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Welcome to this NPTEL lectures on Robotics, Basic and Advanced Concepts. In the last 

lecture, we had looked at how to obtain the linear and angular velocity of the links of a 

robot, and then I had shown you how to propagate the linear and angular velocity of the 

links of a robot from a fixed base all the way to the end effector. And finally, I had given 

an example of a planar 3 degree of freedom robot and showed you how to obtain the linear 

and angular velocity of each link, ok. 

In this lecture, we will look at a very important concept in velocity kinematics of robots 

called the Jacobian matrix. And now this lecture, we look at the Serial Manipulator 

Jacobian matrix. Next, we look at the parallel manipulator Jacobian matrix. 
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So, a serial manipulator Jacobian matrix to start, we first obtain the linear and angular 

velocity of the end effector of the robot. So, for example, in the planar 3R robot which we 

had discussed last time, I showed you that the angular velocity of the {Tool} coordinate 



system can be written in as sum of �̇�1, �̇�2, �̇�3 the z component, and the x and y components 

were 0.  

Likewise, the linear velocity of the end effector or the origin of the Tool coordinate system 

could be written in terms of again �̇�1, �̇�2, �̇�3. And so, for example, the x component is 

(−𝑙1 sin 𝜃1 �̇�1 − 𝑙2 sin(𝜃1 + 𝜃2) (�̇�1 + �̇�2) − 𝑙3 sin(𝜃1 + 𝜃2 + 𝜃3) (�̇�1 + �̇�2 + �̇�3)). 

So, this was obtained and similarly the y component contains cosine of 𝜃1, (𝜃1 + 𝜃2), and 

(𝜃1 + 𝜃2 + 𝜃3) and the z component was 0. So, this was obtained from the velocity 

propagation formula. The second set of quantities for the linear velocity of the Tool could 

also be obtained from simple derivative of the position vector. 

Now, we can write these two expressions of angular velocity and linear velocity in a 

compact form. So, the first we write the linear velocity components, ok (−𝑙1𝑠1 − 𝑙2𝑠12 −

𝑙3𝑠123)�̇�1. Then, the second term is (−𝑙2𝑠12 − 𝑙3𝑠123)�̇�2 and third term is (−𝑙3𝑠123)�̇�3.  

So, basically we take all the terms containing �̇�1, all the terms containing �̇�2 and all the 

terms containing �̇�3 and write it as the matrix form, ok. So, the second row of this matrix 

can be written as (𝑙1𝑐1 + 𝑙2𝑐12 + 𝑙3𝑐123)�̇�1, (𝑙2𝑐12 + 𝑙3𝑐123)�̇�2 and (𝑙3𝑐123)�̇�3, and the z 

component is 0. 

Likewise, from the angular velocity, we can write that the x component of the angular 

velocity is 0, the y component is 0, and the z component is (�̇�1 + �̇�2 + �̇�3). So, these, 6 

scalar equations from these two vector equations can be written in this matrix form.  

So, the column vector here is (�̇�1, �̇�2, �̇�3)
𝑇
 multiplied by something which is a function of 

the link lengths 𝑙1, 𝑙2, 𝑙3 and sin and cosine of 𝜃1, 𝜃2 and 𝜃3. And the left side here contains 

the velocity vector, linear velocity vector and the angular velocity vector.  
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So, this left hand side quantity is a 6 × 1 entity. The top 3 × 1 part is the linear velocity of 

the Tool and the bottom 3 × 1 is the angular velocity of the Tool, ok. So, a few 

observations. This 𝒱0
𝑇𝑜𝑜𝑙 is not actually a 6 × 1 vector because the units are different.  

This is like meters per second and this is like radians per second. So, we will use these 

dash lines to separate the linear and angular velocity and to remind that the 𝒱0
𝑇𝑜𝑜𝑙 or this 

combination of linear and angular velocity is not a vector in the strict sense of the world. 

The matrix in the square bracket is called the Jacobian matrix for the planar 3R 

manipulator, ok. So, that this is the introduction to the Jacobian matrix. So, what does this 

Jacobian matrix do? It relates the linear and angular velocity of the Tool with the joint 

velocities. So, joint velocities are �̇�1, �̇�2, �̇�3, the left hand side is the linear velocity of the 

Tool and the angular velocity of the Tool, ok. 

The other important thing in this Jacobian matrix is it is the Jacobian matrix for the end 

effector or the Tool. So, that is why we have a leading subscript tool. It is also important 

to note that this Jacobian matrix is with respect to the fixed coordinate system.  

