Tools in Scientific Computing
Prof. Aditya Bandopadhyay
Department of Mechanical Engineering
Indian Institute of Technology, Kharagpur

Lecture - 30
PETSc - Creating Vectors and Matrices

(Refer Slide Time: 00:27)

H Byt

Hi everyone, in this particular lecture we are going to look at matrices and vectors in Pets
C. And if time permitting we are going to solve a simple algebraic equation and see all
the objects that we can access. So, in the previous class we looked at some aspects of m
p i, but in this particular lecture we are going to make use of a single processor just to

avoid any kind of confusion.

So, let us try to create this particular vector. [7 1 2 4]; so itis a4 x 1 vector 4 rows and 1
column and yeah; so, all the elements are non zero as you can see. So, let us see how we

can go up go about defining this particular vector.

(Refer Slide Time: 01:45)

So, as usual we will create a new file and first things, first we are going to import petsc.
So, hash include std not std petsc.h. Then we are going to make the main function. So,
int main arg sorry int argc char star star argv and we are going to return the output of

petsc finalize.

We have looked at petsc finalize. So, petsc finalize its wrapping up the code and the
return value is simply the i e r r that is the error signal. So, it’s going to be an integer. So,

we can return that that is the conclusion of the code. So, there are certain things that

every petsc code must have right.

So, first things first there has to be a Petsc initialize. If there is a finalize, there has to be
an initialize as well and the initialize takes the command line arguments and some help

string alright. So, with this out of the way so we have petsc initialize and this.

So, now we must declare certain variables. So, in order to declare an array, the way to do
it is to tell which elements are going to be non zero right. So, what we can do is; so, let
us declare some element, some variables that we will need. So, we will need a vector, let
us call it b. So, vec is a data type inside petsc and so it is a vector right. So, similar to this

there are there is a data type called mat, but we will come to that later.

So, b is a vector alright. So, we will need the integers where we are going to insert values
and of course, we are going to need some will be, we are going to need an array of

numbers with which we are going to fill in the array b ok.

So, | mean this is a very synthetic example and over here you are not going to truly
appreciate the power of petsc, but | am going to give you some pointers on how this may

work out, not may work out it works out.

So, we are going to create a double array we are going to call it a b just to distinguish it
from b and the a prefix | use it so that it reminds me that it is like an auxiliary array to b
ok. So, let me declare this as so what did we have? 7 1 2 4. So, 7.0 1.0 2.0 and 4.0. So,
this is the elements that we want to put inside b and apart from this what else are we
want to need anyway. So, as we go ahead we are going to declare things as and when

they come ok.

So, the way to initialize or create a vector is the following. So, first things first you must
do VecCreate, you must then do VecSetSizes. So, this is a common procedure of
declaring a vector. Then we must do VecSet from sizes from options, then we must so

over here we must set values ok, let me save this file alright.

(Refer Slide Time: 06:20)

So, now we have some colors. So, there must be some code over here which will sort of
assign values into this, then what do we have we must then assemble the vector. So,
VecAssemblyBegin and then we must follow this particular function called by
VecAssemblyEnd and it is just a idiosyncrasy of this particular library, you have to do

this always.

This these two follow each other. So, | have not yet put in the arguments of this function
calls, but the argument of assembly end is going to be the vector that you are going to

populate and b is also going to be this; so yeah so far so good.

So, now VecCreate; so VecCreate must be done over. So, since we are using one
processor. Well, it is not just a question of one processor; it is a question of making the
address of b available to all the threads that you will declare. That is why you have
PETSC COMM WORLD and you are giving the address of b. Now, inside set size you
must tell that we must set the size for b and we must let petsc decide | will come to the

syntax in a while and the size is going to be 4 alright.

So, petsc decide, this particular keyword is used to signify the fact that if you are using
multiple processors so, one processor will maybe initialize these two, one processor will
initialize these two. Things like this, 1 mean so for such a small array it does not matter
right, but once it starts becoming very big, you may benefit tremendously by distributing

the load over several processors alright.

So, now once we have set the size of b. So, this is the overall size and petsc decide will
decide how to distribute the load alright. So now, set from options it has to be only
passed to b. Now, we must set values. So, there are various ways of setting values. So, let
us start with method one.

