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Direct Kinematics of Parallel Manipulators 

 

Welcome to this NPTEL course on Robotics: Basics and Advanced Concepts. In the last 

lecture, we had looked at how we had introduced parallel robots and we had discussed how 

to derive loop closure constraint equations in a parallel robot. In this lecture, we look at 

Direct Kinematics of Parallel robots. 
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So, in the direct kinematics of parallel manipulators, the link dimensions and other 

geometrical parameters are known. The values of the n actuated joints are known. So, 

remember in the parallel robot as discussed in the last lecture, there will be some 𝑛 actuated 

joints and 𝑚 passive joints. 

So, the first task in the direct kinematics of parallel robot is to obtain the 𝑚 passive joint 

variables. So, basically how do I solve? For the 𝑚 passive joint variables given the 𝑛 

actuated joint variables. So, what do we need to do? We need to first obtain minimal 

number of 𝑚 loop closure constraint equations in 𝑚 passive variables and 𝑛 active joint 



variables ok. So, 𝑚 should be as small as possible so, as to make our life simpler and 

easier. 

Then, we use elimination theory for example, the Sylvester’s dialytic method or the 

Bezout’s method to eliminate (𝑚 − 1) passive joint variables to obtain a single equation 

in one of the joint, passive joint variables and we would like to solve these 𝑚 non-linear 

equations in closed-form for the passive joint variables. 

Once we find the single eliminant, we can solve that equation and then by back 

substitution, find all the 𝑚 passive joint variables. So, once the actuated joint variables and 

the passive joint variables are now known, we obtain the position and orientation of a 

chosen output link from the known 𝜃’s and 𝜙’s ok. So, recall in a parallel robot, there is 

no natural end-effector not like in the serial robot where the free end is typically the end 

effector. 

Hence, we have to say which one is the out natural output link ok. Most of the time, it is 

sort of obvious, but nevertheless we have to say that this is the output link of the parallel 

robot. So, there are no known general method as compared to direct kinematics of serial 

robot, why? Because of this problem of choosing this 𝑚 loop closure constraint equations 

and also to find the minimal polynomial in one passive joint variable is not always very 

clear and obvious. 
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Let us look at three examples of direct kinematics and as usual, we will start with the 

simplest possible parallel robot which is a planar 4-bar mechanism. So, as discussed 

earlier, these are the three-moving links; link 1, link 2, link 3 and there is a fixed link. 

And we have this one fixed coordinate system 𝑂𝐿, the first joint axis and the first 

coordinate system is at the same place, then we have the second coordinate system on the 

second joint axis, the third coordinate system on the third joint axis. So, these are shown 

as 𝑂1, 𝑂2, 𝑂3 and so on.  

Only the X axis for the coordinate system is shown, the Y-axis will be normal to the X -

axis with the Z-axis pointing out of the paper. So, we have it will be very by now, we 

should be able to assign the coordinate system and the origins at each link ok. 

So, this is the reason why everybody works on this because this is the simplest possible 

closed loop mechanism and has been studied extensively, there are ways to ensure that the 

results that you are developing or getting using some formal techniques like Sylvester’s 

method and so on match with whatever is known in literature.  

It is a good example to illustrate all steps in kinematics of parallel robots as we will see 

later. The loop closure equations are very simple, and all steps can be done by hand ok. 

You can do it on paper by paper and pencil. 
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So, as I had shown earlier that the loop closure equation with the coupler link broken can 

be written in the following form. So, if the point where the coupler link is broken is at a 

distance 𝑎 from one end and 𝑏 from the other end so, the  𝑥 and  𝑦 components of that point 

can be written as (𝑙1 cos 𝜃1 + 𝑎 cos(𝜃1 + 𝜙
2
)). 

And from the other direction, we can go 𝑙0 along the fixed link and (𝑙3 cos 𝜙
1

+

𝑏 cos(𝜙
1

+ 𝜙
3
)) ok. So, we can write the  𝑥 component likewise we can write the  𝑦 

components which will have 𝑙1, 𝑙2, 𝑙3, 𝑎, 𝑏 and now sin 𝜃 and sin of the angles and finally, 

we have the matching of the orientation of the coordinate system where we have broken 

the link as (𝜃1 + 𝜙
2

= 𝜙
1

+ 𝜙
3

+ 𝜋) ok. 

So, from the above, we can easily see that this (𝑥 − 𝑙0 = 𝑙3 cos 𝜙
1

− 𝑏 cos(𝜃1 + 𝜙
2
)). 

Where did I get this −𝑏 cos(𝜃1 + 𝜙
2
)? Because (𝜙

1
+ 𝜙

3
+ 𝜋 = 𝜃1 + 𝜙

2
) so, we can 

substitute (𝜙
1

+ 𝜙
3
) we will get 𝜃1, 𝜙

2
, and 𝜋 and then, that will give you minus cos.  

