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Let us continue our discussion on review of the course. In fact, in lecture 30, I have given 

review of the course done till that time. And this review lecture, you can take it as a 
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continuation of that. So, if you look at these two review lectures, you have a complete 

perspective of what the course is all about.  

 

(Refer Slide Time: 00:49) 

 
You know, the main focus of this course is to look at what is the typical variation of stress 

in an axially loaded member, in a beam subjected to pure bending and a shaft subjected to 

pure torsion. And you know, we have done this based on inference of photoelastic fringes, 

at least for axial loading and bending. And when you look at for axial loading, it is 

uniformly distributed. On the other hand, when I look at it for torsion, this is varying as a 

triangle; this is the variation of shear stress. And if you move on to the beam, which is 

transmitting a constant bending moment, here again, you have a triangular variation. But 

this variation is for a normal stress, which is known as bending stress. 

 

And you know, whole of this course centers around development of this torsion formula 

and then your bending formula. And for an axially loaded member, the elongation equal 

to PL AE is a useful relation, which we will use it in other context of the course also. 
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(Refer Slide Time: 2.10) 

 
 And you know, we have seen that you have a simple tension test to find out the Young's 

modulus and yield strength. And you can also use the same tension test to find out the 

Poisson's ratio. So, you have ASTM standards available for this. And one way is to put a 

strain gauge transverse to the loading. And you measure the strain transverse to the loading 

and also along the loading direction. And Poisson's ratio is given as minus of transverse 

strain divided by the longitudinal strain. And you have ASTM standards D3039, which 

lists out what precautions you need to take to measure Poisson's ratio. 

 

(Refer Slide Time: 3.05) 

 
And we have also looked at; there is a drastic reduction of the cross-section when the 

material reaches the necking point. So, it is better that you consider the variation in the 

cross-section. And if you plot the true stress as iP A , as the current area of cross-section 

and also define strain as  
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you have a true strain graph. Instead of drooping down after necking, this will increase as 

until the ultimate tensile strength. 

 

(Refer Slide Time: 03.51) 

 
And we have also looked at the stress-strain relations because in a tension test, you apply 

load only in one direction. When I have all the stress components exist, the normal strains 

are related to normal stress and shear strain is related to only the respective shear stress. 

 

So, that is the speciality of isotropic material. It makes our life extremely simple. When I 

move on to an anisotropic material, a normal stress can introduce shear. And a shear stress 

can introduce normal strain and normal stress. So, it is very complicated to handle. 

So, it is also known as generalized Hooke's law in a simplistic sense.  
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(Refer Slide Time: 04.36) 

 
And we have also looked at how many elastic constants that you require to characterize an 

isotropic material, because we have seen what is Young's modulus E, shear modulus G 

and Poisson's ratio . And we have also developed the bulk modulus. So, we have four of 

them discussed. Out of these four, how many are required to characterize an isotropic 

material? So, if you develop the interrelationship and for interrelationship, what we have 

looked at is, we have effectively used the Mohr's circle of stress and strain for an isotropic 

material. If you scale them appropriately, the same principal stress directions are same as 

principal strain direction. So, you can look at what happens by relooking the shear stress, 

pure shear stress as combination of a tension and compression and invoking the stress-

strain relations. It is possible to establish an interrelationship between Poisson's ratio, 

Young's modulus and shear modulus.  

So, you have this from the strain transformation law and you have the definition of xy

based on stress transformation and also this Mohr's circle of strain, you can simply write 

this as 1 2 − . And from your stress-strain relation, I have xy G = . And when you look 

at from your understanding of principal stress and strain, I can write out independently 1

and 2 . When I substitute it back, I get a very interesting relation  
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(Refer Slide Time: 06.29) 

 
On similar lines, we have also looked at how to find out the interrelationship between bulk 

modulus, Poisson's ratio and Young's modulus. For that, we developed the concept of 

volumetric strain that is simply addition of all these normal strains. Volumetric strain is 

nothing but xx yy zz  + + .  

 

(Refer Slide Time: 06.53) 

 
Using this, we have revisited what is bulk modulus. It is given as pressure by volumetric 

strain and that we got the expression  

 
And from this, you get 
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 So, what you find here is, it is enough you have only two elastic constants to characterize 

an isotropic material. It is the greatest simplification that we have achieved, ok.  

 

And we have also looked at what are the extremum values of Poisson's ratio. When  is 

0.5, K becomes ∞, volumetric strain becomes zero; the material becomes incompressible. 