I mean rather than going with method one | will 1 am going to show you the easiest
method which is VecSet values. And VecSet values must first accept the argument b that
is the vector you want to populate, then how many entries do you want to populate that
is; 4, then we must specify the indices where you want to populate.

So, we must create an integer array. So, let me call it j and we will make this j 4 and we
will make it 0, 1, 2, 3 right. So, j is the address of the array which holds the indices
where we want to insert these nonzero entries and | will change this and show you how it

will affect the code.

So, we want to insert 4 values at the j locations. So, j is the indices where you want to
insert and lastly, we want to tell what exactly we want to insert. So, we want to insert the
entries inside the array a b. So, a b is the address of the array 7, 1, 2, 4 and how do you

want to set the values? There are two modes; one is insert values and one is add values.

So, if there is an already existing entry for b, if you do add values you will sort of add
whatever you are doing to the existing values. If you do insert values that will erase the
value insert the present values alright; so far so good. So, yeah this assembles the matrix
and in the end before finalizing we must do vec destroys, we must clear the variables. So,
we must give the address of b and that is it. So, let us save this, let us go to our make file

and create a new target.

(Refer Slide Time: 11:34)

So, let me hit conrol H oops, control H and | want to replace this by declare vector ok.
So, replace, replace, replace, replace, replace. So, there is no use of like rewriting this
entire thing. We simply having the same variables and rules. We are just making a new
target right.

(Refer Slide Time: 11:54)

So, let us save this file. So, we have our code over here alright. So, make decl vector ok,
there appears to be an error. So, let us see what the error is. So, there appears to be so,

this has to be set sizes oops! Yeah, ok.

(Refer Slide Time: 12:23)

- The python and octave. notebooks can be downloaded from htt

So, it compiles nice and well. So, let us just do dot slash declare vector we have to allow
this ok. So, it does nothing as expected, because we have not printed anything we have
not like asked it to do anything for us. But what we can do is pass this command line

argument minus VecVeiw and it will show us the elements of the vector ok.

So, additionally we can insert this VecVeiw inside the code itself. So, what we can do is
vec so, before destroying the vector we can do VecVeiw, we will pass b, then petsc

viewer std out world, just to say that it has to run on a single process.

(Refer Slide Time: 13:23)

So, let us make it again, let us run it and now, it shows without having to pass the extra
argument. So, without using this ok, alright so, we have now initialized this now. So,
what happens? If we still make j equal to this, but we only do b as so, we only want to

insert 3 values.

So, we still have the 4 indices and the 4 values, but instead we say we want to insert only

3 first indices and the first three indices the first three values. Let us see what happens.

(Refer Slide Time: 14:12)

So, look its initialized it to O instead of getting a 4, because we have not told it to

populate b with 4 values, we only told it to populate with 3 values.

(Refer Slide Time: 14:31)

Similarly, if 1 do only one it will only populate the first value. Let us make it again value
ok. So, it is incredibly versatile you can declare everything you want, but in the end if
you want to fill partially you can choose to do that, there is nothing wrong in that. So,
this is how we can declare vectors and sort of print them out. Well, there are various

ways of viewing a vector as well.

(Refer Slide Time: 15:03)

(Refer Slide Time: 15:14)

VecCreate

Creates an empty vector object. The type can then be set with VecSetType(), or VecSetFrom

Synopsis

If you never call VecSetType() or VecSetF|

Collective
Input Parameter

comm- The communicator for the vector object

Output Parameter

(Refer Slide Time: 15:24)

v-the
n-the (or PETSC_DECIDE to have it set
N- the global size (or PETSC_DECIDE)

Notes

nand N
processo

ot be both PETSC_DECIDE If one processor calls this with N of PETSC_DEC
ust, otherwise the program will hang.

See Also

VecGetSize(), PetscSplitOwnership()

Level

intermediate

Location

sre/vec/vec/interface/vector.c

Examples

So, like I told I am going to show you the function reference. So, VecCreate so, it
requires the MP1 communicator which in this case is PETSC COMM WORLD and it
requires the pointer to b the address of b. So, we have passed the address of b ampersand
b that is standard ¢ syntax. So, VecSetSizes so, it sets the local sizes.

