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Hello,  in the last  lecture we were talking about vibrations as it  applies  to micro systems

because this is part of the micro and smart systems course. We were looking at vibrations

which are everywhere and now we want to see their relevance in micro systems.

(Refer Slide Time: 00:33)

We had discussed a number of things related to vibrations and we will just briefly review

what we had discussed in the last lecture and finish up one small concept of bandwidth that

we are discussing towards end of that last lecture and then continue today with another topic

related  to  vibrations  called  the  micro  machine  gyroscopes.  Let  us  quickly  review  the

vibrations that we had discussed last time.

(Refer Slide Time: 00:59)



And first we had discussed the motivation for studying vibrations in the context of micro

systems. So, this is an accelerometer, a chip and this is a gyroscope that we will talk about

today. And here is a mirror that tilts about 2 axis that is as shown here rotation about this axis

that is the Y axis if we call vertical axis and horizontal axis and there is a mirror about a

single axis this can tilt. So, that is another one.

This is a 2 axis mirror, the single axis. All these are dynamic systems they undergoes small

motions which we call vibrations.

(Refer Slide Time: 01:38)

So,  towards  that  we  discussed  if  we  just  quickly  go  through  the  concepts  that  we  had

discussed in the context of last lecture. Okay, let us see let us bring up the last lecture here,

okay.



(Refer Slide Time: 02:06)

We started with the concept of Harmonic motion which is simply there is a spring and a mass

and the equation of motion for that is as shown here, okay. mx double dot kx = force that is

applied. We said that when the force is = 0 we call it free vibration, it is the free vibration and

then when there is force then we call it force vibration. When there is arbitrary forces we

generally call it a dynamic response.

So, free and force vibrations are special cases of what can be called dynamic response.

(Refer Slide Time: 02:52)

In the case of free vibration, we saw a general solution for it which is composed of sin and

cosine terms and we had defined the concept of natural frequency that is left itself this spring

mass system will be vibrating at a certain frequency going back and forth that is time period.



That is one-time period inverse of that is the frequency. So, formula for that is square root of

K over m where K is stiffness and m is the inertia.

We discussed how we can obtain the stiffness for a given complicated system. However,

complicated it  is it  may be we can always lump it  to a single degree of freedom if it  is

possible. Then there is just one spring and one mass, the mass counts as inertia K transfer to

be stiffness and we said that we do that in a way that enables us to do this.

(Refer Slide Time: 03:50)

That is, when do we say the stiffness is K for a system if half K times displacement square is

= the strain energy stored in that complex elastic system. Then that is the lumped stiffness

which we can call K effective. Okay, just recalling what we had discussed in the last lecture.

If the strain energy stored in an elastic system if that can be expressed as half K effective

times displacement square, then that is the K effective.

(Refer Slide Time: 04:27)



Similarly, for inertia we use kinetic energy. So, we have this KE, kinetic energy and we say

that when we have a system which we can express as half m effective y dot square if we do

that, okay. This is the effective inertia and y dot is the velocity of the degree of freedom that

we are looking at in the lumped model. If we can do that then that is the m effective. In order

to do that we had to do this integration by taking mass per unit length in the case of a beam.

If it is a general 3D structure mass per unit volume times the velocity square of that one and

then integrate over entire volume get the numerical value. You know y. then you can get m

effective. Once you know K effective on m effective you can compute the natural frequency

for free vibration.

(Refer Slide Time: 05:21)



We had done a small calculation for a beam such as this if the mass of the beam is m only

48% of it participates in the vibration because all of the beam is not vibrating by the same

amount where this point is fixed, this point is fixed, right. So, this point is what that is going

to have lot of displacement and other points have less displacement. So, overall it amounts to

only less than 50% of the mass actually moves.

If we take the maximum displacement as were y. A reference displacement in the lumped

model. That is what we had discussed and then we moved on to adding a damper the system.

(Refer Slide Time: 06:00)

Now this is the new element, damper. We talked about how to get K effective m effective and

then we have this damping coefficient c. In a future lecture we will discuss ways to compute

c effective, okay. But today after reviewing this we are going to start on a vibration related

topic which is micro machine gyroscopes. So, this cx. term we had considered, earlier we had

a solution without this term.

(Refer Slide Time: 06:34)



Now we wrote  a  solution  after  introducing  this  term for  that  we use  Laplace  transform

technique to come up with the solution. This is the general solution of the system and then we

also classified it in 3 different ways.

(Refer Slide Time: 06:48)

One over  damped,  two critically  damped and three  under  damped.  Defined the damping

quotient, coefficient which is damping ratio which we said is given by the quantity that we

have indicated here where c square cc square critically damped ratio that square divided by 4

m square and it is = km that will be damping quotient 1. Anything else it will be more than 1

if there is more damping less than 1 if there is less damping.

