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Welcome to the second part of the lecture on the biomechanics of the elbow joint. This lecture is

in continuation to the lecture on the biomechanics of the elbow joint part 1 discussed earlier.

Now, as mentioned in the previous lecture, the calculation aimed to define the magnitudes and

directions of the joint reaction forces. Based on the geometry and the given data on muscle origin

and insertion the moment arm of each muscle action about the joint axis was calculated. The

muscle forces were estimated using the moment arm about the joint axis. Since the muscle forces

have already been evaluated, the joint reaction forces of humeroradial and humeroulnar

articulations need to be separately calculated.

In part one of the lectures, we had assumed that the radius and ulnar to be one bone articulating

with the humerus and based on that assumption, we had calculated the muscle forces. Now, we

will be separately calculating the joint reaction forces corresponding to humeroradial articulation

and humeroulnar articulations. So, we consider the humeroradial joint.
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Now for the calculation of joint reaction forces, the humeral radial joint reaction force, we

consider the assumption that the two bones carry an equal share of limbs on weight. The slide

depicts the free body diagram consisting of the muscle forces and the limb weight, and

humeroradial joint reaction force.
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Now, we had already determined the angles at which these muscle forces were acting. So, we

have already the values of gamma and beta. The moment applied by the external loads is equal to

the moment applied by the muscles about the joint axis at A. So, the moment applied by the

muscles are the moment generated by the biceps and the moment generated by the muscle

brachioradialis.

Now, let us come to the moment created by the limb weight and the weight carried by the radius.

Now, we do not know the amount of weight carried by the radius. So, this needs to be first

determined, but we can use the moment balance equation, the equilibrium equation and

determine the value of WR, which is the weight carried by the bone radius, which comes out to be

194.46.

𝑀𝑜𝑚𝑒𝑛𝑡 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑏𝑦 𝑚𝑢𝑠𝑐𝑙𝑒𝑠 = 𝑀
𝐵𝑖

+ 𝑀
𝐵𝑅

𝑀
𝐵𝑖

= 𝐿
𝐵𝑖

× 𝐹
𝐵𝑖

= 0. 038×1343. 53 = 51. 05𝑁𝑚.

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑦,  𝑀
𝐵𝑅

= 𝐿
𝐵𝑅

× 𝐹
𝐵𝑅

= 0. 063×311. 24 = 19. 61𝑁𝑚

Moment applied by half of limb weight = 0.16 x 16.25= 2.6 Nm and Moment of load acts at
0.35 m from A.

𝑊
𝑅

×0. 35 + 2. 6 = 51. 05 + 19. 61, 𝑠𝑜 𝑊
𝑅

= 194. 46𝑁.



𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟, 311. 25 − 194. 46𝑁 𝑖𝑠 𝑡𝑎𝑘𝑒𝑛 𝑏𝑦 𝑡ℎ𝑒 𝑢𝑙𝑛𝑎:  𝑊
𝑈

= 116. 79𝑁.  𝑅𝑒𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑙𝑦.

Now, the total weight carried by the elbow joint at 90o flexion was 311.25 N out of which 194.46

N is taken up by the radius bone, the remaining part that is 116.79 N is carried by the ulnar. So,

now, we proceed with this data calculated data of the weight carried by the radius bone and we

resolve the system of forces along the vertical direction and we can write down the equation

based on the laws of equilibrium summation of the forces along the vertical direction.
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Resolving horizontally, we can write down the equation the RR, the component of RR Sin(α) is

equal to the brachioradialis muscle force’s component along the horizontal direction and the

horizontal component of the muscle biceps. The γ and β are the inclination angles of these forces.

By equating the above two equations, we can calculate the tan(α), where alpha is the angle of

inclination of the humeroradial joint reaction force RR. So, α can be determined as 17.2o,

substituting this value in the equation of horizontally resolved forces, we can determine the RR to

be 1269.33 N.

Resolving vertically,

𝑊
𝑅

+ 𝑤/2 + 𝑅
𝑅

𝑐𝑜𝑠(α) = 𝐹
𝐵𝑅

𝑠𝑖𝑛(γ) + 𝐹
𝐵𝑖

𝑠𝑖𝑛(β)

resolving horizontally,



𝑅
𝑅

𝑠𝑖𝑛(α) = 𝐹
𝐵𝑅

𝑐𝑜𝑠(γ) + 𝐹
𝐵𝑖

𝑐𝑜𝑠(β)

By equating the above two equations, we get:

𝑡𝑎𝑛(α) =
𝐹

𝐵𝑅
𝑐𝑜𝑠(γ)+𝐹

𝐵𝑖
𝑐𝑜𝑠(β)

𝐹
𝐵𝑅

𝑠𝑖𝑛(γ)+𝐹
𝐵𝑖

𝑠𝑖𝑛(β)−𝑊
𝑅

−𝑤/2

𝑡𝑎𝑛(α) = 311.24𝑐𝑜𝑠(15.2)+1343.53𝑐𝑜𝑠(86.8)
311.24𝑠𝑖𝑛(15.2)+1343.53𝑠𝑖𝑛(86.8)−194.46−16.25

𝑡𝑎𝑛(α) = 0. 3096, 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 α = 17. 2◦

Substituting the value this value into the horizontally resolved equation

𝑅
𝑅

=
𝐹

𝐵𝑅
𝑐𝑜𝑠(γ)+𝐹

𝐵𝑖
𝑐𝑜𝑠(β)

𝑠𝑖𝑛(α) = 300.35+74.99
0.2957 = 1269. 33𝑁
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In the earlier slide, we calculated the angle α is equal to 17.20o; that is the angle at which the

humeroradial joint reaction force is inclined. Now that we have calculated the magnitude of the

resultant humeroradial joint reaction force RR and its inclination 17.20o; its effect upon

humeroradial contact can be considered, resolving RR into the normal and transverse component.