So, we have to pass the vector the small n is the local size if you have multiple
processors then you have to pass small n, but in this case we have let petsc decide and

then the global size alright. So, the global size of our array is 4, but we have asked petsc

to decide for us the best load balancing it can do. In this case we are running it on one
processor. So, it does not matter anyway alright. So, with these options it is going to

initialize b over here.

(Refer Slide Time: 16:18)

See Also

VecGetSize(). PetseSplitOwnership()

Level

intermediate

Location
ste/vec/vecinterface/vector.c

Examples

So, now VecSet Values let me go to the function reference like set values alright.

(Refer Slide Time: 16:29)

(Refer Slide Time: 16:31)

¢ 7, 7
VecSetValues
Inserts or adds values into certain locations of a vector.

Synopsis

de VecSetValues(Vec x,PetscInt ni,const PetscInt ix[],const PetscScalar y[],Ins|

ot Collective

Input Parameters

y -amay of values
jora- either INSERT_VALUES or ADD_VALUES. where ADD_VALUES adds val

INSERT_VALUES replaces existing entries with new values

So, it requires the vector the number of elements to add look is the it is number of
elements right. In this case we wanted 4 and | have showed you what happens when you

reduce it.

If you increase it, it will let us see what happens when we increase it ok. Before that we
must show the, we must tell what the indices of insertion are ok and we must tell what
values you want to insert and you can either insert values or add values. So, it is quite

simple. This is the standard syntax of creating a vector in petsc.

So, now let us increase this and see what happens let me make it 6 just to go beyond the
boundary case. So, let me make this; obviously, there is not going to be an error over
here, because we would not done any illegal sentence and there is an error argument out
of range. So, it cannot do that, it gives a big garbage value. So, we must have this
maximum 4. So, let me fix it great. So, now we will proceed to figure out how we can

declare matrices in this particular way.

(Refer Slide Time: 17:57)

(Refer Slide Time: 18:06)

pel

§ VecView
¥ Views a vector objett.

B Synopsis

je “petscvec.h”

r viewer)

Collective on Vec
W [nput Parameters

vec - the vector
viewer- an optional visualization context

Notes

The available visualization contexts include

sequential vectors

(Refer Slide Time: 18:09)

B E R B B B T

x o+

{ 1ou can coange

IC 101141 IC VEGUE I3 PLUCU USIIY UIE UPUOH [TV ICWELT USII oL |
The user can open alternative viewers with

PetscViewerASCIIOpen() - Outputs vector to a specified file

PetscViewerBinaryOpen()- Outputs in binary to a specified file; cormesponding input us
PetscViewerDrawOpen() - Outputs vector to an X window display
PetscViewerSocketOpen() - Outputs to Socket viewer

PetscViewerHDF5Open() - Outputs vector to HDFS file viewer

B The user can call PetscViewerPushFormat() to specify the output format of ASCII printed objects (whel
f PETSC_VIEWER_STDOUT_SELF. PETSC_VIEWER_STDOUT_WORLD and PetscViewerASCIIC
formats include

PETSC_VIEWER DEFAULT - default. prints vector contents
PETSC_VIEWER_ASCII_MATLAB - prints vector contents in MATLAB format

PETSC_VIEWER_ASCII_INDEX - prints vector contents, including indices of vector elet
PETSC_VIEWER_ASCIT_COMMON- prints vector contents. using a format common among

Notes

You can pass any number of vector objects, or other PETSc objects to the same viewer.

¥ Notes for binary viewer

But before we go to that let us just go to VecView, because | want to show you function
reference for VecVeiw. There are various kinds of viewers. So, this ASCII, binary, draw
ok. So, there are various kinds of viewers that we have. So, this a PETSC VIEWER
DEFAULT, PETSC VIEWER ASCII MATLAB. Let us see what happens when we do
that.

(Refer Slide Time: 18:40)

include/petscdn.h

6
petsc/petsc-3.13. petscdnda.h
pets
Users/Admin/Drop
c.h ewer {aka struct

(Refer Slide Time: 18:56)

It will show us the output in MATLAB forward. This is spelling mistake, ASCII alright.

Well, there is an error and it does have to do something with the viewer.

