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Welcome to the NPTEL course on Robotics Basics and Advanced concepts. This week, 

we will look at Kinematics of Parallel Robots. Last week, we had looked at Kinematics of 

Serial Robots ok. So, the contents of these lectures, in this week are first, we will have 

some Introduction to parallel robots; then, we look at the Loop-closure Constraint 

Equations in this first lecture.  

In the second lecture, we look at Direct Kinematics of Parallel Manipulators. Third lecture, 

an important concept in Parallel Manipulators called Mobility. Fourth lecture, we will look 

at Inverse Kinematics of Parallel Robots and last, we will look at this very well-known 

problem of Direct Kinematics of Stewart Platform Manipulators. 

 (Refer Slide Time: 01:27) 

 

So, as I had mentioned these, there will be 5 lectures in this part of kinematics of parallel 

robots. So, let us start introduction. So, what is a parallel robot? What is the main 

difference between parallel and serial robots which we looked at last week? In a parallel 

robot or a parallel manipulator, there are one or more loops ok. So, there is no real first or 

last link.  



In the serial robot, remember we had a fixed link and then a link and a joint and a link and 

a joint all the way to a free end which was the end effector. In a parallel manipulators such 

an arrangement is not there. So, as a result, there is no natural choice of end effector or 

output link ok. So, we need to choose or say this is my output link. 

Another consequence of one or more loops is that the number of joints is more than the 

degree of freedom and as a consequence, several joints are not actuated. Remember for 

serial robots or for in general, Grubler Kutzbach criteria, we found that we could find the 

degree of freedom of any mechanism and the degree of freedom was same as the number 

of actuated joints which are possible.  

So, we have several un-actuated or passive joints and in a multi-degree-of-freedom parallel 

manipulator ok. So, hence, we can also use multi-degree-of-freedom joints. So, if the joint 

is passive, we do not need to put in actuators at that place and hence, we can use multi-

degree-of-freedom joints. 

So, you can think of a spherical joint which has three-degrees-of-freedom, but we do not 

need to put 3 motors to implement that three-degrees-of-freedom. So, hence, such as 

spherical joint was not possible in a serial robot. But in a parallel robot, it is possible 

because it need not be actuated. Similar to serial robots, there are two main problems; one 

is direct kinematics and one is inverse kinematics.  
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Before we go into these problems and look at it in more detail, let us look at some simple 

parallel robots; examples of parallel robot. So, the first is this 4-bar mechanism. This is a 

planar 4-bar mechanism. It is one-degree-of-freedom and it is very well-known ok. So, 

many people will not say that this is a parallel robot, but let us just extend our definition 

of parallel robot to include one-degree-of-freedom closed loop mechanisms also ok. 

We will be using this 4-bar mechanism extensively in this week because it is very simple 

to analyze. We can do all the calculations and derivation of equations by hand and also, 

we can very easily see what we are getting whether they make sense or not. So, in a 4-bar 

mechanism, we have a left fixed joint here which is denoted by 𝑂𝑙. Then, we have another 

joint, rotary joint which is here which is 𝑂2. or second joint. Then, we have a third joint 

and a fourth joint.  

So, this forms a loop. So, we start from the fixed end, go to the second joint, go to the third 

joint and come back to the fixed base again ok. So, this is a one single loop and in this 

loop, we have we can define a coordinate system L which is the lefts X and Y axis. The 

origin is at 𝑂𝑙. 

We can also likewise define a coordinate system R, which is on the right fixed point and 

this is X R and Y R with the origin O R and then, we have Link 1, Link 2, Link 3 ok; these 

are the moving links ok so with link-lengths 𝑙1, 𝑙2 𝑎𝑛𝑑 𝑙3 . There is also a fixed link which 

is of length 𝑙0. So, that is the distance between the left fixed point and the right fixed point 

ok.  

So, this is a very well-known example. This has been studied by many many researchers 

in both mechanisms and robotics community and this Link 2 is also called the coupler. 