Likewise for  𝑦, we can write 𝑦 = 𝑙3 sin 𝜙
1

+ 𝑏 sin(𝜙
1

+ 𝜙
3
)  can be again represented as 

(𝜃1 + 𝜙
2

− 𝜋) which will give you −𝑏 sin(𝜃1 + 𝜙
2
) ok. So, we can derive these two 

equations from this loop closure constraint equations. 

We denote 𝛿 = 𝜃1 + 𝜙
2
. So, we see that there is a term always occurring which is (𝜃1 +

𝜙
2
). So, let us call it 𝛿 and we can square and add these two equations and we will get 

(𝐴1 cos 𝛿 + 𝐵1 sin 𝛿 + 𝐶1 = 0) ok. So, basically, what we have is we have one 𝛿 and if 

you see if you square and add, you will see that this cos 𝜙
1
 angle will vanish ok. So, we 

have (𝑙3 cos 𝜙
1

− 𝑏 cos 𝛿) and likewise and when you square and add, one of these angles 

will vanish. 

And we will be left with one single equation in cos and sin 𝛿 where the 𝐴, 𝐵, 𝐶 related to 

𝑥, 𝑙0, 𝑙1 and so on and 𝐴 and 𝐵, there is no angle in 𝐴, 𝐵 and 𝐶. From the first part of again 

the loop closure equations which is this that (𝑥 = 𝑙1 cos 𝜃1 + 𝑎 cos(𝜃1 + 𝜙
2

)) and (𝑦 =

𝑙1 sin 𝜃1 + 𝑎 sin(𝜃1 + 𝜙
2
)) ok, we can take a look at these two equations.  
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And again, square and add these two equations, we will get another equation in cos and 

sin 𝛿 ok. So, it will be (𝐴2 cos 𝛿 + 𝐵2 sin 𝛿 + 𝐶2 = 0) and again, 𝐴2, 𝐵2, 𝐶2 are quantities 

where 𝑥, 𝑦, 𝑙1, 𝑎 and so on other quantities appear. There are no angles again in 𝐴2, 𝐵2 and 

𝐶2. So, we have two equations in sin 𝛿 and cos 𝛿. 

We can convert both these two equations to quadratics by tangent half-angle substitution. 

Remember I had shown you this in the inverse kinematics of serial robot. So, we can say 

something like some 𝑥 = tan(𝛿/2) and hence, you will get sin 𝛿 =
2𝑥

1+𝑥2 and so on and 

cos 𝛿 =
1−𝑥2

1+𝑥2. So, we can substitute all this back in this two equations and we will get two 

quadratic equations in tan(𝛿/2).  
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And we can use the Sylvester dialytic method, which is, obtain the Sylvester’s matrix, this 

in this case, it will be 4 by 4 Sylvester’s matrix and determinant of SM equal to 0 gives 

you the eliminate ok. So, we have managed to now eliminate delta ok and hence, we can 

and we can also solve for delta which is 𝛿 is given by  

𝛿 = −2 tan−1 (
𝐴1𝐶2 − 𝐴2𝐶1

(𝐵1𝐶2 − 𝐵2𝐶1) + (𝐴1𝐵2 − 𝐴2𝐵1)
) 

So, this can be obtained. And the Sylvester’s eliminate the determinant of SM equals to 0 

gives you an expression in terms of 𝐴1, 𝐵1, 𝐶1 and 𝐴2, 𝐵2, 𝐶2 specifically of this form and 

what does it contain? It contains all the link lengths; it also contains 𝐴 and 𝐵 where the 

link was broken, and it also contains 𝑥 and 𝑦. There are no known, there are no angles in 

the 4-bar which appear like 𝜃1, 𝜙1, 𝜙2, 𝜙3 in this elimination procedure. 

So, after some simplification, you can see that this determinant of SM equals to 0 gives 

you an equation which contains terms like 4𝑎2𝑏2𝑙0
2𝑦2 or even terms like (𝑙1

2 − 𝑎2 − 𝑥2 −

𝑦2)2. So, if you look at it a little carefully, you will see that this is a sixth-degree curve in 

(𝑥, 𝑦) ok. So, there are powers which contains sixth-degree terms in this equation ok. 

So, can we see one sixth-degree term? Yes. So, for example, if you look at this term so, 

this has 𝑦2, then the whole thing is squared here so that is to the power 4 and then, it is 

multiplied by again by 𝑦2 outside. So, there will be a term which is 𝑦6 ok. So, it is a sixth-

degree equation, and this is the very well-known sixth-degree curve or equation or a 



‘coupler curve’ ok. This has been extensively studied in the kinematics of 4-bar 

mechanism ok. 

