
Tools in Scientific Computing

Prof. Aditya Bandopadhyay

Department of Mechanical Engineering

Indian Institute of Technology, Kharagpur

Lecture - 30

PETSc – Creating Vectors and Matrices

(Refer Slide Time: 00:27)

Hi everyone, in this particular lecture we are going to look at matrices and vectors in Pets

C. And if time permitting we are going to solve a simple algebraic equation and see all

the objects that we can access. So, in the previous class we looked at some aspects of m

p i, but in this particular lecture we are going to make use of a single processor just to

avoid any kind of confusion.

So, let us try to create this particular vector. [7 1 2 4]; so it is a 4 1 vector 4 rows and 1

column and yeah; so, all the elements are non zero as you can see. So, let us see how we

can go up go about defining this particular vector.

(Refer Slide Time: 01:45)

(Refer Slide Time: 01:57)

So, as usual we will create a new file and first things, first we are going to import petsc.

So, hash include std not std petsc.h. Then we are going to make the main function. So,

int main arg sorry int argc char star star argv and we are going to return the output of

petsc finalize.

We have looked at petsc finalize. So, petsc finalize its wrapping up the code and the

return value is simply the i e r r that is the error signal. So, it’s going to be an integer. So,

we can return that that is the conclusion of the code. So, there are certain things that

every petsc code must have right.

So, first things first there has to be a Petsc initialize. If there is a finalize, there has to be

an initialize as well and the initialize takes the command line arguments and some help

string alright. So, with this out of the way so we have petsc initialize and this.

So, now we must declare certain variables. So, in order to declare an array, the way to do

it is to tell which elements are going to be non zero right. So, what we can do is; so, let

us declare some element, some variables that we will need. So, we will need a vector, let

us call it b. So, vec is a data type inside petsc and so it is a vector right. So, similar to this

there are there is a data type called mat, but we will come to that later.

So, b is a vector alright. So, we will need the integers where we are going to insert values

and of course, we are going to need some will be, we are going to need an array of

numbers with which we are going to fill in the array b ok.

So, I mean this is a very synthetic example and over here you are not going to truly

appreciate the power of petsc, but I am going to give you some pointers on how this may

work out, not may work out it works out.

So, we are going to create a double array we are going to call it a b just to distinguish it

from b and the a prefix I use it so that it reminds me that it is like an auxiliary array to b

ok. So, let me declare this as so what did we have? 7 1 2 4. So, 7.0 1.0 2.0 and 4.0. So,

this is the elements that we want to put inside b and apart from this what else are we

want to need anyway. So, as we go ahead we are going to declare things as and when

they come ok.

So, the way to initialize or create a vector is the following. So, first things first you must

do VecCreate, you must then do VecSetSizes. So, this is a common procedure of

declaring a vector. Then we must do VecSet from sizes from options, then we must so

over here we must set values ok, let me save this file alright.

(Refer Slide Time: 06:20)

So, now we have some colors. So, there must be some code over here which will sort of

assign values into this, then what do we have we must then assemble the vector. So,

VecAssemblyBegin and then we must follow this particular function called by

VecAssemblyEnd and it is just a idiosyncrasy of this particular library, you have to do

this always.

This these two follow each other. So, I have not yet put in the arguments of this function

calls, but the argument of assembly end is going to be the vector that you are going to

populate and b is also going to be this; so yeah so far so good.

So, now VecCreate; so VecCreate must be done over. So, since we are using one

processor. Well, it is not just a question of one processor; it is a question of making the

address of b available to all the threads that you will declare. That is why you have

PETSC COMM WORLD and you are giving the address of b. Now, inside set size you

must tell that we must set the size for b and we must let petsc decide I will come to the

syntax in a while and the size is going to be 4 alright.