And typically in a 4-bar mechanism, this Link 2 is the output, chosen output link; not 

always, sometimes Link 3 could also be the chosen output link.  
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Another example this is a three-degree-of-freedom parallel robot. It is a spatial parallel 

robot. It consists of a fixed base. This is called as the base platform and a moving platform 

and this base to moving platform is connected by a rotary joint, a prismatic joint and a 

spherical joint ok.  

So, in this chain R, P and S, the P joint is the one which is actuated. So, we can again 

define an axis of this rotary joint and some rotation angle 𝜃3; similarly axis of the rotary 

joint 2 and an axis 𝜃2 and 𝜃1 likewise and we can also define a fixed coordinate system 

which is O X, O Y and O Z ok, at the same maybe the center of this triangle. 

And similarly, we can define a point P on the moving platform which is p (x, y, z) ok. So, 

this has 3 spherical joints on the top. So, these spherical joints are not actuated ok. So, 

hence, we can use multi-degree-of-freedom joints. In this example, the moving platform 

typically is the output link ok. So, in this example, the moving platform is the output link 

and as I said, there are multi-degree-of-freedom spherical joints which are passive.  
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The Original Stewart platform was a six-degree-of-freedom parallel robot and it was 

invented in 1965 by this person called Stewart and it consist of a prismatic joint or a sliding 

joint in each one of these legs. At the two ends, there is a hook joint and a spherical joint.  

So, this is a UPS arrangement in each leg. There are 6 of these legs and by sliding the 

prismatic joint, we can make this top platform go up and down have x and y, z motion and 

also, 3 rotary angles ok; roll, pitch, yaw for example. This was used to test tires. So, 

basically you mount a tyre at the bottom of this top platform and then, you can tilt the tyre 

and you can make the tyre go in all the 3 motions x, y and z and also, the 3 rotations. So, 

it was the tyre testing machine.  
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Third example is that of a robot which is a Model of a three-fingered hand ok. So, we had 

discussed this once in like in week 2. So, I have a three-fingered hand; each finger consists 

of a rotary joint along the z axis theta 1, one more joint along the finger. So, these two 

joint axes are perpendicular to each other and a third which is again parallel to the second 

joint ok.  

So, if you look at your finger the first one is at the base, the second one is the middle and 

the third one is not considered ok. So, the first joint can both rotate about the z axis and 

also rotate about the perpendicular axis and the second joint is parallel to the second 

rotation. So, the small finger, small portion in any finger is not considered in this model. 

So, we have these three fingers ok. So, and the link lengths are 𝑙31, 𝑙32 and 𝑙33 so for the 

third finger 𝑙11, 𝑙12, 𝑙13for the second finger and 𝑙21 sorry for the first finger and 𝑙21, 𝑙22, 

𝑙23 for the third finger ok. These two fingers index and the middle finger are separated by 

a distance 2 d.  

And similarly, the from the center of that point of intersection to the thumb is a distance 

of  h ok. So, you can think of these three fingers grasping up grasping an object and one 

of the models of grasping an object is this point contact with friction ok, point contact with 

no slip. 

So, if you have these three fingers grasping an object with point contact and no slip, we 

can show that it can be modeled using a spherical joint. So, there is a spherical joint. So, 

this is the object this triangular piece is the object and 𝑝1, 𝑝2 𝑎𝑛𝑑 𝑝3 are 3 spherical joints 

ok. So, in this case, the output link is clearly this triangular piece ok. So, this has three-

degrees-of-freedom.  

You can use the Grubler Kutzbach criteria and show that it is three-degrees-of-freedom. 

However, there are 12 joints. So, there are several joints which are passive, which are not 

actuated. So, for example, these 3 spherical joints are not actuated, and we will see later 

that only 2 joints in a finger are actuated. 
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There are many actuated, there are many applications of parallel robots. So, a modern tyre 

testing machine looks like this. So, for example, these are the U P and S and this is the top 

platform. The tyre is mounted from the top platform and this is the place which will apply 

the you know rubbing or pressure to the tyre.  