So, what have we done, what we have achieved is the following. We have taken the loop 

closure equation by breaking the coupler link at one point ok, then we have derived an 

expression of that point as the 4-bar mechanism moves and what is the relationship 

between 𝑥 and 𝑦 of that point ok? So, it is a one-degree of freedom mechanism 4-bar. So, 

there must be a relationship between 𝑥 and 𝑦 because there can be only one independent 

variable and that equation is this coupler equation. 

So, given any 𝑥 ok, you choose an 𝑥, and we can find out the 𝑦 from this equation and we 

can plot that point as the 4-bar mechanism moves ok. So, what so, we have not used the 

traditional geometric or algebraic approach, which is used by kinematicians, we have used 

this Sylvester’s dialytic method before that loop closure equations and we have obtained 

the coupler curve ok.  

So, this is the key step in kinematics of parallel robots. We can find the passive joints and 

completely describe the mechanism called the parallel robot. 
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We can also continue, and we showed you that the elimination procedure gives 𝛿 as a 

function of 𝑥, 𝑦 and the link lengths. We can also find out the joint angles. So, given since 

𝜃1 is given, we can find out 𝜙2 which is (𝛿 − 𝜃1) and  



𝜙2 = −2 tan−1 (
𝐴1𝐶2 − 𝐴2𝐶1

(𝐵1𝐶2 − 𝐵2𝐶1) + (𝐴1𝐵2 − 𝐴2𝐵1)
) − 𝜃1 

So, choose 𝑥, find 𝑦, then from that 𝑥 and 𝑦, find 𝛿 and then from the 𝛿, find 𝜃1.  

The angle 𝜙1 can be obtained from the Freudenstein equation ok. This is a very nice 

equation because it directly relates 𝜃 and 𝜙 ok. Remember we had broken it up at the two 

ends of the coupler and insisted that the position vector of the one end and the position 

vector of the other, the distance is 𝑙2
2 ok. So, we can find from the Freudenstein equation 

directly 𝜙1. 

Finally, we need to solve for 𝜙3 which is from the loop closure equation ok, we can solve 

for 𝜙3 = 𝜃1 + 𝜙2 − 𝜙1 − 𝜋 ok. So, this is one way to solve the direct kinematics of a 4-

bar mechanism.  

So, we have started with the choice of one independent coordinates in this case 𝑥, solve 

for 𝑦, then from that we solve for 𝜙2, 𝜃1 is given and so on. We can also start from the 

Freudenstein equation. We could have solved for 𝜙1 given 𝜃1 and then after some algebra, 

you can show that you can solve for the other angles also. 
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Let us look at an example. So, we have 𝑙0 = 5.0 so, the base link is chosen as 5, 𝑙1 = 1.0, 

𝑙2 = 3.0 and 𝑙3 = 4.0 arbitrarily chosen but chosen with the goal that the input link will 



rotate fully. So, this is something called as a Grashof’s criteria, it satisfies the Grashof’s 

criteria ok. We will derive this Grashof’s criteria next class, next lecture. 

But in kinematics of 4-bar mechanism, there is this Grashof’s criteria which tells you that 

for certain sums of certain lengths if it is less than or equal to sum of some other two 

lengths, then the crank or the input link will rotate fully ok. So, this Figure (a) shows a plot 

of 𝜙1 versus 𝜃1 ok, this is from the Freudenstein equation and there are two possible 

solutions, and both of these solutions are plotted. So, one is this dotted and one is this ok. 

And then, from 𝜙1, we obtain 𝜙2 and 𝜙3 by looking at those kinematic equations and we 

can plot 𝑥 and 𝑦 so, this is the other way of doing it. We have chosen started with 𝜃1, 

solved 𝜙1 and then this.  

In the analysis which I showed you, we first obtained the coupler curve and then went to 

the joint angles, but we could have done it the other way around also, we could have started 

with the actuated joint variables, solved for the passive joint variables and then, obtain the 

𝑥 and 𝑦 coupler curves and in this case, the coupler curve looks like this ok. So, there are 

two of these, one solid line which corresponds to this solution and one dotted line which 

corresponds to this solution. 
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Let us take another example. So, we looked at of planar case, now we look at a spatial 

case. So, the first spatial case we will consider is a 3-degree of freedom parallel robot. So, 



this is a 3-RPS parallel robot. So, again the 3-RPS means that there is a fixed base, there 

is a moving platform and the corners of the base lie on a triangle and then, there is an R, P 

and an S chain ok. So, this is the third chain which is R, P and S. So, the actuated joint 

variable in this case is 𝑙3 in this chain. 

Similarly, we can have an R, P, S. So, in this actuated joint variable is 𝑙1 ok. So, there are 

three of them. So, basically that is why there is a 3-RPS so, this like some sort of a 

convention to denote that there are three serial chains connecting a base and a moving 

platform. So, we can find the D-H parameter for one of these RPS legs ok. 

