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So in this lecture, we will talk about control system. So control system is a part and parcel of

many smart systems that we design. So control system essentially is designed to perform certain

actions which the smart structure has to perform. So in this lecture, we will try to look at what all

the ingredients of the control system, what are the mathematical models that are required for

control system.

And what  are  the basics  stability  concept  of  a  control  system and some small  basic  control

system design concepts we will actually study in this lecture.

(Refer Slide Time: 00:54)

So to give you some introduction on control system, basically the first control system was started

way back in 1900. Control essentially means preventing some undesirable effects in a structure

through an external  stimulus,  okay. One cannot  visualise  a  Robot  without  a  control  system.

Robot does multiple actions and these actions are possible basically by control systems.



Today, control plays a major part in almost all branches of science and engineering. In many

space vehicles, missile guidance and robotic system, control has become an integral part of the

manufacturing process.

(Refer Slide Time: 01:32)

Where does the control system fit in smart systems. So in smart systems, we require control

techniques  for  controlling  what  we call  displacements  and its  derivatives  like  velocities  and

accelerations, pressure and its derivatives like force and stress, temperature, humidity, viscosity

and many more parameters that are basically part and parcel of this smart systems. The control

system always requires an external stimulus.

And this external stimulus is provided by smart actuators basically through what we call the

constitutive  laws  and  some  of  the  actuators  that  we  studied  in  previous  lectures  or  the

piezoceramic actuators like PZT, magnetoelastic actuators Terfenol-D, etc.
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So some of  the  engineering  applications  of  control  systems where we would like  the smart

systems to perform. One is the vibration control where we control the dynamic displacement

using control techniques. We have noise control, excessive noise is not desirable in many of the

automobiles and aircrafts. So where the acoustical disturbances are controlled through control

techniques. 

In  helicopters,  where  helicopters  always  produce  excessive  noise  because  of  the  rotor

displacement. So we try to control it by actuating the flaps. By doing so, we control the exterior

noise or sometimes we try to design a control system to treat the noise path so that it does not

reach the helicopter cabin so that their cabins are quieter. Many a times we also design a control

system to change the shape, a flat plate can be bent and in aircraft.

We can change the aerofoil shape, aerofoil controls the flow. By changing it, we can avoid vortex

which basically is one of the root cause for aircrafts to stall.
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So now let  us go to control definition.  The principle behind all  control techniques  for smart

system is to generate additional forces for enforcing control of the required variable. So why we

need, we need to control something. So what we control is a control variable, for example in

vibration  control,  control  system  generates  damping  forces  that  reduces  the  dynamic

displacements or dynamic amplitudes, which is one of the control variables.

So now the question is, where does this additional force come from especially in smart systems

or in the traditional non-smart systems. In traditional control system, in the non-smart systems,

these comes from what we call the RF signals. We will talk about RF signals little later in this

lecture. In smart systems, they are provided by the smart actuators through constitutive law.

(Refer Slide Time: 04:31)



So let us define some of the control terminologies which we use traditionally in control system

design. Let us first begin with what do we mean by control. So control means sustained release

of energy for limiting or controlling the response of a desired control variable by inducing an

additional  input  in  the  form  of  manipulated  variable.  So  now  the  manipulated  variable  is

something we input to the system.

Now we next define what is control variable. So we need to control something in the control

system. So what is that something that we are going to control, that is the control variable. So the

control variable is a quantity such as displacement, force, stress, strain, pressure, temperature,

etc.  that  requires to be measured or controlled.  These are necessarily  an output  variable  and

control of the control variable is normally performed through an additional input that is provided

to the actuator in the smart system and which is called the manipulated variable.
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Next, we define what is called a plant. Plant is defined as a physical object that requires control

such as the mechanical device, helicopter blade, mechanical gear, cantilever beam, etc. aircraft,

spacecraft. These all represent what we call the plant which requires control. Next, we define

what is disturbance. A signal that propagates through a system carrying considerable amount of

energy is what we call disturbance.