And when  is −1, you have the other story for G. So, the bounding values for the Poisson's 

ratio is from −1 to 0.5. And we have seen, cork is a very interesting material. It has a 

Poisson's ratio is zero, whereas rubber has a Poisson's ratio of 0.5. And we have also seen 

negative Poisson's ratio comes to advantage when you want to develop a stent for all your 

arteries and other blood vessels.   

 

(Refer Slide Time: 08.09) 

 
And the generalized Hooke's law for an, if you are considering an isotropic materials, how 

these are related? Independently, we have 9 stress components and 9 strain components. 

So, you may think that you may require 81 elastic constants. We have this as  

 
This is known as elasticity tensor. It is a tensor of rank 4. You may think that you will 

require 81 elastic constants. But if you look at strain tensor is symmetric, this reduces to 

54 elastic constants. If you say stress tensor is symmetric, that reduces to 36 elastic 

constants. And if you look at strain energy density function and if you differentiate with 

respect to ij , you get ij . This is nothing but another statement of Castigliano's theorem. 

And the order of differentiation does not matter. So, I have Eijkl is Eklij. This reduces to 21 

elastic constants. So, if you have an anisotropic material, you may require 21 elastic 

constants to characterize an anisotropic material. Look at; when I have an isotropic 

material, I need just two of them. So, it makes your life extremely simple. That is one of 
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the reasons why we want to have analysis of isotropic material. Even in situations where 

it is clearly not isotropic, we make that simplification.  

 

(Refer Slide Time: 09.50) 

 
Then we have also looked at stress-strain temperature relations. As long as you do not 

constrain, you have only thermal strain. The moment I constrain, then what I have is, I also 

have stresses developed. And if I want to write the thermal effects affect only the normal 

strain, I have an additional term ( )0T T − , ok. So, it is actually T . It is not affecting 

the shear strain in case of isotropic materials. Even though we look at what happens to 

orthotropic or anisotropic material once in a while, our focus in this course is confined to 

isotropic materials.  

 

(Refer Slide Time: 10.35) 
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And you know, we have also looked at what happens to a hoop subjected to a temperature 

change. And then you know, we brought in geometric compatibility. We said that 

tangential strain should be identical in the interface. And we also determined the stresses 

and we have also plotted. See, across this, you know, you maintained compatibility of 

strain at this interface. But when I plot stress, stress can be discontinuous. And in the case 

of a hoop, we have simply said, it is like, you know, you have a circular one, it is opened 

up and then you are actually applying an axial tension. So, it is supporting only a constant 

stress that you know as pr t . So, when you plot the stress variation, the variation would 

be like this.  

 

(Refer Slide Time: 11.29) 

 
And we have also looked at if you have to strengthen a beam made of soft material, you 

can put a steel on top of it; top of aluminium; top as well as the bottom, so that you maintain 

the symmetry. And when we plot the strain variation, the strain variation is linear. 

However, when I plot the stress variation, stress variation will have a step at the interface. 

And the other subtle point is, because I am looking at bending, even though the thickness 

are small, there would be a linear variation because you have the factor y coming in the 

strain expression as well as stress expression. It is not going to be constant. In the case of 

a hoop, it is constant. In the case of a bending, it varies linearly, even though thickness is 

small. It is a subtle point for you to note. 
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(Refer Slide Time: 12.24) 

 
And you know, we have also looked at basics of photoelasticity. Since now you have the 

knowledge of stress-strain and also principal stresses, what would be the nature of contours 

of 1 2 − ? We have 1 x ,
2 as zero in one section of the beam. Since x varies linearly, 

1 2 − contour values always remains positive.  

 

(Refer Slide Time: 12.51) 

 
And if you plot them analytically, you get essentially parallel lines, which is also verified 

by your photoelastic experiment. So, this is another indirect validation of photoelasticity 

giving contours of 1 2 − . So, you have beautiful color variation. And we have also seen 

use of photoelasticity in several other applications. And your stress tensor is shown.  
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(Refer Slide Time: 13.34) 

 
And you know, we have also looked at how to measure strain. There are multiple methods. 

The moment you go for measurement, you know, the resolution and range of each of the 

technique you have to look at. Depending on the capacity of the technique, it has a 

resolution possible, like you have a distance measurement by a scale or a vernier caliper. 

So, you should choose an appropriate technique that would meet your requirement. If you 

are working on this range, I can go only for moiré interferometry. If I work in this range, 

which is like a gudgeon pin, I can go for a grid method.  