(Refer Slide Time: 07:28)



So, we had defined this damping ratio and we actually saw the importance of this damping

ratio. This is the second order system if I pert up that a little bit like in a free vibration then it

will start at some value and amplitude as it oscillates is going to reduce and that is where this

damping ratio applies. There is omega n which is the natural frequency which is dependent

on only K effective on inertia effective, m effective.

But as damping ratio decides how this amplitude actually decreases. And we had seen that

analytically  as  well  as  graphically  here  and  then  defined  a  concept  of  damped  natural

frequency and how we can determine this in experiments for that we defined the concept of

logarithmic decrement which is simply the ratio of successive displacements in one period

time.

That is if I take a point here exactly after some time this point may correspond to somewhere

here. So, this time period if I take, okay if I see the displacement x1 and x2 here, if I take the

natural logarithm of that, that is equal to this damping ratio times omega n and then the time

period itself, okay. So, based on this we can compute once we know this damping ratio we

can compute the damping coefficient which is the c.

As we saw in the previous slide damping ratio = 1 when this c the damping coefficient is

critically damped. So, we say 1 this divided by whatever damping coefficients, so if once you

know cc if it is more than 1 we will get the appropriate damping coefficient c for the system. 

(Refer Slide Time: 09:20)



And then we started talking about forced vibration. When there is a force on the right hand

side as supposed to being 0 in the phi vibrations now we have a non-0 value for the force.

Then we noted the analytical solution for that where there is amplitude and phase because

analytical solution will have x = this is the amplitude x and then we have a phase. If omega is

the applied natural frequency will be offset from that because of force applied someway and

then there will be offset in the resulting displacements. 

So, the expressions are given over here and then we try to normalize it by dividing by natural

frequency. And we try to see how that curve is going to look like. That is where we ended the

last lecture.

(Refer Slide Time: 10:10)



So, it is a quick review of what we did earlier because that is important for what we are going

to discuss today. So, if I do that amplitude ration kx divide by force that is like normalized

quantity if I plot it with frequency on the x axis, okay, it is going to look like this. The first

one here is over damped and then there is this is over damped and this is critically damped

the red one that we have said is critical damping.

And then there is all this is zeta = 0 damping ratio 0 is actually no damping. When there is no

damping you see that we go to infinity. The amplitude is going to really high we used to call

we call  resonance.  The term that  we have discussed last  time that  most  of  you must  be

familiar  with and then all  these other curves are  under  damped.  They are under  damped

meaning that they are damped less than their critical damping that is damping ratio being = 1.

So, this has lot of significance when it comes to sensor design for that let us just go to the

place where we had left it, okay.

(Refer Slide Time: 11:29)

So, the same ratio that kx/F0 if I plot it on the log scale as shown over here. We see that, okay

so, let us okay that is log scale and so is this. This is the frequency omega divided by omega n

natural frequency it is one that is where the resonance occurs and you see when you log-log

plot. If you do that there is a portion which is constant and then it goes like this.

Real experimental results also look like this when you were to take a frequency responds of a

dynamic  system  you  would  normally  see  this.  There  could  be  more  than  more  natural

frequency then you will see more peaks like this. But important here what we call bandwidth



is the portion of the frequency response that is independent of the frequency. So, if you have

an accelerometer, if accelerometer will sense acceleration.

But the axle that is sensed, if it is going to vary with time let us say the acceleration that I am

sensing has a a0 and then cos omega t. So, it has its own frequency dependence, right. But I

am interested in measuring this acceleration because I wanted to measure vibration. Vibration

always will have this harmonic motion. So, I want to measure this, a0, right. But since that is

varying with time harmonically because I am vibrating and I am putting my accelerometer

over it.

Then I am not interested in the frequency part I am interested in the amplitude part. But if I

have a sensor that gives me this a magnitude as it varies from – a0 to + a0 because of cos

omega t here. I am not interested in that I am interested in this amplitude. That is why we

need to pick a sensor that is independent. Now you see whatever is the frequency omega this

amplitude ratio is constant and that is called the bandwidth.

So, this is the range of frequencies bandwidth refers to range of frequencies over which the

sensor  gives  correct  or  reliable  amplitude  information,  okay. So,  imagine  that  if  I  had  2

signals this is a1 let us say this is, let us call it a1 0 and then let us say have another signal a2,

a2 0 cosine omega 2t let us say this is 1t. Both of them at some point can have the same a1,

a2 value whereas a1 0 and a2 0 may be different.