For  enforcing  control  of  a  system,  one  may  require  many  such  disturbances  which  can  be

internally generated especially in a smart system through smart actuator or externally given as an

input as in the case of traditional control systems.
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Next,  we define  one  of  the  very  important  parameter  in  control  what  we call  the  feedback

control. If due to a disturbance, the difference between the output of the system which we are

trying to control to some reference input is reduced and if this reduction was obtained based on

this difference, then we term this operation as feedback control. So one of the factors on which

the feedback control depends, is the error signal. So now we will redefine what is an error signal.

The difference between the output signal and the feedback signal is what we call the error signal.

In many cases, the feedback signal may be a function of the output signal and its derivatives. In

structural  applications  such as  vibration  control,  noise control,  the  output  signal  is  normally

displacements or strain or its derivatives namely velocities and acceleration.

(Refer Slide Time: 07:25)

Next,  we will  define what is  called  closed-loop control.  So the control  system we design is

normally closed-loop control system which is the most efficient control system. So it is defined

as follows, when the output of the system is brought to the desired value by feeding the error

signal to the controller under the feedback control, such an action is termed as the closed-loop

control.

There is an alternative to closed-loop control which is used in some cases but sparingly, which is

called the open-loop control.  A system in which the outputs do not play a major role in the

control action, is termed as the open-loop control. So that is the error signal is not needed at all in



the open-loop control as opposed to the closed-loop control.

That is the output is not compared with any reference signal and hence fixed operating condition

exists and hence the accuracy is not always assured in the open-loop control. So we have defined

the major control terminologies  now. Next we will define what is we call  the linear system,

before most of our control system design is based on the linear system. A system is said to be

linear if the principle of superposition holds.

So what do we mean by principal of superposition, that is the response to several inputs can be

obtained by treating  one input  at  a  time,  getting  the response and adding the  total  response

together. So if the governing equation describing a system which is of constant coefficient type,

such a system is called linear time invariant system.

(Refer Slide Time: 09:12)

So now we have defined what all the basic terminologies that are required for control systems,

that  are  involving  in  design  of  the  control  systems.  Next  we  will  talk  about  what  are  the

mathematical models that are required to design the control systems. The fundamental to most of

the control system is, we need to have a differential  equation which is in most cases is of a

second order linear system, second-order linear differential  equation and there are 2 kinds of

control systems we can design.



One is called Single-Input-Single-Output SISO system, which is essentially based on transfer

functions, determination of the transfer function because there is only 1 control variable here and

the  second  method  is  the  Multiple-Input-Multiple-output  control  system where  more  than  1

control  variable  will  be  there  and normally  we use  what  is  called  the  state  space  approach

modeling. We will talk about both of these modelling in this lecture.

(Refer Slide Time: 10:20)

Let us now come to transfer function. What is transfer function, how do we define it. So in a

traditional  control  system, any traditional  dynamic system, you have an output,  you have an

input.  The algebraic  relationship between the output and input is what we define as transfer

function.  Such a relation is possible only in the frequency domain or in the Laplace domain

which is also a frequency domain and it is not valid in the time domain.

(Refer Slide Time: 10:51)



If the output of the system in the frequency domain is given by y which is a function of the

spatial quantities x, y and z and also frequency defined in radiance per second and if the input

given to the system is x, okay, then we will define the transfer function G in frequency domain,

G  omega  which  will  be  equal  to  output  y  hat/x  hat,  okay. It  is  a  simple  thing.  For  every

frequency, there is a relation and this is what we call the transfer function.

So in the design of controllers, it is necessary to obtain a transfer function which is normally

characterised  using  Laplace  transform  and  there  is  a  straightforward  relationship  between

Laplace transform and Fourier transform. The use Laplace transform however is limited to only

single control variable that is it is valid for only SISO systems.
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So let us now talk about Laplace transform. So the Laplace transform of a function f, a time

domain function f, which is also spatially dependent, is given by this expression 9.2.1, okay. So

we have the Laplace transform defined by this equation. The Laplace transform of the derivative

of this function is also defined by this expression here which also depends upon the function

evaluated at time T=0, so that should be known before.