 

And you can also apply photoelastic coating to reveal the strain patterns. And you have 

the moiré, which also gives you displacements. And you have a brittle coating, where 

normally you do not want cracks. Here crack is the information; crack provides. The 

material fails in a brittle fashion. So, you get contours that are when you draw the tangent 

to that, you get the principal stress direction. And you know, a general purpose analysis is 

possible with a strain gauge. But for special application, you need to go for appropriate 

experimental technique for strain measurement.  
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(Refer Slide Time: 14.46) 

 
 

And you know, one of the discussion in the case of strain gauge is how do I connect the 

strain gauge in a Wheatstone bridge? If I do not connect them properly, I may get wrong 

results. In transducer applications, you want to maximize the signal. So, you know how a 

cantilever beam behaves. Because you know bending now, when I apply this load, this is 

subjected to tension and this is subjected to compression. So, these are strain in opposite 

direction. Connect them in adjacent arms so that strain magnitudes get add up, ok. So, you 

amplify the signal in a transducer applications. I can also do the amplification by putting 

two strain gauges on this. But if I do not connect them properly, suppose I connect them 

like this; what is the result you will get? You will get twice the signal or zero signal? I will 

get only zero signal. So, you will also have to handle the Wheatstone bridge appropriately.  

 

And we have also looked at how to extend this for torsion because strain gauge by itself 

can measure only axial strain, fine. And we have understood what way shear stress can be 

looked at as combination of tension and compression. And using that and looking at the 

Mohr's circle, you can have the justification. Using this, we have identified that strain 

gauges have to be aligned at 45 degrees to the axis and connect them appropriately in the 

Wheatstone bridge, so that I can quadruple the signal. That is the advantage. So, I can 

measure torque with much more accuracy when I use that as a torque meter, ok. You have 

torque wrenches which measure the torque. So, you have definite applications. How do I 

put them? This is very important; how I have pasted it on the shaft.  
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Then we moved on to torsion. We have looked at circular cross-section. To understand 

circular cross-section in a simplistic manner, we have also looked at a square shaft. In a 

square shaft, you have a warping which is absent in a circular shaft. That made your life 

lot more simpler. That is the reason why in this course, we choose the cross-section and 

the loading so that plane sections remain plane before and after loading. We postpone 

torsion of circular cross; non-circular cross-section to the next level course. It is not that it 

is not solved. It is solvable, and Saint-Venant is the first person to solve it, ok. So, plane 

sections remain plane before and after loading. We have done it by a thought experiment, 

ok.  

And then you can also see it visibly when you take a simple circular shaft, draw the lines 

and then twist it.  

 

(Refer Slide Time: 17.42) 
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And we have also a nice animation. You look at the animation; you understand what all 

we have done for finding out the strain components. And this shows the experimental 

information and this shows the drawing in a systematic manner. So, you find out what is 

the strain that is existing.  

 

 (Refer Slide Time: 18.05) 

 
You have that as the reference axis is given as   r z . So, I have only  

z

d
r

dz



 =  

 

(Refer Slide Time: 18.10) 
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(Refer Slide Time: 18.16) 

 
 

(Refer Slide Time: 18.21) 

 

I have only z

d
r

dz



 =  
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(Refer Slide Time: 18.32) 

 
So, we have used this to develop the stresses and strain stress and equilibrium equations. 

And in the process, we have also looked at a quantity like this which when I substitute, I 

get this as 2

A
r dA , that is your polar moment of inertia. And we develop it for a circular 

shaft. We also extend the same ideas to a hollow shaft. The same ideas are equally 

applicable for a hollow shaft. And there is also interchangeably use Iz or Ip because I said 

that in bending of beams, Iz has a different connotation. So, it is better to look at as Ip for 

circular shaft when you are doing torsion and look at Iz for when you go for the bending 

of beams, or you can simply say that as I. If you understand how the equations are 

developed with respect to the coordinate system. And this is the celebrated equation that 

you have. This is developed for a circular shaft transmitting constant torque. And what we 

do is when you have a twisting moment, pick out that twisting moment at that cross-

section, find out the torsional stress, ok. 
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(Refer Slide Time: 19.48) 

 
 Then we moved on to bending of beams, where we have looked at a very soft beam and 

we could understand that straight lines get rotated. And we have understood, you know, 

the plane cross-sections of the beam remain plane during bending. That is what you see 

here; there is no warping. And you have cross-section which is perpendicular to the 

undeformed axis of the beam remains perpendicular to the deformed beam during bending. 

That is very important! Ok. This implies that originally parallel lines, the beam gets 

rotated, very clearly seen in this experimental demonstration.  