(Refer Slide Time: 19:10)

>

You can pass any number of vector objects, or other PETSc objects to the same viewer. = l
= /

In the debugger you can do "call VecView(v.0)" to display the vector. (The same holds 4}

Well, for some reason it does not work on my PC, but maybe it does on your ok. So, let

us see whether this should work, there is no reason for this not to work.

(Refer Slide Time: 19:27)

Let us see, there is some errors that is weird ok. Anyway, ok. So, | need to call this one
anyway. So, forget about this, do not worry about this, is as a beginner course. We will
just keep it as STDOUT _WORLD and yeah. So, do not worry about that, we can call we
can push a format and then we can bring it, but you do not need to worry about all that.
So, so far we have this grid. So, now let us proceed to create a matrix alright so in fact,

let us modify this file itself.

(Refer Slide Time: 20:35)

So, yeah similar to this there will be a sequence which will follow exactly this vector
creation sequence. So, there will be a MatCreate, then there will be a MatSetSizes, then
there will be a MatSet from options then we will have MatSetUp it is to and this is
different from the vector, but you need to set up the matrix, then there has to be insertion
of values lastly, there has to be an assembly and so, for that there will be two steps; so,

MatAssemblyBegin followed by MatAssemblyEnd.

So, unlike the vector, the assembly has to have a certain key word additional, but first let
us declare the matrix. So, Mat A alright. So, we have declared a matrix A and let us
create the matrix A. So, A will also be 4 x4 suppose. So, in order to create once again
we have to pass this and the address of A that is common, set sizes again. So, for vector
you need to only declare one dimension, but for matrices you need to declare two

dimensions.

So, A, PETSC DECIDE comma PETS; PETSC DECIDE, because we have two
dimensions and the processor load has to be balanced in two directions and the size of
the matrix. It is pretty straightforward. Set from options it is simply going to have the
variable A, after this we are going to set up A. Now, we have to insert values. Well, there
are again various ways of inserting values, but the most common is the Compressed

Storage Row format, the CSR format Compressed Sparse Row format ok.

(Refer Slide Time: 23:02)

(Refer Slide Time: 23:11)

The i and j indices are 0 based.

B The format which is used for the sp:

pe

format for the local rows.

creates a MPI ALJ matrix using arrays that contain in standard CS$
Synopsis

de "petscmat.h”
orCode MatCreat:

PetscE

PIALJithArrays (M1 Com comm,Petsclnt m,PetscInt n,Petsclnt M,Pets|

Collective
Input Parameters

comm- MPI communicator

m - number of local rows (Cannot be PETSC_DECIDE)

n - This value should be the same as the local size used in creating the x vector for the matri
Ax. (or PETSC_DECIDE to have calculated if N is given) For square matrices n is almost

M - number of global rows (or PETSC_DETERMINE to have calculated if m is given)

N - number of global columns (or PETSC_DETERMINE to have calculated if n is given)

i -rowindices: that is i[0] = 0, i[row] = i[row-1] + number of elements in that row of the m|

j - column indices

vuiput raramewer
mat- the matrix

Notes

used by PETSc: thus you CA
1 ¥ g the values of a[] after you have called this routine. Use MatCreateMPIAIW
avoid needing to copy the amays.

ind i indices are indices corresponding to the local j array.

¢ matrix input, is equivalent to a row-major ordering.. . for the
input data expected is as shown

Once you have created the matrix you can update it with new numerical values using MatUpdateMPIA

1080
203 P8
456 P1

Processd [Pa]: rows_owned=[0,1]

(Refer Slide Time: 23:23)

opiea DY [0S rounne IIo e mnfemal Iormar usea by L 15C: [us You LAD
he values of af] after you have called this routine. Use MatCreateMPIALIV

The i and j indices are 0 based, and i indices are indices corresponding to the local j array.

@ The format which r the sparse matrix input, is equivalent to a row-major ordering.. i.e for the

input data expected is as shown

Once you have created the matrix you can update it with new numerical values using MatUpdateMP]A

lee
203 Po
456 Pl

Processd [P8]: rows_ouned=[e,1]

v= {1,2,3} [size=3]

Process1 [P1]: rows_owned=2]

= (0,3} [size = nrowl = 141]

Let us so, in the standard CSR format you are going to create a MPIAIJ matrix. So, what
it does is, it is going to; it is going to store what nonzero entries you have right in a single
row. It is going to store the column number and the corresponding value; ok this is what

it is alright.