The second derivative of this function, the Laplace transform of that is given by this equation

here which depends upon not only the value of the function at time T=0 and also the derivative

of the function at time=0, first derivative of the function. Like that we can write the Laplace

transforms which can be extended to the nth derivative. So what does this Laplace transform do,

why  it  is  so  powerful,  why  it  is  so  useful.  So  basically,  Laplace  transform transforms  the

differential equation into a set of algebraic equation which are more easier to handle.
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So now let us come back to our control system. Let y be the output variable and x be the input

variable.  The linear  differential  equation  of  the  nth  order  temporal  derivative  and nth  order

temporal input derivative where n is larger than m, can be written by this nth order differential

equation. The left-hand side is basically the differential equation. Right-hand side is essentially

the input because y is the output, x is the input.

(Refer Slide Time: 14:07)

So when we apply the Laplace transform, okay and assume that zero initial condition, that is the

value of the function at time T=0 and its derivative is basically and all the higher derivatives at

time  T=0 that  is  the  0  initial  condition,  we can  write  the  governing equation  into  a  set  of

algebraic equation where y is the output in the Laplace domain, x is the output in the Laplace



domain and we can get this, okay. So this 9.2.4 is basically an algebraic relation which has a

numerator as well as the denominator.

So  basically  what  we  do  here  is,  we  can  factorize  the  numerator,  we  can  factorize  the

denominator as given here. So basically the numerator can be factorized as s+alpha 1*s+alpha 2

multiplied to s+alpha m and similarly the denominator s+beta 1*s+beta 2 to s+beta m. So the

transfer function will be 0 at values -alpha 1, -alpha 2, -alpha 3, etc. The denominator will be 0 at

-beta 1, -beta 2, -beta 3.

So when the numerator is 0, we say there is a 0 in the transfer function, when the denominator is

0 which makes the transfer function infinity, we say these are the poles.

(Refer Slide Time: 15:32)

So basically poles and zero are the important parameter in control system. So basically poles are

very important for the design of controllers. In vibration analysis, poles represents the resonant

condition  where  the  driving  frequency  will  equal  to  the  natural  frequency  which  basically

increases the displacement or the vibrational amplitude to enormously large extent which has to

be avoided at any cost.

(Refer Slide Time: 16:03)



So let us come back to a single degree of freedom system. What is a single degree of freedom

system where there is only one predominant motion that means there is only one control variable.

So this is basically given by a second-order differential equation where x double dot, x. are the

derivative  of  the  x  which  represents  acceleration,  velocity  and  x  basically  represents  the

vibrational amplitude and f of t is basically the forcing function.

(Refer Slide Time: 16:32)

So when we take a Laplace transform of this, we get ms square+cs+k multiplied with x hat of s

which is nothing but the Laplace transformation of x of t which is equal to f of s. So x of s is the

output,  f  of  s  is  the  input,  the  ratio  of  these  will  give  us  the  transfer  function,  that  is  ms

square+cs+k.



So basically, the transfer functions, the numerator is just 1 value, so it cannot be factorized, that

is there is no zeros in this transfer function where as the denominator can be factorized since it is

a quadratic, so it has 2 poles with the value alpha 1 and alpha 2 and alpha 1 and alpha 2 are given

by this equations here.

(Refer Slide Time: 17:26)

So from the above equation, we have seen that there are no zeros but 2 poles at -alpha 1 and

-alpha 2, the real or complex value of alpha 1 and alpha 2 depends upon the value of the radical,

the value of this radical, if c/2m is greater than k/m, then alpha 1 will be real and if c/2m is less

than k/m, it is going to be imaginary. So for the design of the controller, one important property

is for the stability of the control system, it is necessary that the real part of alpha 1 and alpha 2

should always be negative.

Otherwise, the control system will be unstable. So from the equation above, if we substitute

instead of the Laplace parameter s by i times omega, we can transform the problem from the

Laplace domain to Fourier domain, then the transfer function is given in terms of omega which is

given here  and the  quantity  that  is  on the  right-hand side,  1/-m omega square+ic  omega+k

represents what we call the frequency response function.

(Refer Slide Time: 18:42)



So now how do we determine transfer function from finite element method because which is

normally used for any control system design. The finite element  equation is given by 9.2.10

which is M*x double dotC*x.K*x=F where M, C and K are matrixes of size n by n, that is it has

n control variables, okay. So and x, x. and x double dot are basically the dynamic amplitudes, x.

is the velocity and x double dot is the acceleration and F is the applied force vector.

