
Basics of Materials Engineering 

Prof. Ratna Kumar Annabattula 

Department of Mechanical Engineering 

Indian Institute of Technology, Madras 

 

Lecture – 37 

Static Failure Theories (Notches and Stress Concentration) 

 

(Refer Slide Time: 00:13) 

 

Let us now comment on the usage of static failure theories. We have previously discussed 

the failure theories for ductile materials and brittle materials. When we are using these 

theories, we should be careful and we should always keep in mind the limitations of these 

failure theories.  

As we have discussed, the failure theories provide a means to express the combined effect 

of various loads in terms of an equivalent stress so as to compare with uniaxial strength of 

the materials. That is what we have done, right? In the case of von Mises stress, we have 

calculated an equivalent one-dimensional stress from the complex 3D state of stress. 

And then, we compared that with the uniaxial tensile strength to say whether it is failing 

or not. However, designers must be aware of its limitations. There are certain fundamental 

assumptions, when we are deriving these failure theories. What are those fundamental 

assumptions? We assumed the material to be isotropic and homogeneous. However, the 

real materials are not perfectly isotropic and homogeneous.  



But the underlying failure theory that we have defined has these assumptions. Hence, you 

would expect some variations from your estimations with the experimental data. The 

second important thing is that we have assumed the loads are applied quasi-statically and 

they remain constant with time; they do not change with time.  

Only in those situations, the static failure theories are applicable, otherwise they cannot be 

applied. Another important assumption when we have derived these static failure theories 

is that there are no cracks present in the material.  

If there are cracks, you will not be able to discard the presence of the cracks and go about 

prescribing the same design based on the failure theories that we have discussed. You need 

to account for the existence of the cracks in the materials; that is one of the most important 

aspects that one needs to keep in mind, when employing the static failure theories that we 

have learned so far in the real design process. 
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So far, we have looked at the static failure theories wherein, the material is assumed to be 

isotropic, homogeneous and there are no cracks. We also did not consider the geometric 

discontinuities or geometric variations within the body on which the load is applied. One 

needs to also consider the fact that the real machine components will have notches and 

grooves and so on and how do you go about taking those things into account, when you 

are doing the design. So, usually the geometric contours that disrupt the force flow are 

called notches or stress risers.  



What is a notch? How do we go about defining a notch? A notch is anything that is either 

a hole, a groove, a fillet, an abrupt change in cross section or any disruption to the smooth 

contours of a part. All these things can be classified as notches. For instance, let us take an 

example here.  

Imagine a step shaft with a sudden change in the cross section and imagine these lines 

represent the streamlines that you have studied in fluid mechanics. The flow is going to be 

constricted in this region to adjust to the new change in cross section; that is what happens 

when you are studying fluid flow. 

You will have local turbulence in some sense. Even if the far-field flow is laminar, because 

of the change in cross section, you will have local turbulence. Similarly, when you are 

applying a load on the material, there will be stress lines. These can be seen as stress lines 

and the same load is applied, but here you have a larger area of cross section to resist that 

load.  

Here, you have a smaller area of cross section and hence, the stress in this region is going 

to be a little higher than in this region. When there is a geometric discontinuity, the stress 

lines also have to conform to the new geometry and as a result, similar to the case of 

streamlines that you have studied in fluid flow, the stress lines also start coming together 

here, in order to confirm to the new geometry in the next section. 

These stress contours meeting close to each other is what we call stress concentration. That 

means, there is a sudden rise of stress here due to geometric disruption  

What are the different kinds of notches that we would see in machine components? Most 

of the machine components will have fasteners, the holes drilled to keep the fasteners, key 

holes on shafts, O-ring grooves etc, there are so many. I think you cannot find any machine 

component without a notch.  

Notches are a part and parcel of the real life of machine components. Now, if you see this 

geometry, here the stress concentration is going to be really high. Primarily because you 

have a sudden jump in the cross section; but what if you actually reduce the severity of 

this jump; rather than having a sudden jump, you actually provide a groove or fillet, 

wherein the stress concentration is eased out by gradual change of the cross section.  