We can also have Stewart platforms which are used for micro positioning ok. We can also 

use Stewart platform or 6 parallel robots for robotic surgery and for precise alignment ok.  

So, there are several advantages in using parallel robots; one of the main advantage is that 

the load which the parallel robot can carry is much more, it is basically shared by these 6 

legs in this case of a Stewart platform. Another big advantage is that the error in a parallel 

robot is only the maximum error in each leg, the errors do not add up ok. We had discussed 

this in the first week also. 
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So, let us continue. So, the degree of freedom for parallel robot can be obtained using the 

Grubler Kutzbach criteria. So, DOF is 𝜆(𝑁 − 𝐽 − 1) plus sum of all the degrees of freedom 

at the J joints. So, this is similar to the same formula used for serial robots.  

So, N is the total number of links including the base; J is the total number of joints 

connecting only 2 links ok; 𝐹𝑖 is the degree of freedom at the ith joint and 𝜆 is equal to 6 

for spatial motion and 3 for planar manipulators and mechanisms. So, for the 4-bar 

mechanism, we can see that N is 4, J is 4 the sum of the degrees-of-freedom in each joint 

is 4, there is 4 rotary joints, 𝜆 is 3.  

So, if you add all these things to this equation, you will get degree of freedom is 1. For the 

3-RPS robot, N is 8, J is 9, the sum of the degrees of freedom in each leg is 6 into 1 and 

then, 3 into 3, 6 because there is an R and a P ok. So, you can think about it, we will get 6 

into 1 plus 3 into 3 and then, 𝜆 is 6.  

So, the degree of freedom is 3. For the three-degree-of-freedom hand, N is 11, J is 12, the 

degrees of freedom in each of the joints ok, so there are 3 spherical joints which is 9 and 

then, there are 3 rotary joints in each finger. So, that is again 9. So, 𝜆 is 6. So, we get degree 

of freedom as 6.  
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 As I said in the case of the serial robot, the degree of freedom is basically the number of 

independent actuators that we can have in this robot or in this mechanism. So, in a parallel 

manipulator, if J is greater than DOF, J minus DOF joints are passive. So, example in the 

4-bar mechanism, J was 4, but DOF is 1.  

So, only one joint is actuated and three are passive. In the 3-RPS manipulator, J was 9, 

degree of freedom was 3. So, 6 joints are passive ok. So, this passive joints can be multi-

degree-of-freedom joints as I have mentioned because we do not need to put actuators to 

implement a multi-degree-of-freedom joint. 

So, in the 3-RPS manipulator, the three-degree-of-freedom spherical joints are passive. In 

a Stewart platform, the U and the S joints are passive ok. So, let us continue. So, we divide 

the configuration space basically the set of all joint variables which completely describe 

the mechanism or this or the parallel robot into 𝜃 and 𝜙.  

So, 𝜃 are the actuated joints, let us say if it is n degree of freedom, there are 𝜃 from an n 

dimensional space; 𝜙 is the set of passive joints and 𝜙 could be m of them ok. So, all 

passive joints 𝜙 and n plus m is less than or equal to J ok. So, sometimes, we will see later 

that all the joints need not be passive, they do need not appear in this m dimensional space 

of passive joints ok. So, hence, n plus m is less than or equal to J ok.  

So, the next topic in this lecture is loop-closure constraint equation. This is a very 

important concept and again, we will use the 4-bar example mainly to show the concept 

of a loop closure constraint equation. 
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So, what is the motivation? We have m passive joint variables. So, m independent 

equations are required to solve for the m 𝜙 ok. So, we can at most give or specify the n 

actuated variables 𝜃𝑖 1 to n; but we need somehow to evaluate what those values of the m 

passive joint variables are ok.  

So, the general approach is to derive m loop-closure constraint equations and what is the 

way to derive this m loop-closure constraint equation. The standard way is to break the 

parallel robot into 2 or more serial manipulators ok. We determine the D-H parameters for 

the serial chain and obtain position and orientation of the Break for each chain. 

