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Welcome to this Robotics lectures on Basic and Advanced Concepts, ok. So, this is an 

NPTEL course on Robotics Basic and Advanced Concepts. In the last lecture we looked 

at mobility of parallel manipulators. In this lecture we look at the Inverse Kinematics of 

Parallel Manipulators ok. 
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So, what is the problem statement in inverse kinematics of parallel manipulators? We are 

given the geometry and the link parameters and the position and orientation of a chosen 

output link with respect to a fixed frame and the problem is to find the joint variables. 

Now, in this case we have both actuated and passive joint variables. 

This problem is simpler than the direct kinematics problem, since no need to worry about 

multiple loops or loop closure constraint equations ok. We will see that we can break up 

this problem into serial chains and obtain the joint angles in each chain in parallel ok. 

Meaning in parallel means the first chain and the second chain can be computed separately. 



So, if you want to break this parallel manipulator into chains we have to make sure that no 

chain is redundant ok. Remember in a serial robot if you have more than 6 joints in 3D 

space or if you have more than 3 joints if the motion is planar the set of equations are 

redundant ok. So, we cannot find unique inverse kinematic solutions for a redundant chain. 

So, the worst case in the inverse kinematics of parallel manipulator is the solution of the 

inverse kinematics of a general 6R serial manipulator ok. 
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Let us go back to our very simple example of a planar 4 bar mechanism. So, we want to 

find the inverse kinematics of a 4 bar mechanism ok. This is in some sense the simplest 

possible way a problem it’s also little bit cooked up nevertheless. So, we have broken this 

end which is the output link ok. We have broken the output link at some point 𝑎 and 𝑏. 

The coupler is chosen as the output link and we are given the position vector of a point on 

the coupler link and the orientation of the coupler link ok. 

With respect to let us say the {𝐿}, which is the fixed left hand side coordinate system or 

the right hand side coordinate system ok. So, what do we have? So, we have broken it at 

this place as shown in this figure. We have 𝑎 which is at the point of breaking in the coupler 

link at from the side it is 𝑏.  

So, we are given 𝑥, 𝑦 and this angle 𝜙 which is the orientation of this coupler link and what 

do we have to find out? 𝜃1 and 𝜙2. What else is given? 𝑙1 is given ok, all the geometry is 

given 𝑙1, 𝑙0, 𝑙3 and this 𝑎 and 𝑏 which together add up to 𝑙2 is given. 



So, to reiterate we are given the position of the point 𝒑𝐿  and the rotation matrix [𝑅]2
𝐿  of 

the coupler link ok. So, this is a planar case, x and y coordinates are given and the 

orientation angle phi is given. The link lengths 𝑙0, 𝑙1, 𝑙2 = 𝑎 + 𝑏 and 𝑙3 are known. 
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So, how do we solve this problem? It is very simple. We will look at  𝑥 and 𝑦 which is 

𝑥 = 𝑙1 cos 𝜃1 + 𝑎 cos(𝜃1 + 𝜙2) ok, standard to our planar manipulator. And 𝑦 =

𝑙1 sin 𝜃1 + 𝑙2 sin(𝜃1 + 𝜙2) ok. So, 𝑥 and  𝑦 are known. So, the angle 𝜙 denoted the 

orientation of link 2 is also given. 

So, we can solve 𝜃1  and 𝜙2 from these two equations very simply ok, two equations in 2 

unknowns. 𝑥 is given, 𝑦 is given 𝜃1  and 𝜙2 are the unknowns. So, we have done this in 

the lectures long time back when we looked at 𝑋, 𝑌 of some points on the planar 3R and 

then we did some square and adding and then we did some manipulation to show what is 

𝜃1  and 𝜙2. 

So, 𝜃1  is nothing but 𝑎𝑡𝑎𝑛2(𝑦 − 𝑎 sin 𝜙 , 𝑥 − 𝑎 cos 𝜙). So, 𝜃1 + 𝜙2 = 𝜙 + 2𝜋 and if you 

substitute back you will get (𝑥 − 𝑎 cos 𝜙) and (𝑦 −  𝑎 sin 𝜙). We can do the 𝑎𝑡𝑎𝑛2 of 

that and we get 𝜃1  and 𝜙2 is nothing but 𝜙 − 𝜃1 ok. We can ignore this 2𝜋 business. 