 

(Refer Slide Time: 20.35) 

 
And when we go into the results, we have the stress and strain in pure bending. It is very 

important that theory is developed for pure bending, a beam transmitting only bending 

moment, nothing else. So we have the expression for x , we have the expression for 
xx

and we have the stress tensor. And this final result is credited to Coulomb. So, you have 
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to recognize that the stress varies linearly over the depth of the beam and the central core 

is not contributing to load share, which is used by nature in developing your bones. Your 

haemoglobin gets developed in the soft aspects of the bone. And we have the relation  

  
which finally, when you look at all the other expressions, you have the famous flexure 

formula  

 
Because later on, we also dropped this zz just to speed up your writing. Once you 

understand the context, what is the axis and what is the kind of moment of inertia talking 

in this context, it is convenient to simply write and indicate moment of inertia as I. 

And you have the torsion formula, you compare; they are very, very similar, fine. It is easy 

to recollect how these are written.  

 

(Refer Slide Time: 22.02) 

 
And the other question we raise, can beam theory be extended to a cantilever beam. What 

is the difference? In the case of a cantilever beam, in addition to bending moment, it also 

transmits a simple constant shear. Even a simple constant shear modifies the bending 

moment along the length of the beam. So, the recipe here is, you have the flexure formula 

and simply pick out what is the bending moment at this cross-section, then you say what 

is the bending stress using the flexure formula; that is permitted. And we have also seen, 

even though the cantilever beam warps, there is no coupling between shear and bending 

as long as you are having a slender member and the depth of the beam is very small 

compared to the length. If the depth is comparable to the length, then you can have 

coupling effects. That is considered as a Timoshenko beam, and you have different theory 

developed. Remember, such problems are solved, it is not done in this course. And we 

have also looked at other discussion, how do you have 
1 2,  and then whether you have 
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neutral axis and an isotropic material. You know, what is the advantage, all these related 

discussion we have done.  

 

(Refer Slide Time: 23.18) 

 
You know, whenever we have a beam transmitting a variable load or even your uniform 

weight, there are multiple ways books bring out the equations. You know, if I have the w 

acting upwards taken as positive, I will have the expression ( )dV dx w x= − and 

dM dx V= − . On the other hand, if I develop the equation with w as acting downwards, 

the only change is ( )dV dx w x= ; it becomes positive. So, you will also have to 

understand a subtle difference. If you do the mathematics systematically, there is no 

problem. But if you want to interpret it based on sign convention, you have to see which 

way you have developed the equations.  
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(Refer Slide Time: 24.06) 

 
And one of the subtle points in the case of bending is how shear gets developed. To 

understand this, we have taken a layered beam, and we find they get, they are slipped as 

the loading is applied. You could very clearly see slipping of layers. And you can also 

imagine something is holding it; that is why the layer is not slipping in a beam which is 

rotated like this. Here, the rotation is very, very small and this edge remains straight, 

whereas the same height of the beam with four layers, you have this jagged edge. That 

clearly shows, that is something is holding the surface, ok. So, on that basis, we developed 

the mathematical expression for the shear stress, and this also shows how much is the angle 

or the slope when the beam is one unit but with different layers which brings out very 

clearly the role of shear in the beam analysis.  

 

(Refer Slide Time: 25.20) 

And you know, even though we have said shear is important, there are other concepts also 
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we have learnt. A bending stress, if you plot it with some scale, is triangular and you have 

compressive and tensile. And in order to illustrate that shear stress varies parabolically, 

many books show this big, but they do not give an insight, what is the relative magnitude. 

That is also very important.  

 

(Refer Slide Time: 25.58) 

 
Even if you consider a simple problem of a rectangular cross-section subjected to three-

point bending like this, for this problem if you calculate the shear stress, in actual 

magnitude if you plot, it is as small as this compared to the normal stress. That is normal 

stress created by bending. That is the reason, even though shear is important in certain 

instances, we are neglecting it because its actual magnitudes are considerably very small 

in many applications. And we have also looked at how to put, you know, the stress tensor. 

You have the comparison in terms of numbers, in terms of  

 
So, if I have h/L as, if I take this as 1/10, so it is 20 times less compared to the normal 

stress. So, that is the idea that you should have.  

 

And we have also looked at how to write the stress tensor at specific location of the cross-

section. This is the cross-section that we are talking about. You can also write the stress 

tensor. This is compressive, so I have put this as 
0

0 0

xx− 
 
 

. And when I have this as the 

tension side for this problem, I have 
0

0 0

xx 
 
 

. And when I look at at the center, because 

this beam is also transmitting a shear force; so what I have here is, I have 
0

0

xy

xy





 
 
 

. 