So we apply either Laplace transform or Fourier transform to this, we reduce this equation into K

hat*x equal F hat, all in the transform domain where K hat is given by the equation 9.2.11 and it

is a frequency dependent matrix which is called the dynamic stiffness matrix. So basically we

solve 9.2.11 by giving a unit impulse in the place where you require the transfer function and

solve  for  the  unit  impulse,  this  matrix  equation  and  whatever  the  output  you  get,  x  hat  is

essentially the transfer function. So it has to be solved numerical.
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Now let us come to the State Space Modeling. So a system is said to be in state space if for a

given  input,  the  response  can  be  completely  determined  for  all  future  times  with  minimum

amount of information. Mathematically, a dynamic system is defined by a differential equation

which is given nth order differentially. Here y is basically the output variable that we are looking

at, R is going to be which is basically the input, the R input may contain the input time function

or its derivatives

Let us first assume that R of t contains no derivatives of the input function.

(Refer Slide Time: 20:39)

So in the above equations the nth order and all n derivatives should be defined and it requires n



initial conditions. We may choose to call all the variables y and each of the n-1 derivatives as

state variables, okay. The number of state variables required to model a differential equation is

equal to the order of the equation. So why do we need state spacer approach.

Basically fundamental to state space modelling is to provide a systematic mathematical approach

to the analysis of the characteristics of the system by reducing a single nth order differential

equation coupled set of differential equation into a set of first-order differential equation with

each equation defining one state. The set of equations, such set of 3 equation is called the state

equation.

(Refer Slide Time: 12:32)

So let us now assume as I said R t does not contain any derivatives, then we can define the state

variables as given by 9.2.13 where x1 will be the first state variable which is equal to y, my

output; x2 will be the derivative dy/dt which is equal to dx1/dt; x3 will be the second derivative

which will  be the first  derivative of x2; x4 will  be third derivative  of y which will  be first

derivative of x3 and so on. We can write n-1 and nth derivative.

(Refer Slide Time: 22:08)



So the nth state question is obtained by using the above definition, that is we can write as given

in 9.2.14. The equations 9.13 and 14 can be put in matrix form as given here, okay.

(Refer Slide Time: 22:27)

So which then expanded will be shown here, x is a vector of all state variables, a is called the

state matrix, b is called the input matrix. Again y can be related to the state variable as y=C*x. So

these 2 together form what is called the state space equation which is basically used for our

controls system design.

(Refer Slide Time: 22:54)



Now if we consider that my input on the right-hand side is also a function of the derivative of the

input function f, then R t is defined by equation 9.2.17 which contains the derivatives, all higher

derivatives. If we use this, our previous definition of the state variable is not valid because it

does not eliminate these derivatives.

(Refer Slide Time: 23:21)

So we need to define a new set of the state variables. So these are given here in the equation

9.2.18 where x1 will be instead of y, we also introduce c0-f; my state of second variable, x2 will

be the first derivative of y-c0 into first derivative of the input and the actual function; then x3

will be second derivative of y minus the second derivative of the function, the first derivative of

the function and the function itself, input function, like that we can write the nth derivative.



(Refer Slide Time: 23:52)

So once we write this, we can chose the new state variable questions as shown below. So the first

equation where dx1/dt=x2+c1f and the nth one will be given by here, this equation.

(Refer Slide Time: 24:11)

So in doing so, we can write these equations in matrix form which is a relating to the state vector

on the left-hand side,  the state matrix and the input matrix  and the output and input  can be

derived here. So in doing so, we also introduce an additional parameter D which is given by c0*f

that enters into picture. So this form is convenient for us to design the state variable when the

input that is given to the system is also dependent on its derivatives.

(Refer Slide Time: 24:42)



So once we do that, now we take the, next step is to see how we transform this into frequency

domain. So we take a Laplace transform of this where we write the equation here in the x domain

which also contain x of 0 that is the value of the state vector at time t=0. So when we do that,

from the first  equation,  we eliminate  this  x of s and substituting the second of the equation

9.2.22, then we will get a relationship between the output and the input which will become a

transfer function matrix.

So this is given here, output/input. So which requires inversion of s-A matrix.