So, petsc decide, this particular keyword is used to signify the fact that if you are using

multiple processors so, one processor will maybe initialize these two, one processor will

initialize these two. Things like this, I mean so for such a small array it does not matter

right, but once it starts becoming very big, you may benefit tremendously by distributing

the load over several processors alright.

So, now once we have set the size of b. So, this is the overall size and petsc decide will

decide how to distribute the load alright. So now, set from options it has to be only

passed to b. Now, we must set values. So, there are various ways of setting values. So, let

us start with method one.

I mean rather than going with method one I will I am going to show you the easiest

method which is VecSet values. And VecSet values must first accept the argument b that

is the vector you want to populate, then how many entries do you want to populate that

is; 4, then we must specify the indices where you want to populate.

So, we must create an integer array. So, let me call it j and we will make this j 4 and we

will make it 0, 1, 2, 3 right. So, j is the address of the array which holds the indices

where we want to insert these nonzero entries and I will change this and show you how it

will affect the code.

So, we want to insert 4 values at the j locations. So, j is the indices where you want to

insert and lastly, we want to tell what exactly we want to insert. So, we want to insert the

entries inside the array a b. So, a b is the address of the array 7, 1, 2, 4 and how do you

want to set the values? There are two modes; one is insert values and one is add values.

So, if there is an already existing entry for b, if you do add values you will sort of add

whatever you are doing to the existing values. If you do insert values that will erase the

value insert the present values alright; so far so good. So, yeah this assembles the matrix

and in the end before finalizing we must do vec destroys, we must clear the variables. So,

we must give the address of b and that is it. So, let us save this, let us go to our make file

and create a new target.

(Refer Slide Time: 11:34)

So, let me hit conrol H oops, control H and I want to replace this by declare vector ok.

So, replace, replace, replace, replace, replace. So, there is no use of like rewriting this

entire thing. We simply having the same variables and rules. We are just making a new

target right.

(Refer Slide Time: 11:54)

So, let us save this file. So, we have our code over here alright. So, make decl vector ok,

there appears to be an error. So, let us see what the error is. So, there appears to be so,

this has to be set sizes oops! Yeah, ok.

(Refer Slide Time: 12:23)

(Refer Slide Time: 12:27)

So, it compiles nice and well. So, let us just do dot slash declare vector we have to allow

this ok. So, it does nothing as expected, because we have not printed anything we have

not like asked it to do anything for us. But what we can do is pass this command line

argument minus VecVeiw and it will show us the elements of the vector ok.

So, additionally we can insert this VecVeiw inside the code itself. So, what we can do is

vec so, before destroying the vector we can do VecVeiw, we will pass b, then petsc

viewer std out world, just to say that it has to run on a single process.

(Refer Slide Time: 13:23)

So, let us make it again, let us run it and now, it shows without having to pass the extra

argument. So, without using this ok, alright so, we have now initialized this now. So,

what happens? If we still make j equal to this, but we only do b as so, we only want to

insert 3 values.

So, we still have the 4 indices and the 4 values, but instead we say we want to insert only

3 first indices and the first three indices the first three values. Let us see what happens.

(Refer Slide Time: 14:12)

So, look its initialized it to 0 instead of getting a 4, because we have not told it to

populate b with 4 values, we only told it to populate with 3 values.

(Refer Slide Time: 14:31)

Similarly, if I do only one it will only populate the first value. Let us make it again value

ok. So, it is incredibly versatile you can declare everything you want, but in the end if

you want to fill partially you can choose to do that, there is nothing wrong in that. So,

this is how we can declare vectors and sort of print them out. Well, there are various

ways of viewing a vector as well.

(Refer Slide Time: 15:03)

(Refer Slide Time: 15:14)

(Refer Slide Time: 15:24)

So, like I told I am going to show you the function reference. So, VecCreate so, it

requires the MPI communicator which in this case is PETSC COMM WORLD and it

requires the pointer to b the address of b. So, we have passed the address of b ampersand

b that is standard c syntax. So, VecSetSizes so, it sets the local sizes.