So, suppose if I break it at some point, I can put a coordinate system at that place, where 

you are broken and we can find the position and orientation of that coordinate system. 

Then, we use the join constraints at the Breaks to re-join or close the parallel manipulator 

ok.  

So, if you want to analyze what happens due to the break, you have to rejoin it somehow 

in the during the analysis process. So, the main trick is to break such that the number of 

passive variables m is least and I will show you some example how we can get different 

m’s depending on how we break the mechanism or parallel robot into serial robots. 



The minimum number of constraint equation 𝑛𝑖(𝑞) is equal to 0, i equals 1 through m are 

to be used ok. So, this is a standard thing. I do not want to break in a way such that I get 

many many passive variables ok, if I can get with a lesser number of passive variables ok. 
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As I said, we will look at this 4-bar mechanism many times. So, let us see what are the 

possible constraint equations for the 4-bar example. So, 4-bar was Link 1, Link 2, Link 3 

and then, this sixth link ok. So, we have one loop which is {L}, then {R}, it goes to through 

this loop and we can go from {L} to {R} using this along this translation along the X axis 

ok.  

So, we fix coordinate systems {1}, {2}, {3} and {Tool} as shown. So, we fix the 

coordinate system 1 at 𝑂𝐿; 2 at the second joint; 3 at the third joint, very similar to a serial 

robot. 3R planar robot and then, this {tool} coordinate system is at the end is so the X axis 

is shown for convenience only. So, the sequence 𝑂𝐿, 𝑂1 at the same place, then 𝑂2, 𝑂3 and 

𝑂𝑇𝑜𝑜𝑙 basically is a 3R parallel robot. So, we are assuming in some sense conceptually that 

we have broken it at this place ok, at this fourth rotary joint.  
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So, the D-H parameters for the planar 3R robot are well known, we have looked at in the 

serial robot case except that we are do not have 𝜃1, 𝜃2, 𝜃3; we have 𝜃1, 𝜙2, 𝜙3 ok. We are 

using different variable names. So, we can see this, what is 𝜙2, 𝜙2 is the angle between 

the 𝑋1 axis and the 𝑋2 axis, exactly same as what we did for the D-H parameters for any 

robot serial robot, 𝜙3 is the angle between the 𝑋2 and the 𝑋3 axis.  

This is 𝜙3 that is the way these angles are drawn in this form ok. So, we can obtain the D-

H table. So, from this D-H table, we can find [𝑇]3
0 . So, first row will give [𝑇]1

0 , second row 

will give [𝑇]2
1 and the third row will give 𝑇3

2 and then, we multiply those three 

transformation matrices and we obtain [𝑇] 3
0 ok. 

So, for the planar 3R, the tool of length 𝑙3 is given. So, we can also find [𝑇] 𝑇𝑜𝑜𝑙
3 and then, 

we can also find Tool with respect to the right handed coordinate system and if you look 

at it little bit carefully, the tool coordinate system and the right coordinate system; so, the 

tool X axis of the tool coordinate system is like this.  

The X axis of the right handed reference coordinate system is like this and there is an angle 

of 𝜋 − 𝜙1  ok. So, we can find the transformation matrix between Tool and the right 

coordinate system, R coordinate system and this is given by minus − cos 𝜙1,  − sin 𝜙1 

sin 𝜙1 cos 𝜙1 ,again because of the angle which is 𝜋 − 𝜙1 ok.  
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So, what is the loop-closure equation for the four-bar? Very straight forward. We go from 

l to 1, 1 to 2, 2 to 3, 3 to Tool and then, Tool to R that should be equal to l to R ok. So, let 

us go back and see this drawing once more. What am I talking about? So, we have a 

coordinate system l, a coordinate system 1. 

So, l to 1, then 1 to 2, we have a coordinate system here 2; then 2 to 3, then 3 to Tool and 

then, Tool to R. So, this loop multiplication of all this transformation matrix must be equal 

to the transformation matrix between l to R so directly going from this along the fixed base 

ok. So, this is a planar equation. This corresponds to a planar system planar loop. 