When bending is maximum, shear is zero. When shear is maximum, bending stress is zero. 

That is the interesting aspect of what happens in a beam. Suppose I take a point in between, 
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this will have 
0

xx xy

xy

 



 
 
 

. That is dictated by the problem, ok. And we have also looked 

at how to write 1 and 
2 . You know, we always say that one should be algebraically the 

largest. When I have this as compressive, this becomes 
2 . Very subtle point, but it is also 

very important. That is the convention that we have used. We will always have 1 , 
2 , 

3 arranged algebraically larger, ok. 

 

(Refer Slide Time: 28.15) 

 
And you know, we have also looked at the inconsistencies in shear stress formula. You 

have an issue when I have it in the junction, ok. Nevertheless, we use these expressions, 

because we get the numbers reasonably for us to play with. And from your free surface 

concept, you know, I should have my, this flange; this should have zero stress, but your 

shear stress formula does not give it. And in the transition region, what you have here is, 

this you take the length of the flange, and you get a smaller magnitude. The moment you 

come to the web, suddenly these stress magnitude increases. That is correct. There is no 

problem. The problem comes in other zone, ok. And you have this xz varies linearly 

because you take Q like this, ok.  

And the other important limitation is, when I look at here, you know this is a free surface. 

I should have zero shear stress, but you have shear stress here and that you will have to 

take it with a pinch of salt. These are fuzzy zones. Shear has to be zero, but shear formula 

predicts a small value. But we have already looked at, from a mathematical point of view, 

we may have some number. But if you compare the magnitudes, the magnitudes are very 

small. And this is the reasonably a simplistic analysis of an open cross-section that we 

could do in the case of beams. From what we have developed for the cross-section, which 

has one plane of symmetry, we could exploit that flexure formula for a wide variety of 

problems than what we have learnt it for torsion, ok. 
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(Refer Slide Time: 30.10) 

 
And there is also a very interesting concept, once you look at open sections. When you 

observe this, you find that this is bending as well as twisting.  

 

(Refer Slide Time: 30.22 ) 

 
And when you apply it along the shear's center, it only bends, ok.  
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(Refer Slide Time: 31.31) 

 
And this is another angle cross-section. And if you look at this, you know, this also bends 

and twists. The shear center is actually this corner; I was unable to put my pen there. So it 

was slipping; I just put it next to this. 

 

(Refer Slide Time: 30.48) 

 
You can very clearly say that this is only bending; there is no twist. But while bending, it 

has bending in two planes. One plane is like this; another plane is like this. It is bending 

like this; it is also bending like this. And that we said it is an unsymmetrical bending. Is 

the idea clear? When it is bending in two perpendicular axes, you have this as 

unsymmetrical bending.  
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(Refer Slide Time: 31.16) 

 
And we have also looked at another typical cross-section used in beams. You have T beams 

used in many, many applications. This is very interesting from the point of view of writing 

your stress tensor. Because you know, if you write stress tensor at A, it is very simple. 

Simply x is existing, and you also have the expression from your flexure formula. And 

for point B, which is on the centroidal axis, which is also the neutral surface, this is made 

of one material, ok. So, I have this as only xy and yx . And when I, you also have the 

expression  

 
And your typical bending stress variation is like this. And your shear stress variation xy  

is like this. And when you make this as modulated for the actual values, these values are 

very, very small compared to the bending stress. And when you go to the point C, I have 

put this as 
xx− . And interesting aspect is what happens at a point D, that is what is put 

here. I have 
xx , xy as well as xz , you should recognize that. The stress tensor is more 

populated, ok. So, we have learnt how to get the expression for stress magnitudes, whether 

it is axial stress, shear stress in torsion or bending stress in bending or shear stress in 

bending. When you get that as those quantities that appears like scalar, but you should also 

put it in the matrix form, so that you recognize that this is a tensor of rank 2. Not only this, 

when I have combined loading, if you write it as a matrix form, you can add them if you 

take the axis appropriately, which we have also solved a problem of a femur subjected to 

tension, torsion and bending. Combined loading is the order of the day, any simple 

problem has only combined loading. We learnt them separately.   
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And you know, one of the concepts that I have said that you lack is how to move a force 

from one point P1 to P2. If you master this, when I move this from P1 to P2, I need to have 

a force as well as a couple. You can comfortably write the bending moment diagram and 

shear force diagram. You take more time because you have not mastered this, I am 

repeating it again and again. And even when you look at a simple tension spring, if you 

find what is the load which is acting, when I asked you to find out the forces, you are 

struggling to get it. But if you look at how to apply this concept, which I am doing it again; 

when I move it along the axis, nothing happens. I can move the force freely along the axis 

that is principle of transmissibility. But if I move from this axis to this, I have to look at, I 

will have a force as well as an appropriate couple, ok. Here, you are getting this couple in 

such a manner that this is along the axis, so it is a twisting moment. So, I will have a 

twisting moment as well as a shear force.  

