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Lecture – 02
Sound Wave Propagation in Fluids - I

Welcome to the second lecture of our course and this lecture we are going to study about

Sound Wave Propagation in Fluids.

(Refer Slide Time: 00:33)

So, the outline for this course is as follows. So, we will study about what happens when the

sound wave propagates through a fluid medium and then we will study something called as

the Acoustic wave equation. So, this wave equation is a wave equation that can be used for

any fluid medium and any kind of sound wave propagation, so a general equation will be



derived. Then will study what are the various Bulk acoustic properties and then we will study

one special type of wave which is called as Harmonic plane waves.

(Refer Slide Time: 01:09)

So, let us begin our class. So, as we discussed in the last chapter in the last class was that, any

wave can be represented as a disturbance over time and a disturbance over space. So, it can be

represented as a sinusoidal disturbance over space and time provided it is a harmonic periodic

sound wave.



(Refer Slide Time: 01:29)

So, when the sound wave is generated in a fluid medium, it will cause both disturbance over

space as well as the disturbance over time. So, it will be a function of both space and time.

So, let us see, let us define some quantities here. So, for a fluid medium; the total pressure at

any time or the instantaneous pressure will be whatever is the mean pressure of the fluid plus

the acoustic pressure. Because acoustic pressure as we told was the mean pressure plus

whatever is the fluctuation. So, the total pressure becomes whatever is the mean pressure plus

whatever fluctuation is created. So, the total pressure can be calculated like this.

Similarly because the pressure is changing, the density of the medium will change. So, here

we are resuming that we have a medium where we are not adding any additional mass. So, the

mass of the medium is fixed, no additional particles are being added to the medium. So, when

a zone of high and low pressure is created; so the density will also change and the velocity of



the particles will also change, because this disturbance propagates by the oscillation of

particles. So, when the particles are oscillating, the velocity is also going to change.

So, similar equation can be derived; the total density then becomes whatever is in mean

density of the medium plus the density due to the acoustic pressure. Similarly we have V; so

this becomes whatever is the density or the total velocity of the particle becomes the mean

particle velocity plus the acoustic velocity. And now we are assuming that there is no mean

flow. So, the mean velocity is 0. So, we take this assumption when we come to derive an

equation for sound wave propagation.

 So, as we said in the earlier class I had said that, the fluctuations are very small. So, they can

be of the order of 10 to the power minus 10 to 10 to the power minus 4 times the actual

pressure of the medium, and even such very minute fluctuations are perceived as sound. So,

because this acoustic process always involves very small compression and very small

expansion; therefore, when the when such expansion and compression is taking place, then

the temperature gradient that is created is not sufficient enough. So, it is almost negligible.

So, for such very small compressions and expansions of the fluid particle, we neglect the

temperature gradient. And we neglect the thermal conductivity.



(Refer Slide Time: 04:13)

So, overall there is no change in the thermal energy, when a acoustic disturbance propagates.

Because of these very small values of fluctuations that are happening; there is no sufficient

gradient generated and that is why there is no heat transfer during such process. So, for all the

study of a acoustic, we assumed that the acoustic process they are either; they are considered

as adiabatic and reversible or we can name it as isentropic. So, isentropic is the name for a

process which is both adiabatic and reversible in nature. So, this is what is assumed in physics

that because the process involves such small fluctuations, the process can be considered as

adiabatic and reversible.



(Refer Slide Time: 05:09)

Empirically from the field of thermodynamics a relationship has been derived. So, if we have

a real gas, then the relationship between the pressure and the density variation is given by this

equation. So, this is the derivation of this is out of course, because it is from the field of

thermodynamics. So, this is a typical relationship between this is called as the adiabatic

relationship of a real gas. So, we will directly take this equation into our derivation. Now we

know that the acoustic fluctuation they are very small. So, this rho minus rho naught is going

to be very small. So, this quantity is extremely small and this is a Taylor series expansion.

So, the higher order terms they can be neglected; all the higher order terms they can be

neglected, we only retain the first order terms. So, this equation can be approximated to P is

equal to P naught plus del P by del rho and rho naught into rho minus rho naught and we are

neglecting all the higher order terms. So, this is the equation we have got. Now let us talk



about another parameter of the fluid medium; it is a very important parameter which we call

as adiabatic bulk modulus.