(Refer Slide Time: 23:54)

So, so far we have not decided what the matrix should be. So, first we have to decide
what the matrix has to be or let us create something1042261501-1-2and43-21,

I am hoping the determinant is an 0, because later we may be tempted to solve. So, if this

is A this is b we will tempted to solve A x = b. Anyway, let us declare the matrix b like

this. So, let me yeah got it, ok.

(Refer Slide Time: 24:54)

So, now what we can do is create a double matrix. So, a A and size will be 4 x 4 and we
can actually declare the entire array over here as well. So, what is this going to be 1 0 4 2
and we have 26 15, and 0 1. Well, we are doing it the hard way, because it is so, small
we can do it non-programmatically. Later on you will find tremendous benefit in doing it

programmatically meaning; you run everything in a loop.

There is a distinct logic behind how these matrices will be set up, but in this case not no
such thing exists. So, if the world so, we have defined the double array and yeah so, we

need an integer to loop over 1 to 4 ok. So, we have an integer over here.

(Refer Slide Time: 26:26)

So, what we can do over here in order to do this, so for i = 01i <4 i ++. Now, we can
insert the elements into the matrix. So, the way to do it is MatSetValues into A. So, we
are we doing it row by row the fact that 1 am using; the fact that 1 am using a loop 1, is to
loop over 1, 2 so, rather 0, 1, 2, 3. So, | am looping over 0, 1, 2, 3 through this particular

for loop and in doing so, | am going to insert these particular values into this.

So, since we are doing it in a dense form, we are not really bothering about this 0 over
here. It is a dense matrix. So, we are going to do j equal to 0 1 0, 1, 2, 3 which it already
is. So, it already is 0, 1, 2, 3. So, we are going to take each row of this double array, a
double pointer. So, we are going to take each row, insert it as column 0, 1, 2, 3, then take

the first row insert 0, 1, 2, 3, second row insert 0, 1, 2, 3, third row insert 0, 1, 2, 3.

So, once | write it will be clear what | mean. So, | have, | am going to insert one row, |
am going to pass the address of the row index that | want to insert. So, ampersand i
means; the address of the current row index then I want to insert four values, | want to
insert values into 0, 1, 2, 3. So, j is already an address. So, j so, thing is because i is an
integer % i is the address, but because j is a j is an array rather j 4 is an array, j is the
address, you do not need to pass an ampersand for the array alright.

So, these are some things which you pick up in C programming and lastly, we must pass
the address of these fellows; this row, then this row, then this row, then this row, one by

one and so, it is aA and it is simply going to be i and all is implied over here. So, in

python you would have done this, but not over here that is implied. So, the address aA i
holds these four elements. So, it is a double pointer so if the two square brackets, the two
sets of square brackets means; there is a set of pointers which holds another set of point

and which holds pointers to these rows ok.

So, meaning there is a pointer which holds these arrays and what holds this array? It is
aA 1 rather aA 0; what holds this? aA 1 and so on. So, we are passing the address of
those rows ok. So, this is how so, lastly we must tell insert values alright. So, yeah that is
pretty much it with the help of this loop after. So, we have sort of set up what to insert

and what where to insert.

So, now we must begin the matrix assembly. So, it is A ,MAT FINAL ASSEMBLY and
you have to end also A, MAT FINAL ASSEMBLY alright. So, now you must be

wondering why Final Assembly? Because there can be a sub matrix assembly as well.

(Refer Slide Time: 30:58)

(Refer Slide Time: 31:05)

pe

MatAssemblyBegin

Begins assembling the matrix. This routine should be called after completing all calls to Ma

Synopsis

cl

#include “petscaat.h”
PetscErrorCode 1yBegin(Mat mat,MatAssenbly

pe type)

& Collective on Mat
Input Parameters

mat - the matrix
type- type of assembly, e

er MAT_FLUSH_ASSEMBLY or MAT_FINAL_ASSEMBLY

Syuupsy

#include "petscmat.h”
PetscErrorCode MatAssemblyBegin(Nat mat,MatAssenblyType type)

Collective on Mat
Input Parameters

mat - the matrix
type- type of assembly. either MAT_FLUSH_ASSEMBLY or MAT_FINAL_ASSEMBLY