In this region, comparatively you will have less stress concentration because you have a 

gradual change. So, the stress concentration really depends on the radius of this fillet in 

some sense.  

When you have a machine component with such geometric disruptions, you need to 

account for increase in the stress in that region compared to the far-field applied stress.  

Whenever you are designing a material, you are only looking at the maximum stress in the 

material or the component, and that maximum stress should not go beyond your ultimate 

strength or yield strength of the material depending upon whether it is a ductile material 

or brittle material.  

When you have these geometric disruptions, typically you are going to have a stress rise 

in this region and that is what is called stress concentration. There is going to be increased 

stress in that region. So, if you do not take that into account, you would be underestimating 

the stresses in the material which is going to be detrimental for your design. 
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Let us take one example. If you have an infinite body -- so, here this shape actually means 

that the body is pretty long and you have applied a far-field stress, far away from an elliptic 

hole. This elliptic hole is described by semi-major axis 𝑎 and semi-minor axis 𝑐. Then, the 

maximum stress near the notch i.e., the elliptic hole boundary is given as, 

𝜎max = 𝐾𝑡𝜎nom 



𝜎nom represents the far-field applied stress. If you do not have the elliptic hole, in this point 

you would expect the stress to be same as 𝜎nom because whatever is applied will be there 

at each and every cross section. 

But the presence of the hole or the geometry discontinuity is going to increase the stress 

at this region and the factor by which it is increased is called, stress concentration factor, 

given by 𝐾𝑡. In some terminologies, it is also called theoretical stress concentration factor.  

For an elliptic hole,  

𝐾𝑡 = 1 + 2
𝑎

𝑐
 

If it is a circular hole, 𝑎 = 𝑐, and 𝐾𝑡 = 3. The stress concentration factor for a circular hole 

is 3; that means, if you are applying a far-field stress of 100 MPa and if you have a circular 

hole, near the hole boundary, you would experience 300 MPa of stress. If your yield 

strength is say, 250 MPa and you are applying a far-field stress 100 MPa, if you do not 

take into account of the stress concentration, then you would think that you are actually 

safe because your factor of safety is 2.5 

But if you have a hole, the maximum stress in the material is 300 MPa which is much 

larger than your yield strength, implying that the part is not safe anymore. Hence, taking 

into account of the presence of notches and the stress concentration due to their geometry 

is one of the most important aspects in the design 

Here, you can see as you make 𝑎 larger and 𝑐 smaller, the elliptic crack eventually becomes 

a sharp crack. As the value 
𝑐

𝑎
 decreases, i.e., as the crack gets sharper, the stress 

concentration factor increases. 

In the limit 𝑎 tends to very large number and c tends to a very small number, then you may 

have extremely high stress which is going to be dangerous for the real design. So, you 

cannot really choose 𝑎 to be pretty large compared to 𝑐, otherwise you will have very high 

stress concentration factor. This is one of the design considerations one needs to take while 

designing components.  
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The stress concentration factor depends on the geometry and the loading. Consider a shaft 

subjected to an axial load with a diameter 𝐷 with a groove radius 𝑟. If the applied load is 

P, then the nominal stress, 

𝜎 =
𝑃

𝜋𝐷2

4

 

Here, you will have higher stress. The value of the stress concentration factor depends on 

𝑟. For different 
𝐷

𝑑
 values, you can show the stress concentration factor 𝐾𝑡 by this function 

for various 
𝑟

𝑑
 values. For different 

𝐷

𝑑
 ratios, 𝐴 and 𝑏 will change. 

This is 
𝐷

𝑑
= ∞ and this is 

𝐷

𝑑
= 1.02. So, 

𝐷

𝑑
 is increasing in this direction. For each 

𝐷

𝑑
 value 

you know the stress concentration factor for a given 
𝑟

𝑑
 value.  