Now you already know about what is a modulus in the field of solid mechanics. So, when we

have a solid medium; the modulus of elasticity, then we have bulk modulus, modulus of

rigidity and so on. So, the usually measure what is the resistance to deformation. So, bulk

modulus measures what is the resistance to compression or expansions. So, it is a resistance

to a change in the volume or change in density.

(Refer Slide Time: 06:59)

So, in the same way for the fluid medium, this adiabatic bulk modulus which is represented

by the symbol capital B is the resistance to compression or expansion as the case may be for

the force of this fluid medium. And mathematically this particular quantity is defined as B is

simply whatever is the mean density of the medium multiplied by the rate of change of



pressure with respect to the density. So, rho naught del P by del rho, the value of this at the

mean density. So, this is what, this is how adiabatic bulk modulus is defined.

So, we had this particular relationship, this was the adiabatic relationship. So, if we replace

this value now with the definition of bulk modulus this entire thing. So, this has been

replaced. So, what do you get here? So, bulk modulus is this. So, this quantity becomes B by

rho naught, this quantity becomes B by rho naught.

(Refer Slide Time: 08:05)

So, we replace this quantity here. So, now, the equation we get. So, this is the adiabatic

relationship for the propagation of sound waves through a fluid medium; this is the

relationship we are getting. And now we know that acoustic pressure is what; it is the

difference between the total pressure and the mean pressure. So, this is the acoustic pressure.

So, this becomes B times rho minus rho naught by rho naught.



And now we are going to for the sake of simplicity of derivation we have defined a new term

which is called as the condensation rate. So, it is a rate at which the fluid particle undergoes

condensation which is change in the density. So, it is the rate of change in density which is

rho minus rho naught by rho naught. So, here s is rho minus rho naught by rho naught. So, we

have defined a new variable. So, we can replace this as acoustic pressure becomes B into the

rate of condensation. So, this is the first equation will use it later and I will go through it, so

we will recall this.

(Refer Slide Time: 09:15)

Now, let us take a small volume element within the fluid medium. So, now, we will see it is

the equation of conservation of mass. Now as I said earlier that, we are not adding any

additional mass to the fluid medium only some disturbance is propagating.



So, in that case the rate of change; in that case suppose the particles they come and go, so they

are oscillating and some particles they enter in this elemental area and some particles go

outside the elemental area. Then the net increment in the mass is what were deriving; so the

increase in the mass within this volume element. Let us say increase in the mass per unit time.

So, it is the rate of increase in the mass.

So, what is the rate of increase in the mass is what we are deriving. So, the rate at which the

mass increases in this particular small element of a fluid is whatever mass is entering minus

the mass going out. So, the rate of increase in mass will be the rate at which the mass enters

that element minus the rate at which the mass goes out of the element. So, for every, then we

have decomposed it. So, for the different directions x, y and z we are seeing what is the rate

of increase in the mass along the x direction, y direction and z direction.

So, let us take for example, one particular direction, z direction. So, here you see that the rate

at which the mass is entering this space; this is the phase if you are taking the direction. So,

the mass is entering from this phase and it is going out from this phase. So, the rate at which

the mass is entering will be the density times the velocity at this point. So, rho u x this is the,

because we are I am describing here about x directions. So, rho u z is the rate at which the

mass is entering this space and then it is going out; then this particular. So, let us see, then it

can simply be given as whatever is this rate plus whatever is the change that occurs over the

distance of d z. So, this variable we simply differentiates over d z multiplied by the distance

over d z.

So, what is a rate at which it is changing over z direction multiplied by the distance that it

covers. So, this becomes and d x by d y becomes the area. So, we have rho into velocity into

the area through which it is entering and the area in this case is d x multiplied by d y. So, this

becomes a total increase in the mass along the z direction. So, total. So, if you solve this, this

quantity cancels out, you left only with this term. So, this is what you get d x, d y and d z

becomes the net volume of this element. So, we have replaced it like this. And we get similar

equations for y and x axis.