In a similar manner if we consider the other side we can show 𝑥 = 𝑙0 + 𝑙3 cos 𝜙1 +

𝑏 cos(𝜙1 + 𝜙3) and 𝑦 = 𝑙3 sin 𝜙1 + 𝑏 sin(𝜙1 + 𝜙3) and 𝜙 = 𝜙1 + 𝜙3 − 𝜋. So, 𝑥, 𝑦 and 

𝜙 is given. So, what do we have to solve for? We have to solve for 𝜙1 and 𝜙3. 
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Again 𝜙1 obtained as (𝜃1 + 𝜙2 − 2𝜋)  and (𝜙1 + 𝜙3 − 𝜋) must be same ok, if you think 

about it. Whether you obtain from this side or from the other side both must be same. The 

4 bar mechanism is a one degree of freedom mechanism and only one  𝑥, 𝑦 or 𝜙 can be 

independent ok. So, we need to make sure that the  𝑥 and  𝑦 are related through the sixth 

degree coupler curve and 𝜙 must satisfy (𝑥 cos 𝜙 + 𝑦 sin 𝜙) is given by this ok. 

So, the constraints on the position and orientation of the chosen output link  𝑥, 𝑦, 𝜙 are 

analogous to the case of the inverse kinematics of serial manipulators, where𝑛 < 6. So, if 

you go back and remember in the SCARA case the motion was in 3D space.  

However, the two angles of the end effector about X and Y they were 0, only the Z was 

allowed. So, in this case this  𝑥, 𝑦 and 𝜙 which you give me of a point on the coupler they 

must satisfy the sixth degree coupler curve and also this equation ok. Otherwise, it is not 

a consistent problem.  

We cannot solve an inverse kinematics of a point which is not on the coupler curve ok. So, 

the inverse kinematics of a four bar mechanism can be solved when the given position and 

orientation is consistent. 
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Let us look at a 6 degree of freedom parallel manipulator. So, in this case we have looked 

at this 3 fingered hand ripping an object. So, I am showing one finger as an R-R-R-S chain 

ok. So, the other two fingers are not shown. So, what is given? The position and orientation 

of the gripped object ok.  

So, this is the object which is gripped. So, we are given some point on the gripped object. 

So, as we were looking at the centroid of the triangle formed by this and the X, Y and Z. 

X was along 𝑆1 to 𝑆2, Z was perpendicular to this and so on. So, the normal to the plane. 

So, the orientation of this plane and the centroid of this triangle is given to you. So, what 

do we need to find out? We have to find out the angles 𝜃1 , 𝜓1 and 𝜙1. Likewise we have 

to find our 𝜃2, 𝜓2 and 𝜙2 and 𝜃3, 𝜓3 and 𝜙3, we need to find out all the joint angles.  
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So, how do we do this? It is not very hard because we have just the position vector of a 

point which is let us say the centroid of the gripped object. The rotation matrix of the object 

with respect to base is also given.  

So, we can find out that the 𝑥, 𝑦, 𝑧 of the point is given by 𝑆𝐵𝑎𝑠𝑒
1  which is the corner point 

where it is gripped that is nothing, but {𝐵𝑎𝑠𝑒} to {𝑂𝑏𝑗𝑒𝑐𝑡} , {𝑂𝑏𝑗𝑒𝑐𝑡} to 𝑆1 ok. So, we are 

going to the centroid and coming back and this will be equal to {𝐵𝑎𝑠𝑒} to 𝒑𝑂𝑏𝑗𝑒𝑐𝑡 ok. So, 

if you go back and see the figure.  

So, this point 𝑥, 𝑦, 𝑧 is nothing but a vector from here to here and from here to here and 

then that should be equal to this vector ok. So, I want to find out the position vector of 

each one of the spherical joints from the given data which is very simple we come to the 

given point of the centroid and then go back to this spherical joint which is exactly what 

is done here. And it turns out that the 𝑥, 𝑦, 𝑧 is related to cos 𝜃1  and 𝑙11, 𝑙12, 𝑙13 and the 

angles cos 𝜓1 , x coordinate and cos(𝜓1 + 𝜙1). 

The y coordinate is related to the sin of these angles, sin 𝜃1 and then cos 𝜓1 and 

cos(𝜓1 + 𝜙1). And z coordinate is related to sin 𝜓1, sin(𝜓1 + 𝜙1) ok. And then this 𝑑 

and ℎ; the 𝑑 is the distance between the two index finger and the middle finger and ℎ is a 

distance along the vertical. 