 

Then we moved on to how to analyze the torsional spring. You say torsional spring, but 

what is the major force it is transmitting? Its major force transmitting is bending. That is 

again, I have a force here; I move this force. So, this gives me a force as well as a couple. 

This couple is a bending moment and when I move from this to this, I have a force as well 

as a couple. This is a twisting moment. So, you have to use this aspect of moving a force 

from one point to another point. It is not trivial, which is not emphasized in the books. I 

have emphasized it repeatedly so that you get the idea of this concept better. And you can 

solve seemingly very complex problems in a jiffy. Now, you have the background to 

analyze these problems. So, do not simply say that when I have a sketch like this, a simple 

spring gets stretched, it is transmitting axial load. Do not say that! It is actually transmitting 

a twisting moment. So, this transmits torsion, and this transmits primarily bending. So, 

you have to know the difference. 
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(Refer Slide Time: 35.59) 

 
And you know, I said that even though I say shear magnitude are small, it matters when I 

go very close to the load application point. If at all I apply strength of materials solution, 

I must apply it away from the point of loading, ok. I must do it only in a zone away from 

the point of loading. But if I go close to the load application point, this is done from theory 

of elasticity solution. This is what you have in an experiment. This matches very well with 

theory of elasticity solution. And look at what happens in the case of strength of materials. 

It totally misses out this aspect, because we have never considered. We have taken shelter 

under Saint-Venant's principle. So, you have to consider that near the load application 

point, these shear magnitudes are very high. Just below the surface, it reaches a peak. At 

the surface, it is still zero, because it has to satisfy that free surface requirement. And these 

stress magnitudes are comparable to the bending stress. So, failure can definitely happen 

unless you reinforce these areas. And this is done in practice. People have stirrups to 

support this.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1033



Lect. 39, Video Lecture on Strength of Materials, Prof. K. Ramesh, IIT Madras 28 

 

(Refer Slide Time: 37.16) 

 
And we have also looked at another deviation. Suppose I have a uniformly distributed 

load. This is a common load in all civil engineering construction; you have the self-weight. 

And if you look at the strength of material solution, even for a rectangular cross-section, 

which is very well done in strength of materials, it is not in order. There is a small variation 

in your normal stress. It is not linear, but it is having a small non-linear component. And 

in addition, we have said in pure bending, there is no normal; y stress component. That 

is correct. But when I have a situation like this, where I have distributed load, I do have 

normal stress. And theory of elasticity accounts for this. And here again, I want to caution 

you that this is not drawn to scale. None of these quantities are drawn to scale. The focus 

is only to show the variation, shape of variation. To accentuate the appreciation of shape 

of variation, it is drawn big. If you draw it in real scale, they will appear very small. All 

these three quantities will appear very, very small.  
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And we have also learned how to analyze a reinforced concrete beam using the same 

flexure formula. We imagine that the concrete beam is like a section like this, and the 

hollow section connected by a thin web, ok. And that is how we have analyzed it. It is all 

engineering analysis because only the rods; steel rods take the tension load. Concrete is 

very weak in tension.  

 

(Refer Slide Time: 39.01) 

 
And we have also looked at various methods to determine the deflection of beams. So, we 

have double integration  
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And if you use the interrelationship dM dx V= − , ( )dV dx w x= − . Then I get a 

quadruple integration that is the load-deflection  

 
We have been able to take out EI out because we are discussing a beam of constant material 

and constant cross-section. Otherwise, EI would be inside; 2 2d v dx  will be there. That 

way also you can analyze. And you know, when you do this double integration or 

quadruple integration, you get the variation of slope and deflection along the length of the 

beam conveniently; no problem. And we have also looked at that this is useful even for 

statically indeterminate problems. Then we also looked at moment area method, method 

of superposition and energy method. These are applicable for at specific locations if you 

want to find out the deflection and slope, you are in a position to do it quickly, ok. And 

moment area method people also say even if I have EI changes, I have to scale up my 

bending moment diagram in that region with appropriate EI. So, beams of variable cross-

section or if you change the material moment area method is also a good choice for you to 

find out the deflection at specific locations.  