So, if you combine these equations together, this is what you are getting; del by del x of rho u

x, del by del y of rho u y, del by del z of rho u z d V is equal to minus lambda times. So, this

is what we are getting. Now we know about the Laplacian operator nabla. So, nabla is the

Laplacian operator which is defined as del by del x plus del by del y plus del by del z; and it

operates over some vector quantity. 

So, here this can be written in the form of this Laplacian operator as it is the negative times

the nabla of rho into u; where u is, it has a x component along the x axis, it has a y component

along the y axis, and it has a z component along the z axis. So, it is simply nabla times rho of

u. So, you get, the x component gets multiplied with, the x component is differentiated with

respect to del by del x; the y component with del by del y; and z component with del by del z

So, the overall equation that you get here, this is the quantity that you are getting. So, this is

the net increase in the mass; and the net increase in the mass per unit time can also be written

as del rho by del t. So, del p by del t is equal to this. So, the quantity that we have derived is

the increase of mass per unit time. So, which means that, the increase of mass per unit time is

also the increase in density per this is the rate in; the rate at which the mass is increasing per

unit time can be written as del rho by del t and this will be simply minus nabla times of the

quantity that we have derived, this quantity.

So, you put it in the left side and this is the equation you get del rho by del t plus nabla times

of rho u is equal to 0. So, this equation we are going to carry forward and we are going to use.
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Now, the net force experience let us again consider the same fluid element. So, now the force

can be given as simply the pressure multiplied by area, right. So, if you consider the elemental

force of this speed elements. So, it will be simply whatever is the change in pressure

multiplied by the area.

So, here let us consider the x axis here I have considered; so the change in pressure over this

phase and the change in the pressure. So, we are taking this phase and this phase; so these two

different phases. So, let us see the pressure at this phase is P which was a total pressure of the

medium fluid particle and then as it goes through a distance of d x; if this is the pressure

gradient along x axis. So, this is the rate at which the pressure is changing along x axis; then

this multiplied by the distance will give you what is the pressure at this particular point, the

change in pressure. So, the pressure at first phase minus the pressure at second phase times



the area of the phase; so pressure, the change in pressure multiplied by the area is given us

whatever is this differential force.

So, again this quantity cancels out and d x, d y and d z becomes d V. So, what we get is, we

get this particular equation. And similarly it can be done for y axis and z axis. So, the total

force again becomes del by del x you have minus del by del x minus del by del y and minus

del by del z. So, again we introduced the Laplacian operator. So, it is this Laplacian operator

applied over P d V. So, this is one equation we are getting.

(Refer Slide Time: 16:35)

Now, the acceleration of this particle can be whatever is the change in the velocity of the

particle; so the change in the velocity, so velocity final velocity minus initial velocity, so it is

d u by d t.



So, the expansion of this is you can use again the Taylor series expansion, the Taylors

expansion. And this derivation again is quotes on mathematics; so it is out of course. So,

when you expand it to a left with this quantity. So, it is simply del u by del t times u nabla u.

(Refer Slide Time: 17:17)

And now force is simply acceleration into mass by Newton’s second law. So, we already had

the equation for force here; this was the equation for force and this was the equation for the

acceleration. So, this force is becomes acceleration times the mass. So, this is the mass; mass

is rho d V, this becomes rho times d V density multiplied by volume.

So, we have a place d m by rho d V and we already have the expression for the d f and the

expression for net acceleration. So, this becomes the expression for the net acceleration, this

becomes the expression for d f and this quantity is d m. And assuming this double gradient is

very small compared to a single derivative. So, the overall equation that we get this is called



as a Linear Euler’s equation; this is rho times del u by del t is equals to minus nabla time of p,

the d V the d V cancels out here.

So, as you can see few portions of this derivation is what you study in the basic course of

mathematics. So, this derivation is just for the sake of understanding, it is not a part of the

assignment, it is not the part of your course. So, it is not going to be a part of your assignment

or papers; but it is more for the sake of understanding. So, now, we have got these two

equations.

(Refer Slide Time: 18:57)

.

So, the three equations we got; we got this equation, we got this equation and we got the first

this one equation. So, let us use these three equations and find the acoustic wave equation.