So, although this is a 4 by 4 homogeneous transformation matrix, there are only 3 

independent equations in this matrix equation. So, and these three independent equations, 

once you do all this can be shown to be equal to this 𝑙1 cos 𝜃1 + 𝑙2 cos(𝜃1 + 𝜙2) +

𝑙3 cos(𝜃1 + 𝜙2 + 𝜙3) = 𝑙0 

Similarly, the sin component 𝑙1 sin 𝜃1 + 𝑙2 sin(𝜃1 + 𝜙2) + 𝑙3 sin(𝜃1 + 𝜙2 + 𝜙3) = 0 and 

𝜃1 + 𝜙2 + 𝜙3 + (𝜋 − 𝜙1) = 4𝜋 ok. So, let us go back and see the figure once more and 

see whether it makes sense or not. So, I am taking one vector from here to here, from here 

to here, from here to here. 

So, the X component of the vector will have 𝑙1 cos 𝜃1, then 𝑙2 cos(𝜃1 + 𝜙2) and 

𝑙3 cos(𝜃1 + 𝜙2 + 𝜙3) to reach the X component and the X component should be equal to 

𝑙0 which is this distance along the X axis. The Y component I go from here to here, here 

to here, here to here, the Y component will become 0 ok.  



The last equation tells you that the angle ok, the sum of the angles interior angles of a 

quadrilateral is given by this formula. So, this is a slight difference between the planar 3R 

and in this case, the plane 3R broken up broken at the right hand right joint ok. So, we will 

get 𝜃1 + 𝜙2 + 𝜙3 + (𝜋 − 𝜙1) because the sum of the interior angles should be equal to 4 

𝜋. 

So, in this case, what you can see is we have this loop-closure equation contains all four 

joint variables 𝜃1, 𝜙2 𝜙3, 𝜙1 ok, all the four joint variables are shown here. The actuated 

joint variable is 𝜃1. Most of the time in a 4-bar, the crank which is 𝜃1 is the one which is 

actuated. So, we have 1 actuated joint variable and 3 passive joint variables ok.  

So, in this approach, if I break it at the joint at the R coordinate system at the other end of 

the 4-bar, I have n equals 1 which is n is the number of actuated joint variables, m is equal 

to 3 and the total number of joints is 4. So, in this case n plus m is equal to 4 ok. 
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So, let us see what have we done? We have done the D-H parameters for one loop. We 

have obtained the 4 by 4 transformation matrices and now we have obtained the constraint 

equation based on the geometry. In a general or complicated parallel robot, we can also 

have multi-degree-of-freedom spherical and Hooke joint, U joint ok.  



So, and more importantly, it is sort of hard to obtain which are the independent loops in 

the presence of several loops. In the case of a 4-bar there is exactly 1 loop. So, we can 

break it there and we show that this is the loop closure equation.  

So, to represent multi-degree-of-freedom joints, but two or more one-degree-of-freedom 

joint and obtain an equivalent transformation matrix is one way of solving this problem of 

S or U joint. However, to obtain the independent loops is not easy ok. There are no standard 

ways or not very easy to check which is the independent loop ok.  
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So, let us consider what happens in a 3 six-degree-of-freedoms Stewart Gough platform. 

So, as I said, there is a fixed base. There is a moving platform and each of these points; so, 

𝑃4 which is connected to 𝐵4 by means of a spherical joint and a Hooke joint and a prismatic 

joint ok.  

So, we have a six sided top platform and a six sided bottom fixed base and corner points 

are attached by U, P and S chain ok. So, in this case, 𝜆 is 6; N is 14 we can count. So, 1, 

2, 3 and then so on and you can count that the number of links are 14; the number of joints 

is 18, Why? There are 6 here, there are 6 here, 12 and then there are 6 prismatic joints; so, 

18. 