If my interest is to measure these that difference will show up in this case because if this is a1

0, okay a2 0 if  it  is more it  is  going to be something like this,  right.  So, I have precise

difference between a1 0 and a2 0 even though a1, a2 at different points may have the same

amplitude, right. So, amplitude meaning that this is the signal amplitude. So, the bandwidth is

an important concept in sensors.

It is not just accelerometers but for any other sensor, pressure sensors, humidity sensors and

gas sensors anything that you take if the signal itself is time varying then bandwidth is an

important concept. As a thumb rule we normally take about one third because the log-log

scale here is where the 2 is there and 3 up to that point usually it is linear. So, if you take

since this is 0.2 this is 0.1, 0.2, 0.3 this goes to 1 log scale.



So, about one third of the natural frequency you can take it as a bandwidth in practice as a

thumb rule. And that is how when you design it if you pay attention to the natural frequency

of  your  system  the  first  natural  frequency  one  third  of  that  is  a  bandwidth.  Over  that

frequency range starting from 0 to that value you will have amplitude information reliably

given by your sensor. So, this is the concept that we had discussed in the last lecture.

Today, we will continue with that vibration concept but we will look at a related concept

called Gyroscopes. We have Micro Machined Gyroscopes, micro machine is an important let

us go back, let us get the pen, yeah, Micro Machined Gyroscopes. Gyroscopes are available

already. They are used to do in initial navigation and many other applications. But now we

are talking about micro machine gyroscopes where things are really small.

To give you an idea of the size that we are talking about I have a chip, gyroscope chip with

me today. I am going to show that you now. So, here is that gyroscope chip. You can see it on

the tip of my index finger, very small chip hard to see but it is right here, okay. It is very very

small, my index finger. So, let me, yeah it is just a dot on my index finger just like a mole. It

is very small.

Its size would be you can let us say see it about 5 millimeter/5 millimeter and then thickness

is about 2 millimeters very small. Inside that the sensor will be much smaller. We need a

microscope to see it properly but the package device is what I am showing. Now if I mount it

on something let us I put it on my hand as I tilt my hand like this, it is going to tell me at what

rate my hand is being tilted.

Similarly, if I mount it on a car and if the car is going to roll over then we will detect that

before it  happens.  So,  corrective action can be taken.  Similarly, if  I  put it  in airplane  as

airplane is going along it will tell me how much it is rolling pitching and yawing if you have

multi axis gyroscopes. Like accelerometers you can have angular rate senses to sense 1 axis,

2 axis and all 3 axis. So, we talk about these micro machine gyroscopes today.

One thing that we note is that when you measure linear motion we always use acceleration.

We always use acceleration sensor. We measure acceleration because that effect will be seen

as acceleration times for mass will give you the force and the effect of force comes as a



deformation  or displacement  which  you measure  and relate  to  acceleration.  But  when it

comes to angular motion we do not measure angular acceleration.

Whether it is at micro scale or macro scale we do not measure it at,

(Refer Slide Time: 19:03)

We do not measure angular acceleration, instead we measure angular rate. We measure as it is

shown here we measure angular rate. A gyroscope is a sensor which measures the angular

rate.  Gyroscope,  gyration  is  tilting  like  if  you  are  dancing  that  is  kind  of  gyrating.  So,

gyroscope measures angular rate that is some degree per second r radiance per second. That is

the unit of angular rate.

It  is  a  pertinent  question  to  ask  why  do  we  measure  angular  rate  instead  of  angular

acceleration, okay. There are a few reasons for it. One reason we will see it mathematically

today. For that we will first consider the simplest angular rate sensors and that is called a

Foucault  pendulum.  Pendulum designed  and  used  by  a  person  name  Foucault  a  French

engineer who noted that if you want to measure the angular rate of the earth’s spinning.

So, earth is rotating as we know if you want to measure the angular rate of the earth what do

you do being an earth you want to measure it. So, for that he built this very long pendulum

the very long wire he hung a very large weight. But here I am showing it is just like an apple

or a mango tight to a string which is fixed here to a ceiling and then it is hanging and it is said

to oscillate let us say along the red line.



The red line I have shown here, is just a pendulum it is just oscillating, okay. Now if this

frame, this is the frame to which this one is attached if that frame starts rotating, okay with an

angular rate omega. So, this is angular rate. If this frame starts rotating then what happens to

this mango that is hung from this celling. We have set it to vibrate along a line like this in a

plane, okay.

If you come back after sometime that says it is going from here to redline and back and forth

it is going like this. What I have done is the red line I made it green now. But what happens

after sometime when this starts rotating is that it will change its plane of motion and start

going there that is plane of oscillation rotates when angle theta dot If you measure this theta

we can correlate this to this omega, okay. Why does it happen?