So, let us solve this first one; del rho by del t nabla dot rho u.
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Now, I am going to write this in terms of del s. So, we know that the condensation rate is rho

minus rho naught by rho naught; so which means what, rho naught s is equal to rho minus rho

naught. So, rho then becomes rho naught plus rho naught s; so it is rho naught into 1 plus s,

this becomes a relationship. So, del rho by del t can be represented as rho naught times del s

by del t. So, we have used this particular relationship and we replace this del rho by del t by

this quantity, and this is the equation we get. So, now, let us derivate this, let us differentiate

this equation with respect to time; when you differentiate this equation with respect to time

what you will get is, differentiating with respect to time the same equation becomes, this one

becomes rho naught.

Now here the mean, this rho naught is assumed to be independent of time and space. So, what

we are assuming is that, we have a homogeneous medium. So, all this equation we are

deriving with the assumption that the medium is homogeneous throughout. So, the density,



the bulk modulus it remains the same throughout irrespectable of what point of space you are

considering. So, irrespective of, it is independent of time and space. So, since rho naught is

now independent of time or space. So, in that case if you differentiate it you get is; rho naught

del square s by del t square plus nabla times of rho into del u by del t is equal to 0. So, this is

the equation you are getting.

(Refer Slide Time: 21:11)

Now you differentiate this equation. So, this was the equation rho del u by del t minus nabla

times of p; if you differentiate this equation with respect to space, so you are applying nabla

dot operator both on the left hand side and the right hand side. And nabla dot nabla is

represented as the 3 D Laplacian operator which is minus nabla square. So, this is the

equation you get; nabla dot rho del u by del t is equal to minus nabla square p that is a

equation you get, when you differentiate with respect to space.



Now this quantity can be equated. So, this quantity is equal to. So, which means that minus

nabla square p is same as this quantity becomes minus rho naught times del square x by del t

square. So, we are equating the value of this quantity.

So, from the two equations finally, we get nabla square p is equal to rho naught square, nabla

square p is equal to rho naught times del square x del t square.

(Refer Slide Time: 22:25)

Now, we solve further. So, what we do here is that, we use the first relationship; we had a

acoustic pressure as the bulk modulus multiplied by s, which is the condensation rate. Now

we know that the medium is homogenous; homogenous medium, this is our assumption, is

the homogenous medium. So, both rho naught and the bulk modulus they are independent of

time and space.



So, both are independent of time and space. So, this B is a constant. So, when you derivative

it with respect to time; so what you get is, del square p by del t square will then become this

constant B times del square s by del t square. So, we can replace this quantity as del square p

sorry, del square s by del t square becomes del square p by del t square into 1 by B. So, if you

put now this particular thing into the equation. So, the equation that you get is rho naught by

B. So, we have replace this quantity with this value. So, it is rho naught by B times of del

square p by del t square which is going to be nabla square times p.

So, we can overall write something like this. So, what we do is that, nabla square p minus rho

naught by B is equal to del square p by del t square is equal to 0, this is the equation we get.

So, now, if we take c as under root of B by rho naught. So, this quantity becomes 1 by c

square. So, the overall equation we are getting is nabla square p minus 1 by c square times del

square p by del t square is equal to 0. This is a very important wave equation; this is called as

the linear acoustic wave equation.

So, it is a very important equation and here the purpose of putting this in terms of this is

because; when you solve such differential equations, then you can easily get the solution for

this would be a sinusoidal function of this particular quality. And that is why we have

represented this particular equation by replacing it and replacing it in this particular form. If

you replace it in this particular form, then the solution you get will be a sinusoidal function

with respect to c.

So, here c is the thermodynamics speed of sound.
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So, as you can see overall c is thermodynamic speed of sound, which is actually this was the

originally equation, this is the equation. So, as you see the behaviour of the acoustic pressure

it depends upon rho naught and B. So, for a homogeneous medium if you can, if you fully

know this bulk modulus and density; then you can fully define how the sound wave will

propagate through this medium and that is why they are called as the bulk acoustic properties.

So, why are we called the bulk acoustic properties? Because here we are assuming that

throughout our domain of study, the properties of the medium remain constant. So, both B

and rho naught remains constant. So, when we know these two quantities, we can define how

the wave is going to propagate in a medium. So, these are the bulk acoustic properties.



Now let us, now we have derived a general wave equation; the only assumption was that there

was no mean flow in the medium and the medium was homogeneous throughout.