The sum of degrees of freedom at each one of this joint is 36. So, you can see this is 6 into 

3, 18; 2 into 6, 12 plus 6 into 1. So, this is 36. So, if we substitute in the Grubler’s formula, 



we will get degree of freedom of 6 ok. So, if you have six-degrees-of-freedom, we can 

actuate 6 joints and in a Stewart platform the 6 prismatic joints are actuated.  

So, which means out of this 36 degrees of freedom in the joints, 30 are passive variables 

and only 6 are actuated. More importantly, we have many loops. So, for example, 5 loops 

are of the form 𝐵𝑖; let us say 𝐵1  𝑃1, 𝑃2, 𝐵2  and then back to 𝐵1  ok. So, we can start from 

𝐵1  𝑃1, 𝑃2, 𝐵2   and then back to 𝐵1 and there are 5 similar ones just by changing i ok.  

Then, we can have 4 loops of the form 𝐵1 𝑃1, 𝑃3, 𝐵3 and then, back to here, ok. So, we can 

skip the middle one and then similarly, we can have 3 where you skip 2 middle ones and 

go to the third one after the first and then, come back. So, we have several possible loops 

and there are 12 of these if you think a little bit about it. 

So, each of the 12 loops can have potentially 6 independent equations because this is in 

3D space. So, the transformation matrices when we multiply, we will get a matrix equation 

and each transformation matrix has 6 independent equation ok. So, we can have 12 such 

loops and there are potentially 6 independent equations in each loop. So, which 30 should 

we use for the 30 passive variables? So, it is not clear ok. It is quite complicated. 
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Let us go back and look at the 4-bar example again. So, the first time, I showed you we 

broke at the 𝑂𝑅 the last link. We could also break at the joint 3. So, if I break at joint 3, 

then I have a planar two-degree-of-freedom and a planar single 1 R robot so 2 R and 1 R. 



I could have also broken it in the coupler link. So, at a distance a and b, somewhere here I 

can break it at Link 3, Link 2 sorry. 

So, then what do we have we have 2 planar 2R robots. So, 1R, 1R and some end effector 

point similarly 1R, 1R and then, another point here. We can also break at 2 places; so, we 

can break at the second joint and third joint. So, these are possible ways of breaking this 

4-bar example and let us try to find out the loop closure equations, the relevant equations 

for each of these 3 cases. 
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So, first is we break the loop at the third joint which is case one. So, I have a planar 2R 

manipulator and one planar 1R manipulator. So, we can again obtain the D-H table for 

both is very easy to obtain l to 1, 1 to 2 and R to 1. Using l 2 and l 3 we obtain L Tool 

transformation matrix and R Tool transformation matrix so from L Tool extract X and Y 

components of this point ok.  

So, we can extract the X and Y component of this point here ok. So, what will it be? It will 

be similar to 𝑙1 cos 𝜃1 + 𝑙2 cos(𝜃1 + 𝜙2). So, the x component of this point will be equal 

to 𝑙0 + 𝑙3𝑐𝑜𝑠(𝜙1) that is what I am trying to get at ok. So, that is what is there, the x 

component from the left side is this, y component from the left side is this and for the R 

coordinate system the same point is 𝑙3𝑐𝑜𝑠(𝜙1)  𝑙3𝑠𝑖𝑛(𝜙1). 



So, now, we can write the loop-closure equation which is 𝑙1 cos 𝜃1 + 𝑙2 cos(𝜃1 + 𝜙2) is 

equal to 𝑙0 + 𝑙1 cos 𝜃1 + 𝑙2 cos(𝜃1 + 𝜙2)because you have to move along the x axis by 𝑙3 

and then, if you equate the y ok, we have 𝑙1 sin 𝜃1 + 𝑙2 sin(𝜃1 + 𝜙2) is equal to 𝑙3𝑠𝑖𝑛(𝜙1) 

ok.  

So, what have we used here, so we have basically used the constraint for an R joint. So, 

recall in week 2, we had looked at what are the constraints imposed by a R joint. So, we 

are at the point ok, where we have broken. So, at this point basically the XY position 

coming from this side should be equal to the XY position coming from this side ok. We 

do not have to worry about the orientation. 