So, first joint, will be 0, 0, 0 and this angle 𝜃1, but actually the D-H parameter angle is 𝜙1 

which is in this case not shown here, but that is same as (𝜋/2 − 𝜃1). So, you can go back 

and see the D-H parameters we had derived in week 2 for some parallel robots and this is 

one of them. 

The second link which is second row of this D-H table, 𝛼 = −𝜋/2, 𝑎 =  0 and this is 𝑙1, 

𝑙1 is the translation along this prismatic joint and we stop at the origin of the spherical 

joint. So, the spherical joint angles do not appear in this D-H table. All these three legs are 

same in all of them 𝜃’s are the passive joint variables and 𝑙’s are the actuated joint variables 

ok. 
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So, we want to analyze the kinematics of this 3-RPS robot. So, first we obtain the loop 

closure equations ok. How do we obtain the loop closure equations? We find the position 

vector of three 𝑆 joints from a fixed base, from this origin. So, what is the position vector 

of this point?  

We go by some distance along 𝑋 and then, we go along this link to this point ok. How do 

I find from here to here? We use the D-H table ok. So, how about second link? We have 

to go in this direction by some distance along the base, along the fixed base and then, along 

the leg ok. 

So, we have chosen an X, Y and Z coordinate system in the fixed base with the origin O. 

So, the first one is along this X direction itself. So, I have taken this distance as 𝑏 ok. So, 

then this will be some 𝑏 along the X component and then, the Y and Z likewise for the 

other one.  

The other one 𝑏 is not along X and Y, but at some angle. So, I have chosen these three 

points to lie on an equilateral triangle of this distance from the centroid as 𝑏 and the angles 

are 120 degrees ok. But it need not be. So, we could have chosen some other way of 

choosing the fixed base. 

We can also choose the top moving platform also in this case as an equilateral triangle of 

some sides ok, equal sides and the chosen point of interest is the centroid of this equilateral 

triangle. So, let us get back. So, the position vector of the three S joints can be obtained as 

some (𝑏 − 𝑙1 cos 𝜃1 , 0, 𝑙1 sin 𝜃1)𝑇. 

The 2nd spherical joint is −(𝑏/2) because I said they are equilateral triangle so, the angles 

between the two directions is 120 degrees. So, (−
𝑏

2
+

1

2
𝑙2 cos 𝜃2 ,

√3

2
𝑏 −

√3

2
𝑙2 cos 𝜃2 , 𝑙2 sin 𝜃2)

𝑇

  and likewise, the third spherical joint from the origin of the fixed 

coordinates is given by (−
𝑏

2
+

1

2
𝑙3 cos 𝜃3 , −

√3

2
𝑏 +

√3

2
𝑙3 cos 𝜃3 , 𝑙3 sin 𝜃3)

𝑇

.  

So, I can find the position vector in terms of the actuated variables which is 𝑙1, 𝑙2, 𝑙3  and 

the passive variables which is 𝜃1, 𝜃2, 𝜃3 which are the rotations of the rotary joints at the 

base. 



So, now, we impose this S-S pair constraint. Remember in one of the previous lectures, 

we had said that if there are two S joints in a chain . So, the constraint with these two S-S 

joints or S-S pair impose is the distance between the centers of the two S joints are 

constant. So, exactly with the same thing. So, the distance between 𝑆1 and 𝑆2 is given by 

this vectors difference ( 𝑆1
𝐵𝑎𝑠𝑒 − 𝑆2 𝐵𝑎𝑠𝑒 ) and the square of this distance is assumed to be 

a constant 𝑘12
2  ok. 

So, now, let us carefully look at this constraint equation. So, what does this constraint 

equation contain? So, we have to look at this vector and this vector. So, it must contain 𝜃1, 

it must contain 𝑙1 ok, it must contain 𝜃2 and it must contain 𝑙2 and that is all ok, the rest 

are all constant 𝑏 and √3 and all these things are constant. 

So, the first constraint equation contains 𝑙1, 𝜃1, 𝑙2 and 𝜃2. Likewise, the distance between 

spherical joint 2 and spherical joint 3 is again a constant and this will contain 𝑙2, 𝜃2, 𝑙3 and 

𝜃3 and the third constraint equation which is the distance between spherical joint 3 and 

spherical joint 1 is again constant. So, we are assuming the constants are 𝑘12
2 , 𝑘23

2  and 𝑘31
2  

and the third constraint equation should contain 𝑙3, 𝜃3, 𝑙1 and 𝜃1. 

So, notice the first equation does not contain 𝑙3 and 𝜃3, the second constraint equation does 

not contain 𝜃1 and 𝑙1 and the third constraint equation does not contain 𝑙2 and 𝜃2 ok, this 

is the important piece of observation ok. S joint variables also do not appear because of 

the S-S pair equation, this we have seen earlier. So, these three equations are in three 

passive joint variables ok. 