Normally in science museums there will be this huge pendulum attached to a high ceiling and

it set it to motion like this. Let us say in the morning at 8 o’ clock, if you come back after one

hour  it  would  have  changed  its  plane  of  motion  to  something  like  this  and  then  after

sometime  something  like  this.  It  depends  on  the  earth’s rotation  and based  on the  earth

rotation that is the time measurement because earth finishes one spin in 24 hours.

So, we can do a clock like this with Foucault pendulum. That tells us at what rate the earth is

rotating. What is the principle behind this and that is what is called Coriolis force or Coriolis

acceleration. The Coriolis with acceleration for the simple case is given by the mass of this

mango or apple, okay m is the mass and this is as we already said is angular rate and this is

the driving velocity.

What is driving velocity? We said that we took this pendulum and started to put set it  to

motion. So, there is certain velocity for this mango as it goes back and forth here, right. That

is the V drive, driving velocity and this is angular rate. And this Coriolis acceleration as you

can see we have use the cross product. When you have put this omega and V in boldface

letters because omega is a vector, it has an amplitude omega and also a direction.

If I call this direction upwards as my z axis this omega will be written as omega amplitude

times the unit vector along this z axis where x and y axis can be here the right handed system.

And this velocity let us say originally we said this is how it is going if I call that y axis or its

unit vector j hat okay and this is i hat. What we get is that omega which has the K along the z



axis unit vector. Velocity v drive has j if I take the cross product of K cross j I will get a

component in the ith direction or depending on the amplitudes the negative ith components.

That is what is oscillating like this suddenly starts having component in the perpendicular

direction.  So equivalent  of that  it  will  start  tilting.  That  is  if  I  have motion  set  like this

because of Coriolis acceleration it is along the z axis here I start having a component like this.

I said the motion like this and now I start having a component of this drive velocity that we

give in this direction starts going in this direction.

So, as a result it will start going across like this, okay. So, I was set it like this and there is a

component here it goes at some angle as it is shown in the diagram. That is the principle of

the gyroscope and that is the principle of Coriolis, acceleration Coriolis force.

(Refer Slide Time: 25:50)

In order to see this Coriolis force let us switch to our note pad and see what we can do about

this Coriolis acceleration. So, now let us start from the very beginning to discuss what this

Coriolis acceleration really is, okay. Let us say, we have a rod and on that we put a bar on that

we put a little slider. So, let us say this red one is a slider which can go back and forth along

this rod. Let us say this rod is pivoted to a reference frame, okay.

So, that means that this thing can rotate. This rod can rotate rigid rod and this slider can slide

along this, okay. If I take a point over here and say the coordinates of that points are x and y

where this is let us say our y axis this is our x axis, okay. Let us say this point is p and that

has coordinates x and y. Now if this rod has angular motion theta and angular rate theta dot



and angular acceleration theta double dot. So, theta dot is d theta/dt and theta double dot is d

square theta/dt square.

Okay, this is the angular rate which you want to measure. We still have not answered why we

want to measure angular velocity I suppose to theta double dot which is angular acceleration

but when we finish the calculation that we are going to do on this simple system will have an

answer to that question. Okay, now I am going to also tell you a simple tool for analyzing

kinematics of planar system.

This is a planar system in the sense that this rod is moving in the plane and this slider is

moving along the rod which remains to be the same plane. If you have that the position P we

can represent that as a complex number. It is a very simple concept where the position x and

y components of this because this is the coordinate system. This thing is x here and this thing

is y here because this is a coordinates, seen that as a complex number.

The advantage of representing like this is that if I were to indicate the distance along the rod

where the slider is located if I call that K and this angle of cos is already theta for us. We can

write this P also as K*e raised to i theta, okay. So, where K is the distance from the origin to

this point and times e raised to i theta because we know that e raised to i theta is cos sin theta

+ i*sin theta, where i of course is square root of negative one, okay.

Now this means that K cos sin theta + i K sin theta and this K cos sin theta is nothing but our

x because if this were to be K if this angle is theta then this horizontal this displacement here

is K cos sin theta dot Right, similarly this one is going to be K sin theta, so according to what

we had done earlier that is what we got here, okay. So, it is legitimate to say that position P of

this point we can write it as K*e power i theta dot.
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You will see why we are doing this, okay. Now if I want to know the velocity of that point P, I

have to take differentiation of it. So, if I want to say the velocity if it is a complex number I

am just adding this double line at the left side. If I want to get this V then I have to do

derivative of this P with respect to time. So we have derivative, so we have K because it is

sliding along the rod, K depends on time theta depends on time.