(Refer Slide Time: 25:35)

So the transfer function is given by this equation here, okay. So basically the determinant of s-a



will give me the characteristic polynomial of the control system and the matrix A will give us the

poles that is going to be there in this control system for which we have to design our control

system.

(Refer Slide Time: 26:00)

So let us see how we can apply this to a simple single degree of freedom system. We again come

back here, this we studied few slides before. This is again a single degree of system where x is

the control variable basically. So mx double dot+cx.+kx=f of t. Now to represent this in state

space, we need to choose the state variables. We take the first state variable x1=x and x2=x

double dot

So we can rewrite this, reduce this into 2 sets of equations, that is x1. x2. is related to this matrix

a and x1 and x2 is the state vector plus B and again output is given by this matrix c times the

state  vector. So we can easily  represent  this  single  degree  of  freedom system into  a  matrix

contain 2x2 state vector and vector containing the input matrix, output matrix and the output

vector.

(Refer Slide Time: 27:09)



So from the above equation, as in the conventional form of the state equation, substituting the

matrix A B C and D in the derived above equation, we can write the transfer functions when we

do that in this form which is basically same what we derived before by using our regular transfer

function methods instead of using the state spacer approach.

So now what we have done is we have taken the single degree of freedom system to show how

we can derive the transfer function both from your conventional method of transforming directly

these equation into frequency domain or using the states space approach.

(Refer Slide Time: 27:49)

How do we do the state space model from FEM. Again, in designing the controller for multi-



input-multi-output  system,  especially  for  structural  application,  one  will  have  to  depend

extensively on the discritized model because the number of degrees of freedom and number of

control  variables  will  be so large.  The discritized finite  element  equation is  given by 9.2.28

which is given by Mx double dot+Cx.+kx where M C and K are matrixes, x is a vector, f is the

input, all are of size n by n and x the vectors of size n by 1.

So here we choose the state vector as x1 vector is equal to the actual control variable x, x vector

and x2 will be the derivative of x1. So when we do that and apply our state space model, we get

the control equation in terms of this state matrix by equation 9.2.29 which is given here. So once

we know that, we can clearly identify what is the A matrix B matrix and C matrix which will be

very useful in the control design.

(Refer Slide Time: 29:01)

So what we now learnt is if there is a system which is of order n by n, the state matrix will be of

the size 2n by 2n. So we increase the size, okay. In addition, if you want to do a control system,

in addition to getting the A B C matrix, we also have to get the gain matrix. What is a gain

matrix. Gain matrix is essentially relates the input to the output, y is the output, f is the input.

F=Gy where G is the gain matrix which is of the size n*r.

What is this r, r is the number of the states that you need to control. So in terms of vibrational

frequency if you want to control 10 frequencies, r will be 10. Then n will be maybe 100, 1000,



10,000. So basically it is the number of control variable that you want to control, it is a control

state, r represents that.

(Refer Slide Time: 30:07)

Now let us define another important parameter for the control system that is the stability. Every

control system has to be stable and when is the control system stable. A control system is said to

be stable  if  a finite  duration  input  causes a  finite  duration  response.  A system is  said to  be

unstable if for a finite duration of input, it causes response that diverges phenomenally from the

initial value that is when the output changes unidirectionally and shoots up with ever increasing

amplitude, the system is said to be unstable.
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So when does it happen. So we studied until now that most second-order systems are of constant

coefficients which has exponentials as solutions. So the solution of such will be of the form y of t

is the solution for which you are looking will be Ae to the power of r1t + e r2t, etc. okay and it is

necessary that for the r's can be less than 0, greater than 0, or r's can be complex.

So r in 3 cases, these are the three cases that arises. If r's are less than 0, the finite output to a

finite input, then we say it is stable. When r, this is greater than 0, there is an infinite output your

finite input that means it is unstable. When r's are complex, then we will have an oscillating

response because basically they will be of the form sines and cosines. Hence the determination of

stability of the system amounts to determination of the roots of the polynomial.

In terms of complex variable s, the system is said to be stable if all the roots are on the left half

of the s-plane. So if you plot the s versus frequency, then it has to be in the left, so basically that

is why in the starting of this lecturer, I said all the roots should be on the negative so that this is

on the left side of the s-plane or the imaginary axis.