Remember, the rotary joint imposed 3 position constraints; in this case since it is plane, 2 

position constraint and we also had orientation, but that is not useful here ok. So, we have 

2 in this case; 𝜃1, 𝜙1 𝜙2. So, you can see the equations do not contain the rotation at the 

joint, where we have broken ok. So, 𝜃1 is actuated. So, n is 1 and there are 2 passive joints 

𝜙1 and 𝜙2. So, n is here n plus m and J is 3 ok. 
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So, as I said we can also break the second link the coupler link and we get two planar 2R 

robot. Again, we can obtain the X and Y components of the point, where we are breaking 

from the left side and also from the right side ok. So, the from the left side it is 𝑙1 cos 𝜃1 +

𝑎 cos(𝜃1 + 𝜙2) and y is equal to 𝑙1 sin 𝜃1 + 𝑎 sin(𝜃1 + 𝜙2) ok.  



Likewise, from the right side, we can write the x and y components in terms of angle 𝜙1 

and b and 𝜙3 ok. Here a comes because you have broken distance a and b and we can 

impose the constraint that the broken link is actually rigid. So, what is the constraint when 

you have a rigid link? The positions are same and the orientations are the same from both 

sides ok. 

So, x from left side will be equal to right side y; from left side will be equal to y from the 

right side and the orientation of the coordinate system, where we have broken is given by 

𝜃1 + 𝜙2 and now from the other side, it is 𝜙1 + 𝜙3 + 𝜋 ok.  

This 𝜋 comes because the X axis is pointed opposite in the two coordinate systems. So, in 

this case, we have similar to the case when we broke it at the third joint. So, we have n is 

1, m is 3 and J is 4, why? Because we have 𝜃1, 𝜙2, 𝜙1, 𝜙3, so all the joint angles appear in 

these 3 constraint equations. 
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Finally, we can break it at the sec end of the first link and end of the last link ok. So, we 

can obtain the points l from the left side which is nothing but 𝑙1 cos 𝜃1 and this is 𝑙1 sin 𝜃1  

and from the right side, we have 𝑙3𝑐𝑜𝑠(𝜙1) and 𝑙3𝑠𝑖𝑛(𝜙1)  ok. So, what is the constraint 

we want to enforce? We want to enforce that the link length 2 is always constant ok.  

So, the link 2 has link length 2. So, basically, we the constraint is x from this x minus this 

x square plus this y minus this y square is equal to 𝑙2
2 which is what is written here.  



So, (𝑙1 + cos(𝜃1) − 𝑙0 − 𝑙3 𝑐𝑜𝑠(𝜙3))2 + (𝑙1sin (𝜃1 − 𝑙3𝑠𝑖𝑛(𝜙1))
2

=  𝑙2
2  or minus 

𝑙2
2 equal to 0 ok.  

So, this is very very similar to the constraint S-S pair introduces in a loop. So, in a plane 

the S-S joint, S-S pair is similar to a R-R pair. So, what do we have here? Here, we have 

only one constraint equation with 1 𝜃1 variable and 1 𝜙1 variable. So, q contains 𝜃1 and 

𝜙1. So, n and m equal to 1 and J is 4 here, we still have 4 joints in the mechanism. 

So, this is a very well-known equation. This is called as the Freudenstein equation ok. So, 

if you look at 4-bar kinematics and if you go and search for Freudenstein equation, so in 

1954, he derived this equation for a 4-bar mechanism, more importantly, he went on to use 

this equation to design 4-bar mechanisms. So, lots of possibilities of using this equation to 

design a 4-bar for 1 position, 2 position and 3 or 4 specified positions are possible ok. 
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So, as I said, we have two problems in kinematics of parallel robots; one is the direct 

kinematics problem it is a two-part problem in this case as opposed to serial robot. First, 

Step 1: Given the geometry of the manipulator and the actuated joint variables obtain the 

passive joint variable ok.  