So, K and theta depend on time. They vary with time, okay. They depend on time means that

they are variable with time. So, I have to take differentiation using product rule. I will first

say K. e power i theta and then K*i theta dot E power i theta dot That means that first I have

taken product rule. First dK/dt that is K. then e power i theta as it is then kept K as it is and i

take derivative of e power i theta dot

Which is e power i theta and then we have to take derivative of this which is i theta dot d

theta/dt that is what we get that is the velocity. So, you have a component along the radial

direction that is radial direction is this, okay because slider is going like this. And then this

rod  is  also  rotating  there  is  also  tangential  component  because  e  power  i  theta.  will  be

perpendicular to the one that has not have i, okay.

Because that is what we saw x and y they are perpendicular to each other components what

has i and does not have i will be perpendicular to each other. So, now if I want to get the

acceleration, okay that is also a vector. So, I will have represented as a complex number. I

have to do dV/dt are d square P/dt square, okay.
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So, let us write that that is = we already have 2 terms here, okay. Now note again that both K

and theta  depend on time or vary with time.  So I  had to  take derivative of when I  take

derivative of this you have to keep in mind that K. also may vary with time theta will vary

with time. So, I will first have K double dot e power i theta that is product rule one and then

we will have K. i theta dot e power i theta dot.

So, that takes care of two terms that come because of this one and that is used a different

color for terms due to this one now, okay. So, that this thing was the green one now we will

write the purple for this term, okay. So, there are K theta dot and e power there are 3 terms.

So, we will have 3 terms coming here. First we will take k., okay and then i theta dot e power

i theta remain the same.

That is the first term taking derivative now will take the second term that will have K i theta

double dot. e power i theta and then there will be another terms which will be for this portion

that will be K i square theta dot square e power i theta dot Why do we have square we already

have i theta dot and take derivative of this quantity I will get e power i theta times i times

theta dot So we will get this.

So, if I write this back again, so I will have k double dot e power i theta plus these 2 terms are

the same. So, I can write it as 2 i K. theta dot e power i theta plus I have K, i k theta double

dot e power i theta - because this i square because square root of - 1 is i, i square is - 1 K theta

dot square e power i theta dot So, now we got 4 components for the acceleration. The first



term that you see K double dot times e power i theta is what we can call linear acceleration,

okay.

(Refer Slide Time: 34:42)

This is linear acceleration. Remember that rod is sliding, the block is siding along the rod and

that  is  linear  acceleration  and  this  portion  which  you  can  recognize  as  our  centripetal

acceleration. Notice that these 2, the first and the fourth term do not have i in them. It is just e

power i theta is the direction they just going along the rod but in these other two terms have i

in them. They will be perpendicular.

So, this one theta double dot is there this is angular acceleration. And then we have this term

which is called the Coriolis acceleration.  So, Coriolis  acceleration we saw earlier  we had

something like omega. just omega crossed with V, okay. So, we have that theta dot is our

omega and then K. is our V. So, this is related to K. this is related to theta dot We have the

cross because direction is already has come here.

We had taken the angular rate perpendicular to the plane in what is above, okay if I have. The

angular rate is perpendicular to the plane of this screen here when I take dot product of that

with this velocity which is here is right handed rule. So, we have this thumb going up along

the angular  rate  and then we have this  going this  way, okay. That  is  this  is  our velocity

direction this thumb is the upward angular velocity direction.

Then this one right handed rule cross product is going to be our oscillation. So, this is the

angular rate and this is the V and this is the perpendicular one to both of them is the Coriolis



force direction. And now we can see we come back to this equation, right. So, if you look at

this, this Coriolis acceleration depends on the angular rate as well as K dot. So, instead of

measuring the effect of the angular acceleration which is stated double dot.

Which is  only K changing the position of something is  more difficult  than changing the

velocity especially if something is moving we can control its velocity better than the position.

So,  here  we can  think  of  this  K.  which  we said  in  the  Foucault  pendulum we took the

pendulum and set it to motion and then when there is angular rate of the frame it started

changing the plane of oscillation.

So, that was a function of K. how much what rate it goes depends on this K. as much as it

depends on theta dot . So, K. can be seen as a gain in the system to measure. So, if you were

to  take  this  system  and  the  rotating  frame  even  it  has  some  angular  acceleration  the

contribution  of  that  will  be  much  smaller  compared  to  the  contribution  of  the  Coriolis

acceleration. That is usually the case.

But we were actually designing a gyroscope whether is macro machine or micro machine we

have to take care of that the contribution of the angular acceleration term let us go down to

what we wrote. This contribution should be less than this term. That is our interest Coriolis

acceleration is our interest. This should be negligible. So, we have to make sure that that is

not going to dominate.

In other words, position displacement K is not much that how far the block is from the pivot

of the rod whereas this K. is the velocity how fast is it moving, okay. So, if we go back to the

Foucault pendulum example now. Let us say what we have this example.  The velocity at

which this moves, okay matters for us, okay. So, the velocity at which this moves is going to

come in this V drive as we have already discussed.