(Refer Slide Time: 32:18)

How would we determine the methods of the control. Following are the different methods that

are  used.  One  of  the  methods  is  numerically  determining  the  roots  of  the  characteristic

polynomial, that is find when the degrees of freedom or number of control variable is small, so

that you can factorize.



But if the system is large even if we have more than 3 or 4 variables, it becomes very difficult to

factorize,  then  we  have  to  use  certain  numerical  criterion  such  as  Ruth-Hurwitz  criterion,

Nyquist criterion, Root Locus method or using the state space and transfer function approach.

(Refer Slide Time: 32:55)

There  are  2  other  important  parameter  that  determines  the  stability.  One  what  we  call  the

controllability and observability. A system is said to be not controllable if it does not satisfy these

2 conditions, namely the controllability and the observability condition. Hence some conditions

are specified in terms of control  parameter  which a system is  made to satisfy or to become

controllable or observable.

A system is said to be controllable at some time t0 if it is possible to transfer the system from an

initial state x of t0 to any other state in finite interval of time using the unconstrained control

vector.

(Refer Slide Time: 33:39)



A system is said to be in a state which is in state, is said to be observable at sometime t0 if it is

possible to determine the state from the observation of the output over the finite interval of time.

So using the above definition, we can derive the condition for input and output controllability. So

the controllability has to be both because the input has to be controllable and the output has to be

controllable.

So the condition for the controllability of input is that the vectors that is the output vector B, A

times B, that is a multiplication of the state matrix into B and such products up to A n-1*B, if you

have an n by n system are linearly independent or in linear algebra terms, in matrix terms, the

matrix containing these matrix that is B AB, the product A n -1*B, should be of their rank n. It

should be for n by n system. That is this matrix should not be singular. If it is singular, then input

is not controllable.
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Now we have to check the output controllability. So what is the output controllability. So we

need to take the output matrix C that require the output with the input,  so that is the C, the

product of CB CAB CA square B and CA n-1 B and D and this matrix should not be singular. So

here, the output is basically depends upon how many control states that we are controlling, that is

why the term the size of the matrix enters a parameter r comes into the picture.

So in the above matrix, the r is of the order m*n+1*r where the matrix A is of n by n, B is n*r, C

is m*r because there are m inputs and D is M*r. So the condition for output controllability is this

matrix  given  in  equation  9.3.3  should  be  of  the  rank  m,  okay.  So  this  is  as  far  as  the

controllability conditions are there.

Now the observability condition, that is the state equation given by equation 9.2.1 that is the state

space equation which we derived initially, is observable is only when the output matrix, that is C

transpose  A times  C  transpose  product  and  A transpose  n-1  of  the  n-1  state  vector  into  C

transpose, this matrix should be of order n and should not be singular. 

So these are the 2 important conditions that a control system has to satisfy to make sure that the

design control system is stable.
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We can also state the conditions for complete controllability and observability even by looking at

the transfer function. This is only of course true for only some simple systems where the control

parameters or control variables are small, that is the system is not completely controllable or

observable  if  there  exists  common  factors  in  the  transfer  functions  in  the  numerator  and

denominator.

For example, if the transfer function given by this equation here, G of s=s+1*s+4 divided by

s+1*s+2*s+3 is not completely controllable or observable because there is a common factor s+1

on both the numerator and denominator. So even such a system should be avoided.

(Refer Slide Time: 37:29)



Next,  this  is  the  last  part  of  the  lecture.  Let  us  take  what  we know some of  the important

concepts in the control design. Fundamental to the design of the control system is to place the

poles that is from the transfer function, we find the poles to place these poles at their appropriate

position  so  that  the  stability  is  ensured.  Plant  is  a  part  of  the  control  system  that  has

unchangeable parts, we cannot change.

Because  when we want  to  control  the  aircraft,  we cannot  change the  parts  and the plant  is

described  by  the  transfer  functions  or  the  state  variables.  The  poles  can  be  shifted  at  the

appropriate position by using a close loop control around a plant with the feedback gain signal.

So basically, we give a feedback gain signal from the smart actuator in the case of smart system

to appropriately shift the poles to a location where the stability can be ensured. 