So, these are 3 equations in 3 unknowns 𝑥, 𝑦, 𝑧 is known. 𝑥, 𝑦, 𝑧 is known from the location 

of the object centroid of the object and the from the centroid to that point which is given. 



And then we can find out 𝜃1 , 𝜓1 and 𝜙1 from these 3 equations ok. It is very easy we can 

eliminate one at a time and obtained. 
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So, for example, if you do this operation 𝑥2 + (𝑦 + 𝑑)2 + (𝑧 − ℎ)2 we will see that we 

will get one equation in 𝑙11
2  , 𝑙12

2 ,𝑙13
2  and cos 𝜓1 and cos(𝜓1 + 𝜙1) . The last set component 

of this equation does not contain 𝜃1.  

It contains only 𝜓1 and (𝜓1 + 𝜙1). So, we got one equation in 𝜓1 and (𝜓1 + 𝜙1) from 

this three of them and one which is the z component ok. So, we have two equations ok. 

The last equation can be written in only in terms of 𝜓1 and 𝜙1. So, we have two equations 

in 𝜙1, 𝜓1 and they can be written in this form. 

So, 𝐴1 cos 𝜓1 + 𝐵1 sin 𝜓1 + 𝐶1 = 0 and similarly i equals 2 and we can compute 

𝐴1, 𝐵1, 𝐶1, 𝐴2, 𝐵2, 𝐶2. So, they will be all functions of only 𝜙1 because the 𝜓1 is taken out 

here; thus usual trick when we learn how to do elimination of one variable from two 

equations.  
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And then we use the Sylvester’s dialytic method, which eliminate 𝜓1 and we find out the 

determinant of Sylvester’s matrix equal to 0. So, in this case that will lead to this equation, 

one single equation in 𝜙1 equal to all this constraints. So, 𝐶1, 𝑙11, 𝑧, ℎ all these will show 

up ok. 

So, it is a single equation in cosine 𝜙1 and we can go back and substitute the tangent half 

angle for cos 𝜙1 and sin 𝜙1 and we will get a quartic equation remember 𝐶1 also had 

sin 𝜙1 sorry cos 𝜙1 ok. So, it looks like that there is only cos 𝜙1 here, but there is a cos2 𝜙1 

here ok.  

So, when you do tangent half angle substitution cos 𝜙1 will become (1 − 𝑥2) divided 

by(1 + 𝑥2). So, square of that will give you a fourth degree or a quartic equation in tan
𝜙1

2
 

ok. 

So, you can solve this from the 𝜙1 from this quartic and then in the process we obtained 

also for 𝜓1. This is the standard elimination technique ok. So, when we write 𝑎0, 𝑦, 𝑥 

squared and so on, when we obtained 𝑦 we also obtained 𝑥 in the quadratic or in the quartic.  

So, 𝜙1 can be obtained by solution of this quartic equation and 𝜓1 can be obtained by 

simply 2tan inverse of (𝐴1𝐶2 − 𝐴2𝐶1) and so on divided by ((𝐵1𝐶2 − 𝐵2𝐶1) +

(𝐴1𝐵2 − 𝐴2𝐵1)) ok. So, these contain 𝜙. And finally, 𝜃1  can be obtained by 𝑎𝑡𝑎𝑛2(𝑦 +

𝑑, 𝑥) very simple because why. 



So, 𝜃1  contains here something here and only one 𝜃. So, 𝑥 and 𝑦 will contain 𝜃1. So, if 

you take 𝑑 on that side and then you can manipulate very simply because the quantity in 

the bracket are same in both of them ok. So, we will get some 𝑎𝑡𝑎𝑛2(𝑦 + 𝑑, 𝑥)  which is 

what is written here ok.  

So, the joint variable for the other two fingers can be obtained in exactly the same way in 

parallel ok. So, we solved for the 3 angles in one finger, the other 3 angles in the other 

finger and the third 3 angles in the third finger can be obtained in exactly the same way. 
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Let us look at this inverse kinematics of the Stewart-Gough platform this is a very famous 

platform 6 degrees of freedom Stewart platform. So, what do we have here? We are 

looking at one leg of the Stewart-Gough platform. So, there is a fixed coordinate system 

{𝐵0}. There is a coordinate system which is attached to the top platform which is given by 

{𝑃0} .This point on the top platform which is an S joint is located by this vector 𝒑
𝑃0

𝑖. 