So, for example, in this equation, if you are given 𝜃1, we can use this equation 𝜃1 comma 

𝜙1 equal to 0 to obtain 𝜙1 somehow ok; one equation, one unknown. So, now, but we need 



to do some more work to obtain the other two passive joint variables, nevertheless we can 

obtain all the passive joint variables. 

Second step is once you obtain the position and orientation of the chosen link, you need to 

obtain that. So, once you obtain the passive joint variables, we can go back and substitute 

in the general equations of a 4-bar mechanism without breaking. So, every variable is there 

and we can find the position and orientation of a chosen output link ok. So, this is a much 

harder than the direct kinematics for the serial robot because why? It is two steps. 

In the direct kinematics of a serial robot, just the actuated joint variables are given and we 

find the position and orientation of the end effector that is not enough. First you have to 

find the passive joint variables, using the loop closure constraint equation and then, obtain 

the position and orientation of the chosen output link.  

The solution of the direct kinematics problems specifically the Step 1 gives rise to 

something called the notion of mobility and assemble ability of a parallel robot or a closed-

loop mechanism. So, we will see later that this when you try to obtain the passive joint 

variables, we will obtain conditions that some of the passive joint variables do not have 

real values ok. So, that leads to this notion of mobility and whether you can assemble the 

parallel robot. 

The inverse kinematics problem is different again. So, what are we given? The given the 

geometry of the manipulator and the position of orientation of the chosen end effector or 

the output link ok. So, depending on which is the chosen output link, the inverse kinematics 

problem will be slightly different ok.  

So, if I choose the fourth link in a 4-bar mechanism as the output link, the inverse 

kinematics is different than if I choose the coupler link. So, first we have to obtain the 

actuated and passive joint variables and that is the problem, once you choose the output 

link. 

This is simpler than the direct kinematics problem, we will see later ok. It is also normally 

simpler than the inverse kinematics of serial robots and this could be often done in parallel 

ok. So, depending and I we will discuss this notion of doing it in parallel and this is one of 

the origin of the term parallel in parallel robots ok. Why? Because we can solve the inverse 

kinematics problem using parallel computation or in parallel. 
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So, in summary, parallel manipulators have one or more loops and no natural choice of 

end effector ok. You have to say this is my end effector and you have to say which are the 

loops, we are you know there are more than one loop. Parallel manipulators the number of 

actuated joints is less than the total number of joints.  

Hence, there are some joints which are actuated and some joints which are passive ok. The 

degree of freedom is less than the total number of joint, this is also very important. In a 

serial robot with one-degree-of-freedom joint in a PUMA, we had 6 rotary joints and the 

degree of freedom was 6. 

In a planar 3R robot, we had 1 degree of rotary joints, 1 degree of freedom rotary joints 

and the degree of freedom of the planar 3R was 3; whereas, in a parallel robot, the number 

of joints is much more than the degree of freedom. So, this leads us to this notion of a 

configuration space of a parallel manipulator; basically, we call this configuration space 

q, it is divided into two parts; one is theta and one is phi ok.  

So, thetas are the actuated joints and phis are the passive joints. So, and we would like to 

choose the dimension of q as small as possible. So, thetas are fixed you know if you have 

3 degrees-of-freedom parallel robot, the dimension of theta will be 3, but we could arrive 

at different phis as I showed you for the 4-bar mechanism ok. 



So, we could have just 1 phi for the 4-bar and 1 actuated or we could have 1 actuate and 2 

passive or you can have 1 actuated and 3 passive joints. So, we would like to choose the 

dimension of q as small as possible ok. So, there are typically n degrees of freedom in a 

parallel robot, then theta will be n dimensional and if you have passive variables, they form 

a m dimensional space.  

So, we need to derive m constraint equation. So, here phi should be element of R m ok. 

So, in order to solve these passive variables, we must have m constraint equations and as 

I said there are two problems; one is direct kinematics and one is inverse kinematics of 

parallel robots ok. 

So, with this, we will stop and in the next lecture, we will look at Direct Kinematics of 

Parallel Manipulators. 