There is angular rate that force comes on this changes the plane of oscillation to that. But we

are not going to use the pendulum in a micro machine system such as the chip that I had

shown you a few minutes ago instead we use like a mass as shown here.
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The basic principle of angular rate gyroscope simply lies in the fact that there is a proof mass

such as this and that is set to be free to move in 2 directions. We can call this x axis that is in

this direction and another is the y axis local and we have intentionally shown that the thing is

rotated. If I think of this frame, okay this frame if we think of a box or there a thing that is

actually rotating. That is what we shown here.

Rotating with an angular rate omega an angular acceleration omega. . Both the terms we saw

in the little derivation that we did. But we thought that if we use Coriolis force there is mass

that is important and angular rate that you want to measure is coming along and angular and

the linear velocity that we are setting into motion. When you say this a drive one you first

take this proof mass just like the pendulum and let it vibrate in this direction, okay.

We let the mass vibrate in this direction, okay and if the frames start rotating, okay. Then we

start seeing a motion here, okay. This motion in this direction occurs because of rotation of

the frame. Rotation of the frame whose rotation rate is what we wanted to measure. So, we

set  into  motion  if  we  do  not  see  any  motion  in  a  perpendicular  direction  then  you can

conclude that this frame is not rotating.

When you start seeing the motion when you know that it is rotating and how much motion

occurs will tell you at what rate this frame is rotating. That is the principle of the angular rate

sensor. That  happens because of  the  Coriolis  force that  we discussed.  So,  when there  is

motion in one direction and there is angular rate in another direction let us say angular rate

happens to be in this direction that is this direction and motion in this direction.



Right hand rule if you follow the perpendicular one is going to be the motion that comes. In

other words, the energy put into one axis gets transferred to the perpendicular axis that is why

the Foucault pendulum changes its plane of oscillation, okay.

(Refer Slide Time: 42:21)

So, how does it look like in reality for a micro machine gyroscopes such as a small chip that I

showed a few minutes ago. That might have an element such as what is shown here in 3

different ways, okay. Let us first look at this wheel gyro as it is called, okay this is the wheel

gyro. This is Bosch company makes a micro machine wheel gyro and in fact that is what we

may be familiar with as a gimbal wheel.

Gimbal wheel is we have a disc that can rotate about let us say x axis, it can rotate about the y

axis and it can also rotate about z axis. So, you have a disc that can rotate about all 3 axis that

is the gimbal wheel which is used to demonstrate experiments in physics and also in some of

the macro scale gyroscopes. So, now if there were to be the rotation set along x, okay. So,

you take this disc and let it oscillate about the x axis, okay.

So, it starts oscillating like this whenever this omega that we want to measure happens than

that rotation will get transferred to rotation from the y axis. So, x and y are equivalent axis.

You are driving the x axis and when there is angular rate y axis motion starts seeing. Once

you know that there is motion on the y axis rotation about the y axis then you would say that

oh, my frame is rotating.



The frame that is this substrate which is attached to a car or a aircraft or something is actually

tilting and that is what we would try to measure. Similarly, we have another one here which is

called Tuning fork gyroscope. Gyro is a short for gyroscope. This has a tuning fork as you

can see. There are two here and here, okay on this side also. Now what happens is if you start

let us say this is the drive side that is you take these things and set into motion this start

moving and they have couple one so they also start moving.

So, you do not see they both of them will be just moving tuning forks. If have 2 fingers, these

fingers are set into motion either in face like this, okay are out of face like this, okay. If I have

such a thing now when there is angular rate about let us say the axis perpendicular to this

chip, okay. I am moving like this suddenly there is angular rate about this axis.

So, if I use right hand rule my, so first let us say that this 2 times can move in face like this or

they can go out of face like this, tuning fork. Now let us say I have put them in face like this.

Now, if there were to be an angular rate about this axis. So, this is the angular rate and I have

motion this way let us say one twine is moving like this then that twine will experience a

force due to Coriolis force upwards.

Other one moving like this that is by flip it that will be downwards. So, these two twines are

well demonstrated with my hands. If I am setting motion like this, okay. So, when both of

they were going like this both will experience a force to go out of plane like this. But if I take

them move like this, so they are moving like this.

Now because of Coriolis effect if there is angular rate in this direction that is pointing like

this then one of them will start experiencing force like this other one will go like this, they

will go. So, they are moving like this. The once there is angular rate while they are moving

like  this  they will  also moving like this.  They will  go like this,  okay. And that  you can

measure on the other side this is the sense side this is the drive side, okay.