Why? Because the linear and angular velocities are written with respect to the fixed 

coordinate system and that is the reason there is a leading superscript 0, ok. So, if I wanted 

to find the Jacobian matrix for some other link or in some other coordinate system we have 

to go back and change quite a few things.  

(Refer Slide Time: 06:49) 



 

Just to remind that this [𝐽(Θ)]𝑇𝑜𝑜𝑙
0  is not a true Jacobian matrix. Why? Because it was not 

obtained as a direct differentiation of a vector valued function, ok. So, there are if you go 

back and see calculus, if you have a vector valued function, the first derivative of the vector 

valued function with respect to the independent parameters is the Jacobian matrix.  

However in this case it is not so, ok. Here the first and the last three rows represent linear 

and angular velocity, ok. So, the first three rows have units of length, the last three rows 

have no units. So, the linear velocity is meters per second, ok. So, �̇�’s are radians per 

second, so the quantity inside the matrix is meters first three rows. And the second thing 

is angular velocity is radians per second, we already have �̇�’s which are radians per second, 

so the quantity inside the matrix is unit less, ok. 

So, likewise similar to 𝒱0
𝑇𝑜𝑜𝑙, we will put the top and bottom halves of this Jacobian 

matrix separated by this dash line, just to remind us that it is not a proper matrix. So, and 

many matrix operations on this Jacobian makes no sense, because it is not strictly a matrix. 

So, for example, finding the condition number of this matrix is meaningless, since it 

changes with the choice of the length units. 

So, what is the condition number? It is the ratio of the absolute value of the largest to the 

smallest eigenvalue, ok. So, if we find the eigenvalues of this matrix, the largest divided 

by the smallest, ok. So, it would have units of length and depending on whether you are 

writing the linear velocity as meters per second or centimeters per second the eigenvalues 



will be different numerically and the condition number will be different. So, it does not 

make any sense to do some matrix operations, ok. 
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So, what can we do with this or why do we use this Jacobian matrix? So, the best way to 

think of the Jacobian matrix is a map. So, what does it do? It will take �̇�’s which are the 

joint rates to the linear and angular velocity of the end effector, ok. The Jacobian matrix 

can be derived for any serial manipulator with rotary and prismatic joints, ok. Why?  

Because in general the Jacobian matrix is defined for any differentiable vector valued 

function 𝑿 = 𝜓(𝜃1, … , 𝜃𝑛). And this Jacobian matrix is the partial of the first derivatives 

of 𝜓 with respect to 𝜃𝑖. So, the 𝑖th column of this Jacobian matrix is (𝑑𝜓/𝑑𝜃𝑖). So, in this 

case it is not so straightforward, but you can think of it this way that the Jacobian matrix 

is the derivative of the position vector and then the Jacobian matrix the bottom part comes 

from the angular velocity vector, ok.  

So, we can compute the linear and angular velocity using propagation equations and we 

can always rearrange in a matrix equation as was done for the planar 3R manipulator. So, 

we can always obtain the Jacobian matrix for any serial robot with rotary and prismatic 

joints. This Jacobian matrix is very important in velocity kinematics of serial manipulators. 

We will see that in a little while.  
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The elements of the Jacobian matrix are non-linear functions of the joint variables. 

Remember it contains cos 𝜃1, cos(𝜃1 + 𝜃2) and so on sin 𝜃1 and so on. So, if the 

manipulator is in motion, ok if 𝜃1, 𝜃2 and 𝜃3 the joint variables are changing with time this 

Jacobian matrix will also change with time, ok. 

Any instant if the thetas are known the Jacobian matrix relates linear and angular velocity 

to the joint rates and this relationship is linear, ok because 𝒱0
𝑇𝑜𝑜𝑙 = [𝐽(Θ)]𝑇𝑜𝑜𝑙

0 Θ̇. So, at 

any instant if [𝐽(Θ)]𝑇𝑜𝑜𝑙
0  is fixed 𝒱0

𝑇𝑜𝑜𝑙 and Θ̇ are linearly related, ok. So, the Jacobian 

matrix can be obtained for any link. Why? Because we can obtain the linear and angular 

velocity of any link. Most of the time we would be interested in the end effector, linear 

and angular velocity and hence the Jacobian matrix of the end effector. 

The Jacobian matrix is always with respect to a coordinate system, ok. Why? Because the 

linear and angular velocities are written with respect to a coordinate system. So, most of 

the time the Jacobian matrix is with respect to the fixed coordinate system or the 0 

coordinate system. But the Jacobian matrix can be written in any coordinate system using 

rotation matrices.  