So, RR can be resolved into normal component RN and RT, the transverse or the tangential

components. We can find out the normal and the transverse or tangential force as indicated in the

slide. In this calculation, we need to note that the normal component RN makes an angle of 60o

with the humeral shaft. So, the normal component RN as indicated here, RN actually makes 60o

with the humeral shaft axis. We have calculated R R making an angle 17.20o with the humeral

shaft axis, then the remaining angle is 42.80o. So, with this angle 42.80o, we can calculate RN and



RT by resolving RR in the normal direction and the tangential or transverse direction. So, the

values of RN =  931.35 N and RT = 862.44 N. Normal force:

𝑅
𝑁

= 1269. 33𝑐𝑜𝑠(42. 8) = 931. 35𝑁

Tangential force:

𝑅
𝑇

= 1269. 33𝑠𝑖𝑛(42. 8) = 862. 44𝑁

The figure on the right presents a sagittal section of the humeroradial joint.
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Now comes a critical consideration in the problem that is on the calculation of the ligamentous

force. On the right, we can see a figure which presents an arrangement of the articulation, the

elbow joint articulation and if we assume an interface friction coefficient of 0.02 we can find out

the frictional force at the point of contact as a function of the normal force that has been

calculated as 931.35 N.

So, the frictional coefficient multiplied by the normal force will give you the frictional force that

is actually being generated at the point of contact. Now, frictional force is along the tangential



direction. Previously, the tangential component of the force was 862 N. The frictional force

along the tangential direction gives rise to a force 843.81 N that will cause sliding and physically,

what will happen?

This unbalanced force of 843.81 Newton along the transverse direction will move the radial head

sideways across the capitulum. So, the radial head will be pulled sideways across the capitalism

due to the action of this unbalanced force of 843.81 N. However, this is not the case in reality,

because the force is taken up by the ligamentous system, which restores the radial contact to

equilibrium.

So, it will be further assumed that the forces: FL and RT are coplanar.

(Refer Slide Time: 16:28)

Now, let’s further consider the action of the ligamentous force. The force imposed by the

ligament FL is assumed to act, as shown in the figure. It’s equal in magnitude but opposite in

direction to the sliding force set up at the point of contact. Sliding force is the remnant force that

we had calculated earlier.



Now, as these two forces (Ligamentous force and the sliding force) are not collinear, they will

impose an extension moment on the radius. Now, it is assumed that the combined component of

the ligament act at a distance of 0.08 meter from the joint axis at A and along the radial shaft.
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Now, we should recalculate the humeral radial joint reaction force considering the effect of the

ligamentous force. So, assuming the combined component of the ligaments act at a distance 0.08

m from the joint axis along the radial shaft, the moment imposed upon the radius is calculated as

58.46 Nm. This moment opposes the flexion muscle arrangement and, therefore, reduces the load

carried.

The resultant has to be calculated once again since the ligamentous system takes up a portion of

the transverse component of the reaction force.
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Now, the normal component of the force RN as shown earlier in the figure. it remains unchanged

and is calculated as 931.35 N acting at an angle 60oto the humeral axis. So, the normal

component of the joint reaction force remains unchanged in direction and magnitude. However,

the transverse component or the tangential component RT has its direction intact, but now, the

magnitude is equal to the frictional force that has been calculated earlier in slide 8. Please visit

slide 8 for calculation on the frictional force that is 18.63 N and this frictional force is the

tangential component of the joint reaction force.

So, once we have these two data, we can recalculate the revised humeroradial joint reaction force

as 931.54 N and the angle x, inclination of this resultant force with the humeral axis can also be

calculated, which is 58.85o.

 𝑅
𝑅

= 𝑅
𝑁
2 + 𝑅

𝑇
2 = 931. 352 + 18. 632 = 931. 54𝑁.

𝑡𝑎𝑛(60◦ − 𝑥) = 18. 63/931. 35;  𝑥 = 58. 85◦
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The next important step is recalculation of the load carried by each bone because now, we have

the ligaments acting in the system. So, separately we will consider the radius bone and the ulnar

bone. Previously, external load of 194.46 N at a moment arm of 0.35 was assumed at giving rise

to a moment of 68.06 Nm. So, for the detailed calculation you can refer back to slide 5.

Now, if we subtract the moment of 58.46 Newton meter imposed by the ligament, see calculation

in slide number 10, then we are left with an unbalanced moment of 9.6 Nm. If we divide this

moment by the distance 0.35m, then we recalculate the load carried by the radial segment of the

bone which is 27.428 N.

