cv=R so from this you can write Cv in terms

of R Cp you can write as γCv so γ-1 Cv=R so Cv=R/γ-1.

So –mR/ or minus you can absorb okay, -mR/γ-1 so you can write R(Tspv) so this you can write

(p2v2-p1v1)/1-γ this is something which is bound to create a confusion within you that with the

reversible adiabatic process whatever answer we got as work done the same answer we have got

as work done when we relax the requirement of reversible process, so the work is becoming

same for reversible and irreversible process so where is the fallacy.



Actually the work done p2v2-p1v1/1-γ is true for a reversible process even if Cp and Cv are

functions of temperature, but for an irreversible process we show that this is true only if Cp, Cv

are constants  otherwise this  integration  cannot  be done in  this  way.  So this  is  true only for

calorically prefect gas, but not for all ideal gases. Calorically prefect means only when Cp, Cv is

constant but if Cp, Cv is not constant then we cannot use this, okay. The next agenda will be to

discuss about.
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Entropy transport for a flow process, so let us say that there is a control volume there is some

inflow boundary there is some outflow boundary, so we can write the entropy transport across

the control volume in terms of the entropy transport of a control mass system, why we intend to

write it in this way is because we already know how to describe the entropy transport trough

across a control mass system. So we want to use that to extend it to the entropy transport for a

control volume so for control mass assister we have already read the ds = ∂q/ T + d of entropy

generation.

So that means we know what is ds of with respect to system so now we want to apply that to ds

with respect to control volume so what w e want to do is something like this let us say that we

apply the Reynolds transport theorem, so I am straight away writing it for taking the property as

s it could be any general extensive property so ds dt for with respect to the system is ∂s / ∂t with



respect to the control volume plus rate of outflow minus inflow of entropy across the control

volume.

So instead of entropy we could use any property but as an example we are using entropy as a

property now what is ds dt of the system this is ∂q/ T + ds gen this ∂q / T is the ∂q system but in

the derivation of Reynolds transport theorem what is considered is that there is a control mass

system which is go inside with this control volume in the limit  as that time ∂t that is under

consideration is 10 x 0. So when the control mass system is almost coincident with this control

volume that means the δq of the system will be same as δq control volume, so this will become

δq cv / t + dsj. 
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Therefore we can write δqcv / t + Ds gen = ∂s ∂t cv + rate of outflow – inflow of entropy is Σ m°

e se – Σ m°I si this gives what is m° is the mass flow rate this is waste on the assumption that

across the inflow and the outflow boundaries this is inflow boundary this sis out flow boundary

there could be many inflow and many outflow boundaries across each boundary the property is



uniform so that the total property you can just simply write mass flow rate times the entropy that

particular section so this can be thought of as an average specific entropy over the section across

which the transport is taking place. 

So this  is  so you can write  so you can write  this  equation  or  this  particular  equation  as an

equation that commands the entropy transport during a flow process, so let me give you one

example we will talk about two examples first example reversible and adiabatic flow process

with single inlet and exit, so because it is adiabatic you have so one particular in this expression

one particular thing which we have missed is that the right hand side is expressed on the rate

equation.

So left hand side should also be expressed as a rate equation so instead of ds this it will be s dot

gen that is the rate of entropy generation and this will be Q.CV/t so the important thing that we

have made important consideration we have made is that right hand side we have expressed on

the rate equation in a transport theorem so that left hand side should also be expressed on the rate

equation.

The expression for the second law that we have used S2-S1=Q/t+ entropy generation that is not

the rate that is the total change so we divide that by time ∆t and take the Kelvin as ∆t is used so

Q.CV IS 0 reversible means entropy generation is here let us consider that in addition to this

reversible adiabatic steady state steady flow process this is very important.

A reversible adiabatic steady state steady flow process so if you considering this steady state

steady flow process what is essentially means that there is no change of property within the

control volume so steady state steady flow process there is no change in the property within the

control volume and single in let and single outlet means this £ will be replaced by just you can

write 0 is equal to m.e Se- m.i Si.

And the mass conservation is m.e is equal to m.i so you can write Se is equal to Si so this is true

for reversible and adiabatic process so this kind of process is also called as isotropic process

because  the  entropy  remains  constant  throughout  the  process  now  let  us  applied  the  Tds

relationship you can apply the Tds relationship for any process so you can write Tds equal to DH-

Tdp so now you apply this there is no change in the entropy during the process, so this is 0 so D h

is equal to Tdp so i to e this is I to e so He-Hi is equal to integral of Tdp from i to e 
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Now let us apply the first law so Qcv+m.*Hi+Vi2/2+gzi+m.*He+Ve2/2+gze+wcv what is w.cv  is

w.cv / m dot okay. Now look at this equation hi – he = - integral of Vdp so you can write w. cv

integral of Vdp from I to e + Vi2 - Ve2/ 2 + gzi – ze, this is true for reversible adiabatic process. If

you consider the isothermal process reversible + isothermal + steady state steady flow, so for the

isothermal process so we are replacing the adiabatic process by isothermal process, so isothermal

process because it is reversible isothermal process you can write Q. = or ΔQ = Tds.

And Tds you can write as dh – vdp, so this you can always write okay, so in place of the heat

transfer now you could, now you cannot write 0 but you can write Tds in place of Tds you can

write dh – Vdp. So if you write dh – Vdp then you will see that the work done expression comes

out to be the same. You just substitute this ΔQ as Tds ad dh – vdp and put it in the expression for

the first law. So instead of it will come out to be m dot x h2 – h1 – m dot integral x vdp, where

small v is the specific volume. 



So you will see that you will get the same expression for the work done, so we are consider two

limiting cases one reversible adiabatic and one is reversible infact any reversible process it does

not need to be isothermal because here we are not consider any where the t is constant, we have

just used Tds this t itself could be a variable therefore we have not committed the t is the constant

so reversible isothermal is a special case but it could be any general process.

So for any reversible process, so as a matter of fact for any reversible steady state steady flow

process with single inlet and outlet, this is the expression that we get for the work done per unit

mass, it is very important expression and we will take up with this expression and go further for

our next lecture thank you very much.   
    

         

             
      

            
         

     