What are the passive joints variables? 𝜃1, 𝜃2 and 𝜃3. So, 𝑙1, 𝑙2 and 𝑙3 are given to you, they 

are the actuated joint variables. So, in the direct kinematics problem, the actuated joint 

variables and the geometry is given. So, this is the simplest possible loop closure constraint 

equations for this mechanism. So, we have the minimal set of equations which is three and 

there are three passive joint variables.  
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So, this is sort of hard to do an analytical elimination, we have to assume some numbers. 

So, we will assume that 𝑏 = 1, it is not a very serious assumption. So, everything is scaled 

by the size of the base platform and 𝑘12 = 𝑘23 = 𝑘31 = √3𝑎. So, basically, we are 

assuming that the top platform is also equilateral triangle of side 𝑎. 

So, we eliminate using Sylvester’s dialytic method, 𝜃1 from first and the third constraint 

equation ok. So, you can see. So, the first constraint equation contains 𝑙1, 𝜃1, 𝑙2, 𝜃2 and 

the third constraint equation contains 𝑙3, 𝜃3, 𝑙1 and 𝜃1. So, we can eliminate 𝜃1 which is 

the passive joint variables from the first and third constraint equation. What will be left 

with? We will be left with 𝑙1, 𝑙2, 𝜃2, 𝑙3 and 𝜃3 ok. So, that is what is mentioned here. 

So, we use Sylvester’s dialytic method to eliminate 𝜃1 from the first and the third constraint 

equation and we will be generating a constraint equation or an equation which contains 𝑙1, 

𝑙2, 𝑙3, 𝜃2 and 𝜃3, this will be of this form ok, I am not going to go into the details of how 

each of them are obtained, they are obtained using a symbolic manipulation software called 

MAPLE and we will have (𝐴1𝐶2 − 𝐴2𝐶1)2 and so on this is equal to 0 where 𝐶1, 𝐶2, 𝐴1, 

𝐴2, 𝐵1, 𝐵2 are now functions of only 𝑙1, 𝑙2, 𝑙3 and 𝜃2 and 𝜃3 ok, 𝜃1 is no longer there. 

Next, we eliminate 𝜃2 from this 4th equation and the second equation. We call the second 

equation contained 𝜃2, did not contain 𝜃1, second equation contain 𝜃2 and 𝜃3 ok.  

So, we can eliminate 𝜃2 from this 4th equation which we have derived and the second 

constraint equation and then, substitute 𝑥3 = tan(𝜃3/2) and then, do a lot of simplification 



and you will be ending up with a sixteenth-degree polynomial, but it is an eighth-degree 

polynomial in (𝑥3)2 ok. So, recall 𝑥3 = tan(𝜃3/2). So, we will have 𝑞8(𝑥3
2)8 +

 𝑞7(𝑥3
2)7 + ⋯ and so on ok. 

So, what is this equation? This equation contains only 𝑙1, 𝑙2, 𝑙3 and the geometry 𝑎 and 𝑏 

and so on ok, it does not contain any other passive joint variables. So, this is the equation 

which we are looking for and we have obtained this using this Sylvester’s dialytic method 

in two steps. So, first eliminated 𝜃1, then we eliminated 𝜃2 and we obtain a single equation 

in 𝜃3 or tan(𝜃3/2) and this is an eighth-degree polynomial in (𝑥3)2. 
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So, this expressions for this coefficients are very very big ok. If this was obtained using 

this symbolic algebra software called MAPLE as I told you. So, two small once so, which 

is this 𝑞8 which is the leading term which is 𝑞8(𝑥3
2)8  is given by this long expression, 𝑞0 

is also given by this horribly long expressions where 𝑟0, 𝑝0 and etcetera are again given 

by complicated expressions.  

But the only important thing to realize is we can find all the coefficients 𝑞0, 𝑞1 all the way 

to 𝑞8 and all these coefficients are only functions of constants or 𝑙1, 𝑙2, 𝑙3 ok. So, for 

example, you can see that this 𝑟0 here is constant whereas, 𝑟1 here which is 𝑟1𝑎3 is 12(𝑙3 −

3) ok. So, we can find these expressions, and this is done mechanically using this symbolic 

algebra software called MAPLE. 