Let us use a different color. This is the drive side this is a sense side, okay. We can measure

that with a tuning fork or you can have a dual mass a draper lab in the US has this dual mass

gyro or gyroscope to finish it that is the short form gyro. Here there are 2 masses there is

mass 1 and mass2 and hey are set into motion and oscillation the same way. So, both masses

will be because of the com drive that we had discussed earlier.



So, we have the com drive here, here, here, here, okay. That will make them 2 masses move

like this, okay. Now when there is angular rate about the axis perpendicular to the plane when

one moves like this other is moving like this. Let us consider the one that moves like this. If I

apply the right hand rule then this is the motion this is there it starts having the motion like

this, okay. Then it starts moving this way other will start move that way.

But the way this works is different, this is the axis gyroscope that is they are moving like this,

if there is an angular rate about this axis in this is where we have said the motion and this is

the angular rate then one starts going up the other one I should not use left hand but I just

need to turn it like this, right this motion goes like this then it starts going up. So the 2 masses

going like this.

When there is angular rate about this axis then one starts going up other starts going down.

So, in addition to going like this they will start doing this. While going it is hard to do, they

will start doing this kind of electrical motion but out of face. When this is up this is down

when that is up this down, okay. That is how the gyroscope works. You need 2 components

that all set into motion and one of them goes one way other goes the other way.

So, we have 3 concepts the wheel gyro, dual mass and a Tuning fork.

(Refer Slide Time: 48:37)

There also more kinds that quick in have one element which is what we kept showing in

many  lectures  that  it  is  a  gyroscope.  This  gyroscope  has  matched  frequencies  and  it  is



important to have the match because otherwise at resonance we put it a resonance to have

maximum amplitude  with  minimum effort  and the  other  one  also  should  have  the  same

frequencies.

So, the energy from this mode natural mode which we talked about natural frequency when

the context of vibrations there is also a mode meaning that if I take a beam let is a fixed it at

both ends, okay. In the first mode fundamental mode this beam is going to vibrate like this. It

will go up and down, okay. It will go up and down like this that is the first mode. The second

mode for this is going to be -- and it is going to be like this.

With 0 slope here goes up and comes down and that way, okay. That is going to vibrate like

this and so forth. Third one will have one more time that is its 0 slopes goes down goes up

and comes like this. In other words, it will oscillate back and forth like that, okay. This is the

first mode, second mode and third mode. These mode shapes if I have  a mass that has the

frequency corresponded such as f1, f2, f3, so f1 will be less than f2 is less than f3.

It is the first mode, second mode third mode but if I have 2 of these equal which is what is

case here because it has a symmetric suspension in x and y directions. So, it is the frequency

of oscillation in this direction will be same as in this direction. If I set it to motion in one

direction because of angular rate, there will be there perpendicular to the plane of this one

then what we see is that it will start moving in the other directions.

So, by measuring capacitances in this direction if this is the drive let us say drive direction is

horizontal, okay horizontally this way and this is the sense direction, okay. If there is angular

rate above again if you apply the right hand rule this angular rate perpended to the proof mass

plane and this is the drive one they will start having motion in the sense direction.

So, these again the angular rate direction perpendicular to the mass this is the drive and there

will motion in this direction that is sense direction. We can measure that and get the angular

rate. And we already discuss the reason because then we will have how much velocity we can

give this direction and also the mass of it and the angular rate as gains and this is a jumbled

up arrangement.



This is a 2 axis mirror and if I put this third axis if I put a similar torsion springs for this so

that it can tilt about this other axis. Then I can use this also a wheel gyroscope, okay.

(Refer Slide Time: 51:52)

There also other ways that you can sense and one of them will see the dual mass here first.

There is a mass one here and mass two both of them can oscillate and they set into resonance

even more in the presence of angular rate they start going other way one goes this way other

goes that way you can sense that and try to measure the angular rate. There also other ways

that you can see

And just while you were adjust slide let us see that drive magnitude of this is the order of 10

microns very small displacement but high frequency. It can sense input rotation of let us say

10 degree per second and output response that case will be 1 nanometer. So, 10 microns if

you put you get much less displacement due to Coriolis because the masses here are very

small angular rate 10 degree per second is also not very high.

But the mass the fact that the mass is very small and the drive magnitude 10 microns and

frequency may be high that may be higher but for typical response may 1 nanometer very

small  displacement  and due to  1 nanometer  displacement  you have to  see what  capacity

change occurs and we able to measure it. So, people have always been on the lookout for

different concepts for the gyroscopes.

Let  us  look  at  these  ring  gyroscopes  which  is  popular.  People  have  made  these  ring

gyroscopes. Let us discuss that ring gyroscope concept by going back to our note pad. \



(Refer Slide Time: 53:31)

Ring gyroscope are people for short they call it ring gyro the way this works is if I have let us

say a wine class, okay a circular one if I just hit it  we hear a sound, okay. The sound is

because this is actually like a ring, okay. You can take several slices everywhere these starts

vibrating.  That is if I take a perfectly circular ring, okay set it  into motion free vibration

which is what we discussed in the last lecture and reviewed today for 10 minutes.