Notes
& MatSetValues() generally caches tfie values. The matrix is ready to use only after MatAssembly

vEnd() have been called. Use MA SEMBLY when switching between ADD
INSERT_VALUES in MatSetValues(): use MAT_FINAL_ASSEMBLY for the final assembly before u

nblyBegin() and MatAssemblyEnd() the SAM]
1_ASSEMBLY or MAT_FINAL _ASSEMBLY
RT VALUE global collec

ALL processes that share a matrix MUST call MatAs
B times. and each time with the same flag of MAT FLU
B Thus you CANNOT locall
| requring all processes that share the

S. that i

Space for preallocated nonzeros that is not filled by a call to M lues() or a related routine are co
assembly. If you intend to use that extra space on a subsequent assembly. be sure to insert explicit zero:
=& MAT FINAL ASSEMBLY so the space is not compressed out.

OB aHE 9

(Refer Slide Time: 31:10)

MatAssemblyType
Indicates if the matrix is now to be used. or if you plan to continue to add or insert values to it
Synopsis

typedef enum {MAT_FLUSH ASSEMBLY=1,MAT FINAL ASSEMBLY=9} MatAssemblyType;

S See Also

MatAssemblyBegin(). MatAssemblyEnd()

3 Level
beginner
Location

sre/mav’. /. /include/petscmat h

Examples

So, you so, it can be either flush assembly or final assembly ok, but in this particular

examples, we just need to bother with final assembly alright.

(Refer Slide Time: 31:14)

See Also

MatAssemblyBegin(). MatAssemblyEnd()

Level

beginner

Location

sre/ma’. /. /include/petsemat.h

Examples

mat/tutorials/ex16.
mat/tutorials/ex| 7

mat'tutorials/ex15f
futorials/e;

So, we can have a look at the function reference, we will figure it out. You can try

various things, but yeah this is the general syntax for assembling a matrix.

(Refer Slide Time: 31:45)

So, once we have done this we must keep in mind that we must also destroy eventually,
the pointer. So, the memory has to be cleared. So, we will simply pass the address of A
and we can put a viewer over here as well. So, MatView A and we can use simply the
STDOUT that is the terminal for visualizing the matrix ok.

(Refer Slide Time: 32:20)

There appears to be an there is it is not like destroy, but rather it has to be MatDestroy.
There is a data type error ok. Let us make it ok, there is an error. Let us see what the

error is. Have | missed a semicolon somewhere? We missed a semicolon over here ok.

(Refer Slide Time: 32:45)

It is unforgiving in that sense, but yeah it is incredibly flexible ok. So, there you go so in
row 0 the first row contains 1. So, it is CSR format so in row zeroth zeroth column has 1,
first column has 0, second column has 4, third column has 2. So, the indexing; obviously,
starts with 0 and similarly, you have all the other values. So, we can verify this. Now,

what we can do is; we can print it over here as well.

(Refer Slide Time: 33:20)

So, you can; so you can comment out these lines and print out by passing the command

line argument.

(Refer Slide Time: 33:31)

So, let us save this, let us recompile and let us call it with this. So, you can simply print
the MatView, we can print it as ascii matlab this is the MATLAB way of writing it ok.
So, MATLAB indexing starts from 1 1, 1 is value 1. So, letussee 1, 1 valueis1,104
22615 and so on. So, this is how MATLAB would represent it. There is also a way of

visualizing this entire thing.

(Refer Slide Time: 34:11)

MatView
Visualizes a matrix object.
Synopsis

#include “petscmat.h”
PetscErrorCode MatView(Mat mat,PetscViever viewer)

Collective on Mat
Input Parameters

mat - the matrix
viewer- visualization context

Notes

The available visualization contexts include
ETSC_VIEWER _STDOUT SELF - for sequential matrices

(Refer Slide Time: 34:18)

The available visualization contexts include
PETSC_VIEWER _STDOUT SELF - for sequential matrices
PETSC_VIEWER_STDOUT_WORLD- for parallel matrices created on PETSC_COMM_WORLD
PETSC_VIEWER _STDOUT_(comm) - for matrices created on MPI communicator comm
PETSC_VIEWER_DRAW_WORLD - graphical display of nonzero structure

The user can open altemnative visualization contexts with

PetscViewerASCIIOpen() - Outputs matrix to a specified file

PetscViewerBinaryOpen()- Outputs matrix in binary to a specified file: corresponding input uses MatLoad()

PetscViewerDrawOpen() - Outputs nonzero matrix structure to an X window display

PetscViewerSocketOjen() - Outputs matrix to Socket viewer. Currently only the sequential dense and ALJ matrix typ
viewer.