So, what is the end result? So, given values of 𝑙1, 𝑙2, 𝑙3, we can find 8 possible values of 

𝜃3 and once 𝜃3 is obtained, 𝜃2 can be obtained from the second constraint equation and 𝜃1 

can be obtained from the third constraint equation ok. So, this is the direct kinematics of 

the 3-RPS. So, given the actuator joint variables 𝑙1, 𝑙2, 𝑙3, we first obtain 𝜃3, then we obtain 

𝜃1 and then we obtain 𝜃2 and then we obtain 𝜃1 ok, the three passive joint variables. 
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The problem is not yet finished. We need to find the position and orientation of the output 

link or the end effector. So, in this case, the natural output link is the moving platform, the 

top moving platform. The position and orientation of the top moving platform, we can 

assume that the position is the centroid of the top moving platform, which is nothing, but 

the sum of the vectors connecting the three points on the top platform. 

So, basically, if I know the location of the three spherical joints, this centroid of the top 

platform is given by (1/3)( 𝑆1
𝐵𝑎𝑠𝑒 + 𝑆2

𝐵𝑎𝑠𝑒 + 𝑆3
𝐵𝑎𝑠𝑒 ) ok. If you do not choose the 

centroid, then we do not have one-third, we will have some ratios of the three vectors and 

the orientation of the top moving platform can also be obtained.  

So, what is the orientation? So, we say that the X vector, the X axis of the rotation matrix 

{𝑇𝑜𝑝} to the {𝐵𝑎𝑠𝑒} is along 𝑆1 to 𝑆2 is the vector unit vector from 𝑆1 point to 𝑆2 point, 

from the first spherical joint to the second spherical joint so, this is the unit vector. 



Between 𝑆1 and 𝑆3 is not necessarily perpendicular to between 𝑆1 and 𝑆2, but we can find 

the cross product of this vector 𝑆1 to 𝑆2 and 𝑆1 to 𝑆3 and find the unit vector along this and 

the cross product will be normal to that moving platform so, this is the Z axis, and the Y-

axis = Z × X again right-handed coordinate system.  

So, we can define the orientation of the top platform by X vector between first and second 

spherical joint, the Z axis is normal to that plane and the Y axis which is normal to both Z 

and X ok. Think about it, it is quite natural. 

So, we have chosen the output link, which is the top platform and in particular, we have 

said that I am interested in the motion of the centroid and the orientation of the top platform 

ok. So, once 𝑙’s and 𝜃’s the actuated and the passive joint variables are known, we can 

substitute all those things in these expressions here and we can find this vector 𝒑 which is 

the location of the centroid of the top platform and the rotation matrix of the top platform 

with respect to the fixed base. 

So, the key step was the elimination of the passive variables and obtaining a single 

equation in one passive variable in this case 𝜃3 and this is where the Sylvester’s method 

or the general theory of elimination has been used.  
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So, let us look at a numerical example. The polynomial in equation (15) is eighth degree 

in (tan(𝜃3/2))2  ok. So, we cannot solve eights degree polynomials in closed form. So, 



we go to MATLAB and we use some program ok, standard MATLAB tools like fsolve 

to solve for that numerically and to solve for that numerically, we have to assume some 

values of 𝑎 and 𝑙1, 𝑙2, 𝑙3. 

So, we have chosen 𝑎 = 1/2, 𝑙1 = 2/3, 𝑙2 = 3/5, 𝑙3 = 3/4, we could choose any other 

values of that 𝑎 and that 𝑙1, 𝑙2, 𝑙3 ok. Remember 𝑏 = 1, the fixed base is scaled. So, all the 

dimensions are in the 𝑏 is related to 1, fixed base. So, we get two sets of values of 𝜃3. So, 

we will get ±0.8111 radians, ±0.8028 radians and for the positive values of 𝜃3, 𝜃2 is this 

and 𝜃1 is this ok. 

So, for the set 𝜃1 = 0.7471, 𝜃2 = 0.4809 and 𝜃3 = 0.811, the origin of the centroid of the 

top platform is located X coordinate is 0.0117, Y coordinate is -0.0044 and the Z 

coordinate is 0.4248 and the rotation matrix can be also obtained by solving for the X axis, 

then the normal to the plane and the Y axis ok.  
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So, let us continue. Hence, look at another example which is the 6-degree of freedom 

example. So, this as I have mentioned earlier, it models a three fingered hand gripping an 

object. So, these are the three fingers 𝑏1 which is fixed base 𝑏1, then 𝑙11, 𝑙12, 𝑙13 these are 

the finger elements or the link lengths in the finger and likewise, we have another finger, 

and we have another finger third finger ok. 



The distance between these two fingers is 2𝑑 and this distance is ℎ so, these are constant 

and it is gripping an object with point contact with friction. So, that can be modeled as a 

spherical joint ok. So, how do we start? We first obtain the D-H parameters for each one 

of these fingers ok. So, finger is R, R, R and S chain. So, previously, we had R, P, S in the 

3 RPS example here each chain is R, R, R and S ok. 

So, we can find the D-H table which is first link 0, 0, 0, 𝜃1. second link is 𝜋/2 because the 

second rotation axis is perpendicular to the first rotation axis so, 𝜋/2, this is 𝑙11, the 

distance is 𝑑𝑖 = 0 and this angle is 𝜓1 and the third link is parallel to the second so, third 

joint is parallel to the second joint.  