 

(Refer Slide Time: 40.35) 

 
And one of the aspects in bending is deflection, is you have to find out what way the 

boundary condition to be written for a simply supported end. It will have a slope; it will 

have deflection as zero. On the other hand, if I go and do that as a fixed end, you find 

immediately the slope goes to zero. Your deflection is zero, but slope is also zero. And 

you know, you will also look at what happens in a free end. So, if I have problems of this 

nature, you should know how to write the boundary conditions. It is needed even for your 

appreciation of how the deflection can be because one of the training in this course is to 

learn how to use method of superposition. There the training is how to draw the deflected 

shape, ok. So, you should practice this and then visualize how the beam can have a 

deflection. That is a very important idea. It helps you to even verify your mathematical 

development, ok.  
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And you know, we have also looked at in the moment area method, you get only the; if 

you calculate the area, you get only the difference in angle of the slopes. You do not get 

the absolute slope. Similarly, you get only tangential deviation when I take the moment. If 

I take tBA, I have to multiply by 
Bx . If I have tAB, I should multiply by Ax . I get only 

tangential deviation. You should know how to use this effectively to get the actual 

deflection or actual slope.  

 

(Refer Slide Time: 42.24) 

 
And in the method of superposition, as I said, you know, because we are living in a linear 

elastic regime, I can superimpose independently and add all of them; analyze the problem 

independently so that the problem is easy to handle and add them together in a systematic 

fashion. So, you should know how to draw this deflected shape. You should visualize that. 

That is one of the important training that you learn in this course.  
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And we have also learned fictitious load method. This is due to Castigliano. He is a very 

young scientist. You know, he passed away very early in his life and this theorem was 

available in his PhD dissertation. It has become very popular and many developments 

using energy methods later on owe allegiance to his contributions. So, even if I do not have 

a particular point; load is acting, if I want to know what is the deflection in a direction or 

in any other point. I can add a load, introduce a load Q, determine the energy and then 

differentiate with respect to find out the energy, differentiate with respect to Q, substitute 

Q equal to zero at that stage, then what you get is a deflection along that direction for that 

point of interest. So, very useful method.  

 

(Refer Slide Time: 43.57) 

And I also said an extension of this is the development of the finite element method and 
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experiment is truth, ok. But when I have the finite element method, I can get the 

displacement contours, I can get the strain contours, I can get the stress contours - all of 

that I can do, ok.  

 

(Refer Slide Time: 44.19) 

 
And finally, you know, if I plot the stress contours in terms of 1 2 − , you see this is from 

an experiment, this is from a finite element analysis. The match is very impressive. You 

can clearly say that my numerical analysis has brought out the results correctly. What is 

the difficulty here? You know, you have a boundary of the spanner which is very arbitrary. 

Even though theory of elasticity we have used as a basis to verify our strength of material 

solution, theory of elasticity demanded how to write the boundary condition in an arbitrary 

geometry. That was very difficult. It can handle simple geometries like circles, ellipses 

and so on. So, one of the greatest advantage of finite element is, I can discretize it using 

an element and handle any arbitrary geometry comfortably, but the solution is 

approximate. It is not an exact solution, but you go asymptotically to the actual solution, 

and you have many packages available, and you can learn some of them as part of your 

future courses. 
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And ultimately why we have developed all these concepts of stress, strain and principal 

stresses? We wanted to investigate whether the component that I make, whether it will 

withstand the loads or not, whether it will be strong enough. So, you have failure theories, 

and you have Tresca yield criteria. I said, if I have 1 , 
2 , 

3 arranged in this fashion, 

you will never make a mistake if I have  

 
I caution in the case of your simple pressure vessel, both the principal stresses are positive. 

There is every room that you can apply Tresca yield criteria wrongly to that. You may 

simply use 1 and 
2 . You should not forget 

3 is zero. And you should also appreciate 

failure theory is a substitute for good test data. I said for complex structures, people 

develop very expensive loading rigs and only then the design is released for human use 

because human lives are very precious. And failure theories are based on simple tension 

test. How did they approve the theories? By conducting complicated experiments and 

verifying that the experimental results for unknown load situations which have not 

accommodated in simple tension test, also falls within that yield locus or very close to the 

yield locus, ok. 