The user can call PetscViewerPushFormat() to specify the output format of ASCII printed objects (when using
PETSC_VIEWER STDOUT SELF. PETSC_VIEWER STDOUT WORLD and PetscViewerASCIIOpen). Available formj

PETSC_VIEWER_DEFAUL - default, prints matrix contents
PETSC_VIEWER _A!] - prints matrix contents in Matlab format
PETSC_VIEWER_ASCII_DENSE - prints entire matrix including zeros
PETSC_VIEWER - prints matrix contents, asparse format common among all matri
PETSC_VIEWER_ASCII_IMPL - prints matrix contents, using an implementation-specific format (whic}
the same as the default)

SCII_INFO - prints basic infonmation about the matrix size and structure (not the m;
II_INFO_DETAIL- prints more detailed information about the matrix structure

FEISU_VIEWEK ASUU_MAILAB - prints matrix contents in Matiab format

PETSC_VIEWER_ASCIT_DENSE - prints entire matrix including zeros

PETSC_VIEWER_ASCII_ COMMON - prints matrix contents, using a sparse format common among all matri
PETSC_VIEWER_ASCII_IMPL - prints matrix contents. an implementation-specific format (whic]

the same as the default)
PETSC_VIEWER_ASCII_INFO - prints basic information about the matrix size and structure (not the m;
PETSC_VIEWER_ASCII_INFO_DETAIL- prints more detailed information about the matrix structure

Options Database Keys

-mat_view ::ascii_info - Prints info on matrix at conclusion of MatAssemblyEnd()
-mat_view ::ascii_info_detail - Prints more detailed info

-mat_view - Prints matrix in ASCII format

-mat_vie ii_matlab - Prints matrix in Matlab format

-mal - PetscDraws nonzero structure of matrix, using MatView() and PetscDrawOpe]
-display <name> - Sets display name (default is host)

-draw_pause <sec> - Sets number of seconds to pause after display

-mat_yiew socket - Sends matrix to socket. can be accessed from Matlab (see Users-Manual: ch

-viewer_socket_machine <machine>-

-viewer_socket_port <port>

-mat_view binary - save matrix to file in binary format
-viewer_binary_filename <pame> -

Notes

So, let me go to the function reference for mat view ok. So, what do we have? Let us see
we will draw a world ok, but we can we can do this mat view draw. So, what we can do
is mat view draw, quickly we came and went away. So, we must have a draw pause as
well. So, look there is a draw pause as well which we need to do. So, draw pause of 5

seconds ok. So, this is how it looks.

So, the 0 is cyan, positive values are red, the negative values are blue. | will do it again in

case you want to see, great. So, we have seen how to create a vector, how to create a

matrix, how to assemble it. There are many ways of doing it and in the coming lectures
you will see some other ways of doing it as well. In general you will see a programmatic
way of doing it. One last thing | want to point out the graphics that you just saw, for that

you need to install some kind of X 11 forwarder.

(Refer Slide Time: 35:41)

So, because we are using sort of a virtualization of Linux, you need to install something
like Xming or something whatever you like you have to open it up. So, Xming Xming |
have it installed. So, you have to open this, then launch the or you can launch ubuntu,

then launch Xming and how to test whether Xming is installed you just say xeyes.

(Refer Slide Time: 36:08)

And you will have this funny X 11 application in Linux, if this works everything is fine,
if this does not work then you will not be able to visualize things natively from this. But
for those of you who are working natively in Linux all these things would not matter.
And | am too lazy to install the whole thing the petsc library is natively in windows. So,
that is why | went for virtualization.

(Refer Slide Time: 36:18)

Anyway; so, | hope you will find whatever | have shown useful and practice makes you

perfect. So, just go ahead and do various kinds of matrices that you like. In the next

class, we will see how to make a simple solver and we will proceed with a 1D problem.

With this, I will see you next time until then, good bye.