If I take this in vibrations if I look at one mode of this is going to make the circle into ellipse

and there will be another mode which is also an ellipse but that will be at 45 degree angle.

So, the angle between these 2, okay is going to be, so angle between major ellipse and this

ellipse put 40 degrees. That is if we take a wine glass if we hit it there are 2 modes that have

the same frequency both are ellipses. That one case this wine glass becomes ellipse this way

other case it becomes ellipse at a 45 degree angle. That is why we see a ringing sound the

beat sound ting ting like this.

That is the beats you are familiar. There are 2 frequencies combine into one frequency will

see  a  phenomenon  called  beats,  so  it  will  increase  decrease  and  then  increase  and then

decrease  the  ringing  phenomena,  okay.  That  is  what  happens  here  because  there  are  2

degenerate modes. We call if 2 frequencies are the same there called degenerate modes or

degenerate frequencies.



Over all of these because of x and y we had this frequency equal the same thing will be there

for the ring gyroscope also.

(Refer Slide Time: 55:41)

So, if I take a ring, okay and let us say ring cannot be free when use it in a device so we will

take  a  central  post  and  attach  it  with  some  suspension.  Normally  people  use  it  with

semicircular spokes. You can use straight spokes also, the advantages in semicircular one,

okay. Let us have this 8 spokes like this and it is fixed at the center. So, the center post is the

one that is fixed other than this the red portion will mark it.

Everything else is free to move. Imagine that we have a sub straight where you made a ring

with these spokes at only the center. That is if I look at the side view of this I am going to

have this ring that I will see from the side that the central post here will be slightly larger and

here  I  can have my sub straight.  This  is  the  sub straight  and this  is  the  center  fixed or

anchored post like a pillar and then we have this as a ring with spokes.

Spokes here are semicircular that is what people have found it to be convenient in terms of

design performance. Now if I put some electrode over here all around, okay let us say I set

this into motion. This is my drive mode that is I use this, this, this and this, my electrodes

activate them. They starts going like this. Going like meaning it goes like this and like this

because the ellipse along at this way that way it starts vibrating.

If the substrates have this angular rate omega then what will happen is that this ring will start

having a mode at 45 degrees as we just discussed, okay. Both omega here omega 1 and mega



2 both are equal to omega. Sorry, this is the natural frequency so we will use different symbol

rather than this, okay. So, we will have omega 1 for this, omega 2 for this both are = omega,

so this is this omega that you want to measure.

So,  when  that  angular  rate  happens  they  start  rotating  like  this.  Then  if  you  measure

capacitance along these stator electrodes and this moving electrode here then we know that

angular rate has occurred. That is the principle of the angular rate gyroscope and there are

many ways to do that one of the ways is shown here.

(Refer Slide Time: 58:40)

See here what we see the different one. We have the ring and there is a central post just like

what we had earlier. So, let us use the red color. This is fixed here other than this everything

else if free to move. Now this has a special property that first if we excite this, this, this and

this meaning that you make them oscillate like this. These are curved chromes just like the

comb drive with the linear comb. You can also have a curved combs here.

It can go and then if you set them into motion the other ones that is these will start oscillating

as is shown here. It is fixed only there and the rest of the structure is free to move. Here we

see that to the ring there are lots of these combs attached to it and there are 2 degenerate

mode shapes for it. One shape is such that this one, this one, this one and this one that is these

4 sets of combs oscillate, okay. That is as shown over here. They oscillate about this point,

this point, this point and this point.



That is one mode shape and the other mode shape is I shown here were these 2 things that I

am checking with 2 arrows these for this about that point about this point this point and about

this point it will go like this as it shown. So, when we set let us say this one into oscillation

that is our drive mode. The sense mode the other set will start oscillating by measuring the

capacitance of these com fingers that is that one, that one, that one and that one.

We can sense if there is any angular rate. Again it happens because of Coriolis acceleration

transferring  energy  from  one  mode  to  another  mode.  So,  this  is  the  principle  of  micro

machine  gyroscopes.  These  also  the  principle  of  our  macro  machine  ones  but  in  micro

machined gyroscopes we have 4 different ways of measuring which we discussed in this

lecture.

And all  of  these  have  been  made  into  micro  machined  devices.  Some of  them are  also

commercially  available  especially  the dual  mass  one is  commercially  available.  The ring

gyroscopes are not at commercial  available but they have also shown a lot of promise in

terms of research. Thank you.