Another important parameter again for a closed-loop control system, we need to have a gain and

this gain matrix is the one that relates the output vector to the input vector and the gains can be

constant or variable depending upon the control design.
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So the control design procedure is as follows. How do we go about doing it. Firsts the basic or

minimum system is determined by having a closed-loop unit feedback, okay. Normally sensors

are assumed ideal, that is they have unit gain and only an amplifier is added to the error signal

and the plant. The gain is then set accordingly to meet the steady state.



So once we know a unit gain, we look at the responses, then we increase or decrease the gain

based on to see that when the system acquires the steady state response and also the bandwidth

requirements which are followed by stability analysis. For smart systems, we have sensors and

actuators to receive the sensor input and a controller. The stability of such system is governed by

the placement of sensor, the placement of actuator, the error signal, the gain variation and the

method of the control design. What are the different methods.
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The  design  of  the  control  system  involves  design  of  what  we  call  compensation.  What  is

compensation. Compensation can be defined in many ways. There are 2 major ways that we can

design the compensation  which is  always prescribed in  the control  design.  The first  way to

design a compensation is to modify the basic system in order that the stability of the system is

ensured.

Stability analysis is very important preliminary step that determines how stable or unstable the

system is and hence tells the designer how much of compensation is necessary to ensure the

stability. The second step in the design process is to mathematically determine the parameter for

the chosen value that is what we are looking at where the poles are, is there any 0's, how do we

avoid or what is a kind of gains we need and these are some of the things which we need to

determine.



The unstable system will have roots on the left-hand side of the s-plane. I told you before itself

that if you have the roots on the right half of the plane then it is unstable. For the stability, we

need to ensure that their roots were always on the left half of the s-plane basically. So we need to

ensure that. So for stable response, these poles have to be moved from the right half to the left

half. So for which we need to design our error signal such a way that this can happen.
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In general, one can move rules by many methods. Following are some of the methods. One is by

changing the gain, changing the plant, placing the dynamic element at the forward transmission

path such as filters, placing a dynamic filter element at the feedback path or feedback all are

some of the states. From the above, it is not possible to change the plant, it is impossible.

So some of the other options given here are a possibility and which is more suitable, it is only the

designer, an experienced designer will be able to tell depending upon problem to problem. So

selection of these is a matter of engineering judgement and also depends upon the nature of the

problem.
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So now let us talk about some of the very simple controllers for the linear systems that are there

that are commonly used, successfully used in many of the systems, in many of the disciplines in

engineering.  These are called PD controller, PI controller, or PID controller. PD controller  is

proportional  derivative  controller.  PI  is  proportional  integral  controller.  PID  is  proportional

integral and derivative controller.

From the  previous  discussion,  it  is  clear  that  gain  is  an  important  parameter  governing  the

design. Increasing gain, increases the bandwidth and makes the response very fast; however, we

have to be very careful. Increase in gain decreases the damping which is our major motivation of

control, we have to damp out the response. So it has to be optimal so that we get faster response

at the same time, we get an optimal damping to control the control variable to our desired level.

Damping is somehow improved by introducing a derivative of a signal. So that is why PD is

more useful and if there is a need to increase the accuracy substantially then integrator is used.

So that is why the combination of PID will ensure faster response, better damping and better

accuracy. There are  several  commercially  available  controllers  that  combine  several  of  these

concepts very effectively.
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So now let us describe each one of them much more detail. We have what is called PD controller

which  is  proportional  from  plus  the  derivative.  So  normally,  the  transfer  function  of  this

controller is given by what is given here G of s=Kp+Kd times s in the Laplace domain. So it has

no numerator no denominator. It is one number, algebraic relation.

If you look at the PI controller, that is proportional plus integral, the transfer function G of s is

given by Kp+Ki/s, where Kp is the gain of the proportional controller, Kd is the gain of the

derivative controller, Ki is the gain of the integral controller. So the PID controller, the transfer

function is given by G of s = Kp+Ki/s+Kd times s. So as I said Kp Kd Ki are the gain of the

proportional derivative and integral controllers which are adjustable. We can adjust, we can vary,

we can make it constant, we can vary.