For the ulna bone, the load was earlier estimated to be 116.8 N acting at a moment arm of 0.35 m

resulting in a moment of 40.88 Nm. For detailed calculation, please see earlier slide number 5.

Now, the revised moment can be calculated as  99.34 Nm corresponding to a load of 283.86 N.
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Now, let us consider the humeroulnar joint reaction force. We can see the free body diagram of

the arrangement humeroulnar force. Here, we have a portion of the applied load taken by the

ulnar that we have calculated just in the preceding slide, the half of the weight of the forearm as

discussed earlier. We need to determine the reaction force, Ru .

But, one crucial thing included here is the ligament force transferred from the radius. So, the

ligament acts between the radius and ulnar, and its line of action is indicated as FL .
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So, we can resolve the forces based on the free body diagram and apply the laws of equilibrium.

So, thereafter, we can actually calculate the inclination of the angle of the humero ulnar joint

reaction force, which can be calculated using the two equations and the data already available to

us.

Resolving vertically,

𝑊
𝑈

+ 𝑤/2 + 𝑅
𝑈

𝑐𝑜𝑠(α) = 𝐹
𝐵𝑟

𝑠𝑖𝑛(β) + 𝐹
𝐿
𝑐𝑜𝑠(γ)



Resolving horizontally,

𝐹
𝐵𝑟

𝑐𝑜𝑠(β) = 𝑅
𝑈

𝑠𝑖𝑛(α) + 𝐹
𝐿
𝑠𝑖𝑛(γ)

Equating both the equations and rearranging, we get

𝑡𝑎𝑛(α) =
𝐹

𝐵𝑅
𝑐𝑜𝑠(β)+𝐹

𝐿
𝑠𝑖𝑛(γ)

𝐹
𝐵𝑟

𝑠𝑖𝑛(β)+𝐹
𝐿
𝑐𝑜𝑠(γ)−𝑊

𝑈
−𝑤/2

𝑡𝑎𝑛(α) = 1343.53𝑐𝑜𝑠(64.6)−843.81𝑠𝑖𝑛(30)
1343.53𝑠𝑖𝑛(64.6)+843.81𝑐𝑜𝑠(30)−283.86−16.25

𝑡𝑎𝑛(α) = 0. 094, 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 α = 5. 36◦,  𝑖. 𝑒.  𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒

Substituting into the horizontally resolved equation, we get:α

𝑅
𝑈

=
𝐹

𝐵𝑟
𝑐𝑜𝑠(β)−𝐹

𝐿
𝑠𝑖𝑛(γ)

𝑠𝑖𝑛(α) = 1343.53𝑐𝑜𝑠(64.6)−843.81𝑠𝑖𝑛(30)
𝑠𝑖𝑛(5.36) = 154.38

0.0934 = 1652. 68𝑁

You can see the updated load Wu has been considered, which is 283.86 N, and of course, the limb

weight, half of the limb weight is 16.25 N. So, with this new data, we calculate the angle, α as

5.36o and after that, we can calculate the magnitude of the reaction force Ru as 1652.68 N. Now

with both reactions forces estimated, the forces acting on the distal humerus can also be

determined.
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We have come to a stage that we have two separate joint reaction forces; one is the humeroulnar

joint reaction force, the other is the humeroradial joint reaction force. Now, if we want to

calculate the load at the distal end of the humerus, we need the vertical components of the two

joint reaction forces.

𝐹
𝑎𝑥𝑖𝑎𝑙

= 𝑅
𝑅

𝑐𝑜𝑠(𝑥) + 𝑅
𝑈

𝑐𝑜𝑠(α) = 931. 54𝑐𝑜𝑠(58. 85) + 1652. 68𝑐𝑜𝑠(5. 36) = 2126. 62𝑁.
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Now, if we consider the cross-sectional area of the cortical bone in the humeral shaft, the

cross-sectional area is about 200 mm2. So, the mean compressive stress can be calculated as the

axial force divided by the cross-sectional area, and it comes out to approximately 10.63 MPa.

This stress is lower than the compressive strength of the humeral bone, which is about 864 MPa.

𝑚𝑒𝑎𝑛 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 = 2126.62×106

200 = 10. 63×106𝑁/𝑚2.
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So, let us come to the conclusion of this lecture, both part one and part two together. What did

we learn from the biomechanical analysis of the elbow joint, the joint reaction force both

humeroradial and humero ulnar separately has now been determined using a rather simplified

analysis. The role of the ligamentous system most importantly, in stabilizing the elbow joint has

been identified.

However, a more sophisticated examination of the structure would also take into account the

muscles passing along the forearm even though we did not account for these muscles. Their role

includes the hand’s grasping action and stabilization at the wrist. These muscles originate from

the epicondyles of the humerus, so they compress the elbow joint.



So, this has the effect of moving the reaction force R more in line with the radius bone so, that it

will not normally try to sublux anteriorly as our simplified calculations have suggested.
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I hope you could follow the calculations presented in this lecture. The list of references are

indicated in these slides. I would like to thank you for listening.