So, if I want the linear velocity in some other coordinate system we can pre-multiply by a 

rotation matrix. If I want the angular velocity in another coordinate system we can pre-

multiply it by a rotation matrix and again rearrange to obtain the Jacobian matrix.  
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Most of the time the Jacobian matrix is 𝑚 × 𝑛, where 𝑚 is the dimension of the motion 

space and 𝑛 is the number of actuated joints, ok. So, in the case of planar 3R there were 3 

joints 𝜃1, 𝜃2, 𝜃3. So, there are 3 columns, ok. And it is moving in generally in that example 

some of the components were 0, but in general it could be moving in 3D space, so there 

are 6 rows.  

If the Jacobian matrix is square and 𝑚 = 𝑛 and if the determinant of [𝐽(Θ)]𝑇𝑜𝑜𝑙
0  is not equal 

to 0, then we can invert the relationship. So, initially we have 𝒱0
𝑇𝑜𝑜𝑙 = [𝐽(Θ)]𝑇𝑜𝑜𝑙

0 Θ̇, but 

if it is 𝑚 = 𝑛 and determinant of the Jacobian is not 0, then we can write Θ̇ =

[𝐽(Θ)]𝑇𝑜𝑜𝑙
0 −1 𝒱0

𝑇𝑜𝑜𝑙. 

So, the above relationship gives joint velocities required for a desired linear and angular 

velocity of the Tool. So, if I want the linear and angular velocity as let us say 1 meter per 

second and 1 radian per second, along certain directions I can use this expression to obtain 

the �̇�’s which I need to give at the joints. 

So, the direct velocity kinematics is basically this equation which is the linear and angular 

velocity of the Tool,  𝒱0
𝑇𝑜𝑜𝑙 = [𝐽(Θ)]𝑇𝑜𝑜𝑙

0 Θ̇ and the inverse velocity kinematics is 

basically Θ̇ = [𝐽(Θ)]𝑇𝑜𝑜𝑙
0 −1 𝒱0

𝑇𝑜𝑜𝑙. These are the two basic expressions in velocity 

kinematics. And we will take a look when 𝑚 is not equal to 𝑛 little later.  
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So, now let us take a look at what is the geometric interpretation of the manipulator 

Jacobian matrix. And this we will do through one example. So, let us consider a planar 2R 

manipulator as shown in this figure, ok. So, we have a rotary joint here, another rotary 

joint here, this is link 1, link 2 and then this point (𝑥, 𝑦), which is at the middle of the so, 

called schematic parallel geographer. 

So, we can write 𝑥 and 𝑦 in terms of 𝜃1 and 𝜃2, ok. So, we have done this before. So, 𝑥 is 

nothing but (𝑙1𝑐1 + 𝑙2𝑐12) and 𝑦 is nothing but (𝑙1𝑠1 + 𝑙2𝑠12). So, the linear velocity, 𝑽 

of the end effector can be obtained by simply taking the derivative of 𝑥 and 𝑦 with respect 

to time, ok.  

So, �̇� and �̇� is the linear velocity of this end effector and that we can see is clearly given 

by ((−𝑙1𝑠1 − 𝑙2𝑠12)�̇�1 + (−𝑙2𝑠12)�̇�2). And the y component contains 𝑐1 and 𝑐2, ok. Just 

the straightforward differentiation of the 𝑥 and 𝑦 position vector and �̇�1 and �̇�2 are the 

joint rates.  

So, in this example, the square bracket here containing minus [
−𝑙1𝑠1 − 𝑙2𝑠12 −𝑙2𝑠12

𝑙1𝑐1 + 𝑙2𝑐12 𝑙2𝑐12
]. 

So, this 2 × 2 matrix is the Jacobian matrix in the 0th coordinate system.  
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So, let us try to find the magnitude of this linear velocity vector, so which is given by the 

product of this vector with itself and we can write this dot product as something like 

(𝑔11�̇�1
2 + 2𝑔12�̇�1�̇�2 + 𝑔22�̇�2

2). So, this 𝑔𝑖𝑗 there are two, 𝑖 and 𝑗 are both 1 comma 2 are 

the elements of this matrix [𝐽(Θ)]𝑇[𝐽(Θ)], ok. 

So, for the planar 2R manipulator the 𝑔𝑖𝑗’s are very simple. It can be computed. So, 𝑔11 =

𝑙1
2 + 𝑙2

2 + 2𝑙1𝑙2𝑐2 and 𝑔12 = 𝑔21 = 𝑙2
2 + 𝑙1𝑙2𝑐2 and 𝑔22 = 𝑙2

2. So, it is a symmetric matrix. 

So, the elements of 𝑔𝑖𝑗 are functions of 𝜃2, ok. However, 𝑔22 in this example is constant. 
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Let us try to find the maximum and minimum of this velocity square subject to a constraint 

�̇�1
2 + �̇�2

2 = 1. Why do we need to put a constraint? If I do not put any constraint then the 

velocity vector which is (�̇�, �̇�) is a function of �̇�1 and �̇�2 and I can have arbitrary velocity 

vector as I change �̇�1 and �̇�2. So, it basically fills up the two-dimensional space. 