So, we have 𝛼𝑖−1 = 0, 𝑎𝑖−1 = 𝑙12, 𝑑𝑖 = 0 and 𝜃𝑖 = 𝜙1. So, as usual with all D-H 

convention, 𝑙13 does not appear, but when we find this position vector, when we assign a 

tool coordinate system, 𝑙13 will appear. 

So, what is the basic idea? We will fix one coordinate system 𝐹𝑖 at the base of each of 

these fingers. So, this is 𝐹1, this is 𝐹2, and this is 𝐹3 ok. We know this is a 6 degree of 

freedom robot ok. So, when you grip the object, you can manipulate the gripped object, 

you can change the X, Y, Z and you can also orient the object.  

So, you can think of you are holding a small ball and we will look at these things later in 

more detail and you can see that you can change the orientation of the ball and you can 

also move the center of the ball in some sense. 

So, out of these three, 𝜃1, 𝜓1, 𝜙1 in this first finger, then 𝜃2, 𝜓2, 𝜙2 in the second finger 

and likewise, in the third finger. So, if it is 6 degree of freedom, 6 out of these 9 joint 

angles are actuated ok. It is a 6 degree of freedom system. So, there can be only 6 actuated 

joints ok. 

So, in this example we will assume that the first two joints are actuated. So, 𝜃1 and 𝜓1 is 

actuated and 𝜙1 is passive likewise, 𝜃2 and 𝜓2 are actuated and 𝜙2 is passive and so on 

ok. So, what is the task? We need to find loop closure constraint equations to solve for the 

three passive joint variables ok. 
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So, how do we go about? We can find that the position vector of the spherical joint 𝑝1 with 

respect to the fixed coordinate system at the base of the finger can be written in terms of 

this 𝑙𝑖1 - 𝑙11, 𝑙12 and 𝜃1, 𝜓1, 𝜙1 ok. So, this is obtained by finding the D-H table, finding 

the transformation matrices, you multiply three transformation matrices and then pick the 

last column which is the position vector with respect to a coordinate system which is fixed 

at the base of the finger. 

So, with respect to another {𝐵𝑎𝑠𝑒} which is somewhere in between you know like the hand 

or the palm which is fixed to the palm, let us denote that coordinate system by {𝐵𝑎𝑠𝑒}. We 

can show that this first joint is located at (0, −𝑑, ℎ)𝑇, second joint is (0, 𝑑, ℎ)𝑇 and the 

third joint is (0, 0, 0)𝑇 ok. 

Orientation of 𝐹1 with respect to this {𝐵𝑎𝑠𝑒} coordinate system is also known ok. So, we 

have chosen the {𝐵𝑎𝑠𝑒} coordinate system which is sort of the midpoint or some point 

connecting the three finger base points. And it turns out to actually model a three fingered 

hand the 𝐹3 coordinate system must be rotated by an angle 𝛾 about the Y axis ok, you can 

look at your three-finger ok, the thumb, the index and the middle finger. The thumb 

initially starts off at a different angle. 

So, we can find the transformation matrices {𝐵𝑎𝑠𝑒} to the spherical joints 4 × 4 

homogeneous transformation matrix by going from {𝐵𝑎𝑠𝑒} to {𝐹1}, then {0} to {1}, {1} 



to {2}, {2} to {3} and then, {3} to {𝑝1}. So, {3} to {𝑝1} will contain the last 𝑙13 or 𝑙23 

and 𝑙33 ok. The last transformation includes the last link length 𝑙13. 
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So, we multiply all this four this how many are there? So one, two, three, four and five 

transformation matrices and then, we extract the position vector of the last link last 

transformation matrix, the resultant transformation matrix. So, this will give the position 

vector of the spherical joint 1 with respect to the {𝐵𝑎𝑠𝑒}.  

So, this is given by 𝒑𝐵𝑎𝑠𝑒
1 can be written in more detail 𝒃1 𝐵𝑎𝑠𝑒  which is the position 

vector of the base of the finger and then 𝒑1 
𝐹1 and it turns out that these are not very 

complicated, but reasonably complicated expressions containing 𝜃1, 𝜓1 and 𝜙1 and the 

link lengths 𝑙11, 𝑙12, 𝑙13 and so on and this distance 𝑑 and ℎ. 