If 
𝐷

𝑑
  increases, for the same 

𝑟

𝑑
 value, the stress concentration factor increases. Usually, all 

these charts are available in design data handbooks and designers usually refer to these 

charts while choosing what is the stress concentration factor. You do not remember these 

values; you actually refer to the data that is available in the design data handbooks.  
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Similarly, if you are applying a bending moment, not on a circular cross section, but a 

rectangular cross section with these geometry dimensions, again you need to come up with 

new values of 𝐴 and 𝑏 and then, depending upon the load you have these concentration 

factors.  

These concentration factors ranges are different compared to here, keep that in mind. So, 

like that, for various kinds of loading scenarios and geometry scenarios, people have come 

up with these stress concentration factors and they have been tabulated or graphed for our 

convenience.  

All that we need to do is you need to pull out the appropriate table or chart which needs to 

be applied for a given purpose or a given design scenario. So, I have only shown 2, but 

there are several other tables and charts that are available in the design data handbooks and 

you should refer to them while solving the problems.  
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Let us solve one problem. Here you have a circular shaft of diameter 𝑑 and then, the “U” 

shaped groove with ℎ = 10.5 mm; that means, the groove diameter is 10.5 mm deep. The 

radius of the groove is 7 mm and the actual diameter is 𝐷 = 70 mm. On this shaft, there 

is a bending moment as well as twisting moment; there are two loads that are there.  

So, a bending moment of 1 kN-m and a twisting moment of 2.5 kN-m act on the bar. Now, 

find the maximum shear stress and von Mises stress for this problem; it is a ductile 

material. And if the uniaxial yield strength is 180 MPa, according to which criteria does it 

fail? That means, whether maximum shear stress theory or von Mises theory/distortion 

energy theory; according to which of these criteria the material will fail, under these 

loading scenarios. 



(Refer Slide Time: 15:25) 

 

The material is subjected to both bending and twisting, but we know that the stress 

concentration factor changes depending on the type of load that is being applied and hence, 

you need to look for stress concentration factor due to bending separately, due to twisting 

separately.  

The stress concentration factor due to bending is given by this formula for different values 

of 
ℎ

𝑟
 and we know 𝐷. So, you can actually calculate from this formula for semi-circular 

groove 
ℎ

𝑟
= 1, otherwise you will use this formula, ok? And this is 𝐾𝑡. Similarly, for 

torsion, you will do the same thing. 
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We see that, 

𝐾𝑡
bending

= 1.78 

𝐾𝑡
torsion = 1.41 

Then, you calculate the maximum shear stress and multiply that with 𝐾𝑡
torsion; that will be 

171 MPa. And you calculate maximum bending stress from the bending formula and 

multiply that with 1.78; that will be 305.95 MPa.  

So, this is normal stress, this is your shear stress, ok? So, this factor should be multiplied 

with the normal stress and this factor should be multiplied with the shear stress and then, 

calculate your equivalent stress. 

According to von Mises theory, the material is safe, if the equivalent stress is less than or 

equal to yield strength of the material.  

But here, you see that equivalent stress is greater than yield strength that implies the 

material fails; that is distortion energy theory. For maximum shear stress theory, what is 

the condition? 𝜏max should be less than or equal to 
𝜎𝑦

2
 for the material to be safe.  

Here, we have 



𝜏max = 171 MPa >  
𝜎𝑦

2
=

180

2
= 90 MPa  

Hence, the material will yield based on both the failure theories.  

So, you need to redesign the geometries as they are not good enough; that means, either 

you should reduce the load or you should redesign your system. 
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So, with that we complete the static failure theories and in the next class, we will look at 

fatigue failure theories, wherein the load applied on the material or a component is going 

to change as a function of time. Until now, one of the assumptions when we are dealing 

with static failure theories was the load does not change as a function of time. But what 

happens when the load changes as a function of time is something that we are going to 

look at in fatigue failure theories. 

Thank you very much. 