So, we have to pass the vector the small n is the local size if you have multiple

processors then you have to pass small n, but in this case we have let petsc decide and

then the global size alright. So, the global size of our array is 4, but we have asked petsc

to decide for us the best load balancing it can do. In this case we are running it on one

processor. So, it does not matter anyway alright. So, with these options it is going to

initialize b over here.

(Refer Slide Time: 16:18)

So, now VecSet Values let me go to the function reference like set values alright.

(Refer Slide Time: 16:29)

(Refer Slide Time: 16:31)

So, it requires the vector the number of elements to add look is the it is number of

elements right. In this case we wanted 4 and I have showed you what happens when you

reduce it.

If you increase it, it will let us see what happens when we increase it ok. Before that we

must show the, we must tell what the indices of insertion are ok and we must tell what

values you want to insert and you can either insert values or add values. So, it is quite

simple. This is the standard syntax of creating a vector in petsc.

So, now let us increase this and see what happens let me make it 6 just to go beyond the

boundary case. So, let me make this; obviously, there is not going to be an error over

here, because we would not done any illegal sentence and there is an error argument out

of range. So, it cannot do that, it gives a big garbage value. So, we must have this

maximum 4. So, let me fix it great. So, now we will proceed to figure out how we can

declare matrices in this particular way.

(Refer Slide Time: 17:57)

(Refer Slide Time: 18:05)

(Refer Slide Time: 18:06)

(Refer Slide Time: 18:09)

But before we go to that let us just go to VecView, because I want to show you function

reference for VecVeiw. There are various kinds of viewers. So, this ASCII, binary, draw

ok. So, there are various kinds of viewers that we have. So, this a PETSC VIEWER

DEFAULT, PETSC VIEWER ASCII MATLAB. Let us see what happens when we do

that.

(Refer Slide Time: 18:40)

(Refer Slide Time: 18:50)

(Refer Slide Time: 18:56)

It will show us the output in MATLAB forward. This is spelling mistake, ASCII alright.

Well, there is an error and it does have to do something with the viewer.

(Refer Slide Time: 19:10)

Well, for some reason it does not work on my PC, but maybe it does on your ok. So, let

us see whether this should work, there is no reason for this not to work.

(Refer Slide Time: 19:27)

Let us see, there is some errors that is weird ok. Anyway, ok. So, I need to call this one

anyway. So, forget about this, do not worry about this, is as a beginner course. We will

just keep it as STDOUT _WORLD and yeah. So, do not worry about that, we can call we

can push a format and then we can bring it, but you do not need to worry about all that.

So, so far we have this grid. So, now let us proceed to create a matrix alright so in fact,

let us modify this file itself.

(Refer Slide Time: 20:35)

So, yeah similar to this there will be a sequence which will follow exactly this vector

creation sequence. So, there will be a MatCreate, then there will be a MatSetSizes, then

there will be a MatSet from options then we will have MatSetUp it is to and this is

different from the vector, but you need to set up the matrix, then there has to be insertion

of values lastly, there has to be an assembly and so, for that there will be two steps; so,

MatAssemblyBegin followed by MatAssemblyEnd.

So, unlike the vector, the assembly has to have a certain key word additional, but first let

us declare the matrix. So, Mat A alright. So, we have declared a matrix A and let us

create the matrix A. So, A will also be 4 4 suppose. So, in order to create once again

we have to pass this and the address of A that is common, set sizes again. So, for vector

you need to only declare one dimension, but for matrices you need to declare two

dimensions.

So, A, PETSC DECIDE comma PETS; PETSC DECIDE, because we have two

dimensions and the processor load has to be balanced in two directions and the size of

the matrix. It is pretty straightforward. Set from options it is simply going to have the

variable A, after this we are going to set up A. Now, we have to insert values. Well, there

are again various ways of inserting values, but the most common is the Compressed

Storage Row format, the CSR format Compressed Sparse Row format ok.