A point on the base that there is a U joint is located by this vector 𝒑
𝐵0

𝑖ok. So, what you 

can see is this vector from fixed base to this point which is 𝒑
𝐵0

𝑖 is nothing but 𝒑
𝑃0

𝑖 which 

is this vector, pre multiplied by a rotation matrix which gives the rotation of the top 

platform with respect to the base plus this vector 𝒕
𝐵0 .  



So, this plus this will be given by this. This is known and this is also given to us in the 

inverse kinematics problem. We are given the position and orientation of the top platform. 
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So, hence from this the location of all these 𝒑
𝑃0

𝑖, 𝒑
𝐵0

𝑖 everything is known. So, this point 

is known basically ok. So, the location of the spherical joint can be obtained in the fixed 

coordinate system. Now, as you can see this location of this spherical joint can also be 

written as a vector from the fixed coordinate system to the U joint which is 𝒃
𝐵0

𝑖 plus a 

vector along the leg which will be like 𝑙𝑖 along some direction.  
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So, that is what is given here. So, this 𝑥, 𝑦, 𝑧 which we have obtained from the coordinate 

of the S joint minus 𝒃
𝐵0

𝑖, will give a vector along this length ok. So, that is what is given 

as some rotation matrix because we need to multiply this vector and this is given as first 

one rotation about a the U joint another rotation that the U joint and a translation along the 

length ok. 

So, let us go over it once more. So, this vector here can be written as this vector minus this 

vector. So, we know this vector from this argument that the position and orientation of the 

moving plate is known. So, from this vector if you subtract this fixed vector we will get a 

vector along this. Now, this vector is basically due to rotations two rotations at the U joint 

and one translation. 

So, that is what is written here. If you multiply out these two rotation matrices one about 

Y by 𝜙 X by 𝜓 and then this translation you will get 𝑙1 the X coordinate is (sin 𝜙1 cos 𝜓1), 

−𝑙1 sin 𝜓1 and cos 𝜙1 cos 𝜓1 ok. The left hand side is known because we know 𝑥, 𝑦, 𝑧, we 

know the location of the U joint in the fixed base and we know how to rotate this to obtain 

the correct direction ok. 

So, we have 3 non-linear equations left hand side is equal to 3 one length which is we do 

not know and two angles 𝜙 and 𝜓. So, 3 equations in 3 unknowns which can be solved ok. 

It turns out 𝑙1is nothing but±√[(𝑥, 𝑦, 𝑧)𝑇 − 𝒃𝐵
1]

2
. So, the length along the translation 

along the prismatic joint is nothing but the location of the spherical joint minus the location 

of the fixed base and the magnitude of that. 

𝜓1 can be obtained as 𝑎𝑡𝑎𝑛2(−𝑌, ±√𝑋2 + 𝑍2) and 𝜙1 = 𝑎𝑡𝑎𝑛2(
𝑋

cos 𝜓1
,

𝑍

cos 𝜓1
). So, and 

what is the 𝑥, 𝑦, 𝑧? They are nothing but the components of the left hand side. So, 𝑥, 𝑦, 𝑧 

are the components of this rotation matrix into this and we can do this for each leg. There 

are 6 legs in the Stewart platform and we can find out the translation at the prismatic joint 

and the rotations at the U joint or the hook joint at the base. 
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In summary the inverse kinematic involves obtaining actuated joint variables given chosen 

end effector position and orientation. Again the key concept is to break the parallel 

manipulator into simple serial chains.  

The inverse kinematics problem can be solved by considering each serial chain in parallel. 

So, we solve each of them separately and independently that is what is meant by parallel 

ok. This is also one of the reason why these things are called parallel manipulators because 

we can solve the inverse kinematics in parallel. 

So, the inverse kinematics of a Stewart-Gough platform is much simpler than the direct 

kinematics. In the next lecture we will look at the direct kinematics of the Stewart-Gough 

platform ok. This is one of the hardest problem to solve. In general inverse kinematics 

problems simpler for parallel manipulators ok.  

In the serial manipulators the direct kinematics was very simple, inverse kinematics were 

harder. In the case of parallel manipulators the direct kinematics is much harder and the 

inverse kinematics is simple ok. 

So, with this we come to the end of this lecture and the next lecture we will look at the 

Direct Kinematics of the Stewart Platform Manipulators. 