Similarly, for the second leg, we can find 𝒑𝐵𝑎𝑠𝑒
2. This will contain 𝜃2, 𝜓2, 𝜙2 and this 

again this 𝑑 and ℎ and the link lengths in the second finger and, but third one as I said, we 

need to pre multiply by a rotation matrix gamma because the base thumb finger starts at a 

different angle ok. So, the basic idea is we have now the position vectors of the three 

contact points modeled as spherical joints. 
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Again we use the S-S pair constraint. So, between the first contact point and the second 

contact point, these are modeled as an S-S pair. So, the distance between that must be 

constant. So, between 𝒑1 and 𝒑2 ok, the distance is 𝑘1
2 very similar to what we did for the 

3 RPS case. So, this equation will contain 𝜃1, 𝜓1, 𝜙1, 𝜃2, 𝜓2 and 𝜙2. 

The second constraint equation is between point 2, spherical joint 2 and the spherical joint 

3 and that is given by 𝑘23
2  and the third one is between 3 and 1 and this is 𝑘31

2  so, where 

these distances 𝑘12, 𝑘23, 𝑘31 are constants. So, we have three equations in three passive 

joint variables ok.  

So, as I have said, we will assume that the first two joints are actuated and the third one is 

passive ok. So, the passive joints are 𝜙1, 𝜙2, 𝜙3 and the actuated joints are this 𝜃1, 𝜓1, 𝜃2, 

𝜓2, 𝜃3, 𝜓3 ok. The first two joints in each finger. 

So, again we can use this Sylvester’s dialytic method to eliminate 𝜙1 from the first and 

third equation and we get an equation which contains 𝜙2 and 𝜙3 and all the actuated joint 

variables. Then, we can eliminate 𝜙2 from this equation and the second equation and we 

get a single equation in 𝜙3 ok. So, this is again a two-step process. We eliminate one from 

two equations and then, we eliminate the other one from the resultant equation and one of 

the original equation ok. 



So, this turns out to be a 16th degree polynomial in tan(𝜙3/2) ok. Again, we have obtained 

this equation using symbolic algebra software MAPLE, coefficients are very very long as 

you can see.  

So, the main difference between this example and the previous 3-RPS example was there 

were three actuated joints, and three passive joints which we needed to find out. In this 

case, there are six actuated joints and three passive joints, and we obtained a sixteenth-

degree polynomial. In the previous case, it was actually eighth-degree polynomial in 𝑥3
2.  
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So, let us do a numerical example. We assume ;𝑑 = 1/2, ℎ = √3/2 and the actuated joint 

variables are arbitrarily chosen as 1, 1/2, 1/4 and so on and then, this distance between 

spherical joints are assumed to be equal to √3/2. So, for the chosen actuated joint variables 

𝜃1, 𝜓1, 𝜃2 and 𝜓2 all in radians ok. 

We can find that the sixteenth-degree polynomial is obtained in this horribly complicated 

form ok. Nevertheless, we can find it ok, it takes a while, it takes a lot of simplification 

and computation, but we can show that there is a 𝑡3
16, 𝑡3 = tan(𝜙3/2), the coefficient is 

0.000012. So, for example, 𝑡3
6 is 0.18502 only the first five places of decimal are shown 

here. 

We can solve numerically this equation in MATLAB and we will get two real values of 

𝜙3 so, 0.8831 radians and 1.8239 radians ok. So, there is a root solver in MATLAB which 



given a polynomial, it will give you all the roots and it turns out in this case, there are two 

real roots only. 

And once you have found out 𝜙3, we can find out 𝜙1 and 𝜙2 from the previous two 

equations from the generated equation and one of the original equation and 𝜙1 and 𝜙2 are 

given by 0.3679, 0.1146 and likewise, 𝜙2 is 1.45 and so on ok. So, this is a numerical 

basically you just give the equations to MATLAB, give the known values and it will tell 

you all the unknown values, it will solve those equations.  
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So, as we see in the direct kinematics, we now need to find the position and orientation of 

the moving platform which is the chosen output link. So, again we will assume that the 

𝒑Base  which is the centroid of the top platform is given (1/3)( 𝒑𝐵𝑎𝑠𝑒
1 + 𝒑𝐵𝑎𝑠𝑒

2 + 𝒑𝐵𝑎𝑠𝑒
3) 

and we will get an X, Y, Z coordinate of this form. So, X = 1.37 so on, Y = 0.261 and Z = 

0.1401. 

We can also find the rotation matrix of the gripped object and this is [R]
Object

Base  and again, 

we choose the X axis between first and second joint, Z axis is normal to that plane, formed 

by those three points and Y axis is perpendicular to Z and X and we can find this rotation 

matrix. 

So, in this lecture, we have discussed how to obtain the direct kinematics of parallel robots 

ok. So, the key ideas where that we need to derive the loop closure constraint equations 



from the loop closure constraint equation, we find the passive joint variables and then, 

knowing the active and passive joint variables, we obtain the position and orientation of 

the chosen output link. In the next lecture, we will look at mobility of parallel 

manipulators. 