Among the above as I said because the differential increases the damping, integral increases the

accuracy, PID controllers are extremely popular and successful and have been used in many

applications, especially in aircraft like autopilot and also in ships and in space vehicles and even

in the helicopters.

(Refer Slide Time: 46:16)



So now let us consider the transfer function of a PD controller. This is given by G of s=Kp/Ks,

we write this transfer function Kd, this is equal to Kd*s+Kp/Kd. So Kp/Kd is the ratio of the

gains of the proportional and derivative controllers. This controller simply introduce a free zero

and the design requires a zero be placed at appropriate location to adjust the gain accordingly so

that you get the desired control of the control variable.

Let us now consider the transfer function of a PI controller. The PI controller is basically given

by Kp+Ki/s, so that means which can be written as Kp*S+Ki/Kp divided by s. So what we do

here is, the proportional gain Kp is an adjustable amplifier gain parameter. In many system, it is

responsible for the process stability. In many cases, Ki is responsible for the error signal going to

0; however, if it is set too high, there will be oscillation and instability or integrator windup or

actuator situation, okay.

However, one thing we can clear is, it introduces a zero that is the transfer function becomes zero

when s=-Ki/Kp and it has a pole at s=0. So it has both poles and zero, so we can adjust, the pole

location is fixed, the zero location can be adjusted depending upon the values of Kp and Ki, so

we can vary it to see that.
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Now let us consider the last of this controllers that is the PID controller. The transfer function in

this  case is  given by Kp+Ki/s+Kd times s.  That  is  you have both proportional,  integral  and

derivative and this can be written as Kd square+Kps+Ki times s. So we clearly see that it has a

pole at s=0 that the origin, so the pole is fixed and the numerator can be factorized as a quadratic

equation, it can be factorized, so it has 2 locations where we can introduce 0.

So this requires a pole to be placed at the origin and 2 zeros at the desired location for adjustment

of the dynamic response. The 2 zeros may be real or complex depending upon the gains used and

it will always be on the left half of the s-plane so that stability is insured. PID controllers can be

digitally  implemented  with microprocessors,  that  is  one  of  the  reasons  why it  is  very, very

popular among the control engineers, okay.
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So this is the final slide. So let us summarise what we have studied in this lecture. So far we

introduce  the  need for  control,  especially  in  smart  systems.  We cannot  find  a  smart  system

without control,  the control algorithm. So because we want smart system to perform certain

smart functions, like vibration control, noise control, shape control, temperature control, so we

need to design a control system to give sufficient inputs which alters the control variable and that

is what the control system is.

We also discussed the principal on which the control system works, that is it requires the state

matrix, it requires the output matrix, it requires the input matrix, the relationship between the

state vectors and the output, output and the input, the gain matrix, the feedback control, the open-

loop control. Some of these concepts were introduced in this lecture. We also discussed about the

mathematical models that are required for the design of the control system.

So we described 2 models, one is based on transfer function and one is based on the state space

which is an extended transfer function, I would call it as an extended transfer. In the transfer

function model,  we basically  defined how do we get the relationship  between the input  and

output for a single input and single output system where there is only one control variable to be

controlled.

And in the second approach where there are multiple state variables that means you may arise a



situation where multiple state variables needs to be controlled, then we used to develop this state

space model. So in the state space model, basically we have generated the mathematical model to

construct the state matrix, the input matrix, the output matrix and how we can actually generate

these matrixes when we have a finite element type model which is a large model, where it is a

multi-input-multi-output models.

Next  we  introduced  what  are  called  the  stability  of  the  control  systems.  So  what  are  the

paramilitaries that you need to look, what are the things that you need to ensure for the stability

of the control  system, how the poles  affect  the stability  of the control  system, what  are  the

methods to actually move the poles to the position where the system is stable and what is the

controllable and observable condition and what are the condition to make the controllability of

the input, controllability of the output and the observatory conditions.

And finally  we outline what are the design concepts,  the design procedures that we need to

adopt, basic simple design procedures and we also reviewed some of the very commonly used

controllers like the PI controllers, PD controllers and PID controllers, what would be the transfer

function of such controllers, what are the advantages of each of these and how do we implement

all these things with this we end this lecture.