(Refer Slide Time: 26:39)

Now, we will consider a specific case and that will be of harmonic plane wave. So, what do

you mean by a harmonic plane wave?

It is a wave in which each acoustic variable; whether it would be the acoustic pressure, the

acoustic particle velocity or acceleration. So, any variable of study, it has constant amplitude

and phase on any plane that is perpendicular to the direction of wave propagation. So, that is

the definition of a plane wave. So, the direction in which it is propagating, you can take any

particular plane that is normal to the direction of wave propagation; then throughout that

plane the wave will have a constant amplitude and a constant phase.



Now here we are introducing a new term which is called as the wavefront. The wavefront is

simply the surface where the waves have constant phase or it can also be called as the locus of

points with same phase.

So, in a particular waveform all the locus of a point having the same phase will constitute a

wavefront. So, I will show you a few figures and animations to make these definitions more

clear. So, you have to remember that in a plane the wave that it varies; here the sound wave it

varies only in one direction. So, there is only a single direction of wave propagation and

perpendicular to that we have the wavefront where the amplitude and the phase both are

constant.

(Refer Slide Time: 28:13)

So, just to tell you a few examples; let us say we have a pulsating sphere. So, we have a ball

that is pulsating. So, when it is pulsating, then this is the kind of motion that is creating



throughout in 3 dimensions. So, is this a harmonic plane wave, if you freeze it overtime? So,

let us say we have cut a plane here; this red line is the plane here red line. So, this is. So, at

any point of time the direction of wave propagation is radially outwards. So, we cut a plane

normal to the direction. So, you see that here at this point there is a zone of low pressure; at

this point there is a zone of high pressure and low pressure.

So, at different points the wave is undergoing, the wave is under different phases. So, this is

not a constant phase plane. So, because here the plane is not constant; here the plane the wave

front here if you draw the plane normal to the direction of wave propagation, you see that at

different points we have different phases. Sometimes the phase, at some points the wave is

undergoing a undergoing a low pressure; at some point it is undergoing a high pressure and

the phase difference becomes here pi by 2. So, this is not a spherical wave.

(Refer Slide Time: 29:35)



This is a harmonic wave. So, what we see here is that, the previous example where it was

being generated inside a long tube and a reciprocating piston. So, this is the kind of waveform

we are getting; if this is the kind of this is a 3 D view of the waveform and it needs a little bit

of visualization. So, here as you can see this is the x direction. So, the wave is propagating in

this direction, it is going towards in this direction. So, if you cut any plane this becomes the

wave wavefront.

So, if you cut any plane normal to this whether you cut it here or there. So, let us freeze it and

see; if you cut a plane here or a plane here anywhere, so at every point within this plane. So,

all the particles here they are under the same phase. So, either here if you cut a plane here all

of them are undergoing, they are at the highest level they are at the peak. So, highest pressure,

if you cut a plane here all the points together will be undergoing a minima; all the points

together will undergo a maxima and then if you cut a plane here all the points there at the

same phase and the amplitude is also constant.

So, this is a typical waveform of a harmonic plane wave this.
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Similarly, we have different types of harmonic plane waves; we have a harmonic plane wave

which is going towards a positive x, then we have a harmonic plane wave that is going. So,

here also although in this case the direction is in this way; in this case the direction of wave

propagation is somewhere here, this is the direction of wave propagation. So, as you can see;

if you cut any plane in this direction, so it is like x y direction, then you will see that all the

waves together undergo minima, they together they undergo maxima. So, this is also a plane

wave and the amplitude is fixed.

Now let us see a differentiation here; here also you have a wave and if you cut any plane. So,

this is propagating along this direction as you can see; this is the direction in which the wave

is moving. If you cut any plane normal to this, then the phase is going to be the same; they are

together undergoing minima and maxima, but the amplitude is same. So, here in this phase if



you see, the amplitude of this and the amplitude of this is different. So, the amplitude changes

over changes in the plane and the phase remains the same.

So, although here the wave front is; so here we have the same phase of this becomes the wave

front, but still the amplitude is not constant. So, it is not a harmonic wave. So, we will

continue with this discussion in our next lecture and will study more about harmonic plane

waves and the equation for sound propagation of harmonic plane wave.

Thank you for listening.