(Refer Slide Time: 23:02)

(Refer Slide Time: 23:11)

(Refer Slide Time: 23:20)

(Refer Slide Time: 23:23)

Let us so, in the standard CSR format you are going to create a MPIAIJ matrix. So, what

it does is, it is going to; it is going to store what nonzero entries you have right in a single

row. It is going to store the column number and the corresponding value; ok this is what

it is alright.

(Refer Slide Time: 23:54)

So, so far we have not decided what the matrix should be. So, first we have to decide

what the matrix has to be or let us create something 1 0 4 2 2 6 1 5 0 1 -1 -2 and 4 3 -2 1,

I am hoping the determinant is an 0, because later we may be tempted to solve. So, if this

is A this is b we will tempted to solve A x = b. Anyway, let us declare the matrix b like

this. So, let me yeah got it, ok.

(Refer Slide Time: 24:54)

So, now what we can do is create a double matrix. So, a A and size will be 4 4 and we

can actually declare the entire array over here as well. So, what is this going to be 1 0 4 2

and we have 2 6 1 5 , and 0 1. Well, we are doing it the hard way, because it is so, small

we can do it non-programmatically. Later on you will find tremendous benefit in doing it

programmatically meaning; you run everything in a loop.

There is a distinct logic behind how these matrices will be set up, but in this case not no

such thing exists. So, if the world so, we have defined the double array and yeah so, we

need an integer to loop over 1 to 4 ok. So, we have an integer over here.

(Refer Slide Time: 26:26)

So, what we can do over here in order to do this, so for i = 0 i < 4 i ++. Now, we can

insert the elements into the matrix. So, the way to do it is MatSetValues into A. So, we

are we doing it row by row the fact that I am using; the fact that I am using a loop I, is to

loop over 1, 2 so, rather 0, 1, 2, 3. So, I am looping over 0, 1, 2, 3 through this particular

for loop and in doing so, I am going to insert these particular values into this.

So, since we are doing it in a dense form, we are not really bothering about this 0 over

here. It is a dense matrix. So, we are going to do j equal to 0 1 0, 1, 2, 3 which it already

is. So, it already is 0, 1, 2, 3. So, we are going to take each row of this double array, a

double pointer. So, we are going to take each row, insert it as column 0, 1, 2, 3, then take

the first row insert 0, 1, 2, 3, second row insert 0, 1, 2, 3, third row insert 0, 1, 2, 3.

So, once I write it will be clear what I mean. So, I have, I am going to insert one row, I

am going to pass the address of the row index that I want to insert. So, ampersand i

means; the address of the current row index then I want to insert four values, I want to

insert values into 0, 1, 2, 3. So, j is already an address. So, j so, thing is because i is an

integer % i is the address, but because j is a j is an array rather j 4 is an array, j is the

address, you do not need to pass an ampersand for the array alright.

So, these are some things which you pick up in C programming and lastly, we must pass

the address of these fellows; this row, then this row, then this row, then this row, one by

one and so, it is aA and it is simply going to be i and all is implied over here. So, in

python you would have done this, but not over here that is implied. So, the address aA i

holds these four elements. So, it is a double pointer so if the two square brackets, the two

sets of square brackets means; there is a set of pointers which holds another set of point

and which holds pointers to these rows ok.

So, meaning there is a pointer which holds these arrays and what holds this array? It is

aA 1 rather aA 0; what holds this? aA 1 and so on. So, we are passing the address of

those rows ok. So, this is how so, lastly we must tell insert values alright. So, yeah that is

pretty much it with the help of this loop after. So, we have sort of set up what to insert

and what where to insert.

So, now we must begin the matrix assembly. So, it is A ,MAT FINAL ASSEMBLY and

you have to end also A, MAT FINAL ASSEMBLY alright. So, now you must be

wondering why Final Assembly? Because there can be a sub matrix assembly as well.