 

And for brittle materials, because you know for ductile materials, you have Tresca; you 

have von Mises which are shown here. One is an elongated hexagon, another is an ellipse 

and this appears like a circle under the hexagon in the three-dimensional 1 , 
2 , 

3 space. 

And I also said that von Mises yield criteria is same as a distortion energy theory as well 

as limiting value of the octahedral shear stress, ok. So, people have verified it from 

multiple viewpoints. And for brittle materials because they have various different values 

of tensile yield strength and compressive yield strength, they are very strong in 

compression. And you have a failure locus which is modified by several people. Initially, 

you had one developed by, long time back Coulomb, but modified by Mohr. Then finally, 

it was modified by Griffith, that is also shown here. And so, you have to use principal 

stresses very effectively to verify whether a material, whether it is brittle or ductile, you 
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have failure theories. And you also have in design what is known as factor of safety. I said 

factor of safety is a very, very important design parameter.  

(Refer Slide Time: 48.23) 

 
Even a simple atta-chakki can throw you surprises. So, when I have this, I have the stress 

tensor in this form. And you can write; in the design courses, they simply express it in 

terms of the bending moment and the twisting moment. And because the shaft is rotating, 

you have to recognize the bending introduces stress nature that varies cyclically. Because 

this shows you have the fiber, how the fiber when due to rotation experiences load, which 

is a very subtle point, ok. You may miss it. And what is the consequence of this? The 

bending stress on the shaft introduces fatigue loading as the shaft rotates. In view of this, 

it reduces further the allowable stress. And all your design courses basically use what is 

the principal stresses from this stress tensor and expresses this in terms of your bending 

moment and twisting moment. 

 

So, when I have a shaft transmitting torsion and bending, you have a simple expression. 

They will do and estimate the diameter of the shaft. Just by using this, there is no torsional 

stress or bending stress in the expression. They are hidden, ok. And you do not have to 

memorize this in your later course. You can derive and people use this in their design 

books like this, ok. 
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Then you know, we said that when you do not have a warning, any failure is difficult to 

handle. So, one of the functional failure loss is, you have a column that suddenly buckles. 

There is no material separation, but suddenly buckles. And we have seen that this is 

developed by Euler in 1757. And buckling is one aspect where we have to analyze on 

deformed coordinate system. Second aspect is the critical load at which buckling tapes is 

very sensitive to the boundary conditions. And we have looked at how the, when the 

boundary condition changes, how the shape changes. And we also said that these are all 

neutral equilibrium positions, ok. And the experiment gives you truth and this is one of the 

experiments which is very, very expensive. 

 

(Refer Slide Time: 51.02) 
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And people also found application for buckling. You know, engineers are very clever. You 

know, they do not believe any physical phenomena, go unutilized.  

 

(Refer Slide Time: 51.12) 

 
And you view the critical load from a different perspective you take the hinged-hinged 

column as a basis. And you have  

 
And you visualize other boundary conditions with an equivalent column length. If I have 

a column of fixed pin; I view this as equivalent length of 0.7L. If I have a column which 

is clamped-clamped; I view this as a column of length 0.5L. And if I have a cantilever; I 

view this as a column of 2L. Longer the column, more it is prone to buckling, ok.  
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And you know, last but not the least, we have one of the best explanation for Saint-Venant's 

principle in this course, because you have been trained to look at photoelastic fringe 

patterns. So, in these three cases, I have a statically equivalent system applied. And what 

you find is, the disturbances die down after a distance and this distance becomes smaller, 

when this distribution is close to the assumed distribution of uniformly distributed; is the 

one which we require. We say that axial load resistance is developed like this. And this 

happens at different distances. 

 

See, what is the distance that you have to take? One thumb rule is it is equivalent to the 

longest cross-sectional dimension. It is only an empirical approach, ok. There have been 

many discussions. There are also certain specific instances where Saint-Venant's principle 

does not work. That also you should know. But for a large variety of problems, Saint-

Venant's principle is a very useful principle. And you are able to relate it easily by looking 

at the fringe pattern, because in an axial load, I should have a constant color. And how the 

constant color is obtained, you have to look at. And this is by Saint-Venant. You know, 

unlike Castigliano, he had the longest life, about 90 years, very active till the last minute. 

Very, very few people in life are gifted to pursue their passion till the last minute, ok. So, 

with these observations, your overview on strength of materials is brought out. So, if you 

look at these two lectures, one after the another, in a nutshell, you know what are the 

important concepts that we have looked at in this course. Thank you very much. 

 

 

_____________________________ 
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