(Refer Slide Time: 30:58)

(Refer Slide Time: 31:05)

(Refer Slide Time: 31:06)

(Refer Slide Time: 31:10)

So, you so, it can be either flush assembly or final assembly ok, but in this particular

examples, we just need to bother with final assembly alright.

(Refer Slide Time: 31:14)

So, we can have a look at the function reference, we will figure it out. You can try

various things, but yeah this is the general syntax for assembling a matrix.

(Refer Slide Time: 31:45)

So, once we have done this we must keep in mind that we must also destroy eventually,

the pointer. So, the memory has to be cleared. So, we will simply pass the address of A

and we can put a viewer over here as well. So, MatView A and we can use simply the

STDOUT that is the terminal for visualizing the matrix ok.

(Refer Slide Time: 32:20)

There appears to be an there is it is not like destroy, but rather it has to be MatDestroy.

There is a data type error ok. Let us make it ok, there is an error. Let us see what the

error is. Have I missed a semicolon somewhere? We missed a semicolon over here ok.

(Refer Slide Time: 32:45)

It is unforgiving in that sense, but yeah it is incredibly flexible ok. So, there you go so in

row 0 the first row contains 1. So, it is CSR format so in row zeroth zeroth column has 1,

first column has 0, second column has 4, third column has 2. So, the indexing; obviously,

starts with 0 and similarly, you have all the other values. So, we can verify this. Now,

what we can do is; we can print it over here as well.

(Refer Slide Time: 33:20)

So, you can; so you can comment out these lines and print out by passing the command

line argument.

(Refer Slide Time: 33:31)

(Refer Slide Time: 33:44)

So, let us save this, let us recompile and let us call it with this. So, you can simply print

the MatView, we can print it as ascii matlab this is the MATLAB way of writing it ok.

So, MATLAB indexing starts from 1 1 , 1 is value 1. So, let us see 1 , 1 value is 1, 1 0 4

2 2 6 1 5 and so on. So, this is how MATLAB would represent it. There is also a way of

visualizing this entire thing.

(Refer Slide Time: 34:11)

(Refer Slide Time: 34:17)

(Refer Slide Time: 34:18)

(Refer Slide Time: 34:30)

So, let me go to the function reference for mat view ok. So, what do we have? Let us see

we will draw a world ok, but we can we can do this mat view draw. So, what we can do

is mat view draw, quickly we came and went away. So, we must have a draw pause as

well. So, look there is a draw pause as well which we need to do. So, draw pause of 5

seconds ok. So, this is how it looks.

So, the 0 is cyan, positive values are red, the negative values are blue. I will do it again in

case you want to see, great. So, we have seen how to create a vector, how to create a

matrix, how to assemble it. There are many ways of doing it and in the coming lectures

you will see some other ways of doing it as well. In general you will see a programmatic

way of doing it. One last thing I want to point out the graphics that you just saw, for that

you need to install some kind of X 11 forwarder.

(Refer Slide Time: 35:41)

So, because we are using sort of a virtualization of Linux, you need to install something

like Xming or something whatever you like you have to open it up. So, Xming Xming I

have it installed. So, you have to open this, then launch the or you can launch ubuntu,

then launch Xming and how to test whether Xming is installed you just say xeyes.

(Refer Slide Time: 36:08)

And you will have this funny X 11 application in Linux, if this works everything is fine,

if this does not work then you will not be able to visualize things natively from this. But

for those of you who are working natively in Linux all these things would not matter.

And I am too lazy to install the whole thing the petsc library is natively in windows. So,

that is why I went for virtualization.

(Refer Slide Time: 36:18)

Anyway; so, I hope you will find whatever I have shown useful and practice makes you

perfect. So, just go ahead and do various kinds of matrices that you like. In the next

class, we will see how to make a simple solver and we will proceed with a 1D problem.

With this, I will see you next time until then, good bye.