The constraint �̇�1
2 + �̇�2

2 = 1 basically is similar to a unit speed constraint in differential 

geometry of space curve. So, basically it is, we want to find the maximum or minimum 

subject to an 𝐿2 norm on the joint rates. How do we find that?  

We define a new function 𝑽∗2
 which is this 𝑔11�̇�1

2 + 2𝑔12�̇�1�̇�2 + 𝑔22�̇�2
2 and so on and we 

put in this constraint using a Lagrange multiplier. So, −𝜆(�̇�1
2 + �̇�2

2 − 1). 

And what do we do? We solve the partial derivative 𝜕|𝑽∗|2/𝜕�̇�𝑖 = 0. So, if you take the 

partial derivatives, we can see that this reduces to an eigenvalue problem which is [𝑔]Θ̇ −

𝜆Θ̇ = 0. These 𝜆’s are the same Lagrange multipliers we have introduced. And we can 

find, ok the eigenvalues of this eigenvalue problem, it can be found in closed form because 

[𝑔] is 2 × 2 it is a quadratic, determinant of this would be a quadratic function in 𝜆. 

And we can solve for this 𝜆’s. So, the 𝜆1 and 𝜆2 are some function of 𝑔𝑖𝑗’s, ok. So, for 

example, it is (1/2){(𝑔11 + 𝑔22) ± √(𝑔11 + 𝑔22)2 − 4(𝑔11𝑔22 − 𝑔12
2 )}. So, just the roots 

of the quadratic polynomial which you will get from expanding the determinant of [𝑔] −

𝜆𝐼 = 0.  
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[𝑔] is real, symmetric and positive definite. Why? Because [𝑔] = [𝐽(Θ)]𝑇[𝐽(Θ)], ok. So, 

it is real and symmetric. It is also positive definite because it gives the square of the 

velocity, ok. So, the eigenvalues are always real and positive. If you assume that the two 

eigenvalues 𝜆1 and 𝜆2 are related by 𝜆1 > 𝜆2, then you can show that the maximum 

velocity magnitude is √𝜆1 and the minimum velocity magnitude is √𝜆2, ok. 

So, for square Jacobian matrix eigenvalues of [𝐽(Θ)] are √𝜆1 and √𝜆2 this is well known 

from linear algebra, ok. So, the maximum and minimum velocity vector magnitude for the 

2R manipulators are √𝜆1 and √𝜆2. So, if �̇�1
2 + �̇�2

2 = 𝑘2, not one then the maximum and 

minimum |𝑽| are scaled by 𝑘.  
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So, from 𝑽 = [𝐽(Θ)]Θ̇, I could write [𝐽(Θ)]𝑇𝑽 = [𝑔]Θ̇. So, for nonsingular [𝑔] we can 

rewrite this expression as 𝑽𝑇([𝐽][𝑔]−1)([𝐽][𝑔]−1)𝑇𝑽 = Θ̇𝑇Θ̇. So, the right hand side is 

equal to 1, the left hand side 𝑽 = (�̇�, �̇�)𝑇. So, (�̇�, �̇�)𝑇 times sum matrix times (�̇�, �̇�) equal 

to 0, ok. So, this is of the form 𝑥𝑇𝐴𝑥 = 0. 
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So, with 𝐴 symmetric positive definite, this 𝑥𝑇𝐴𝑥 describe an ellipse. So, what is 𝑥 here? 

This is (�̇�, �̇�)𝑇. And what is (�̇�, �̇�)𝑇? That is the velocity vector.  

(Refer Slide Time: 22:50) 



 

So, what we can say is that the tip of the linear velocity vector traces and ellipse and the 

semi major and semi minor axis of the ellipse are √𝜆1 and √2, ok. So, these are the 

minimum and maximum magnitudes of the velocity vector.  

So, for Θ̇𝑇Θ̇ = 𝑘2, the size of the ellipse is scaled by 𝑘, ok. So, instead of 1, if this was 𝑘2 

then we will get a larger ellipse. But the shape of the ellipse does not change, ok. The 

minimum and maximum velocity magnitudes will change, but the direction in which they 

happen the major and minor axis of the ellipse do not change, ok. 
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So, let us continue. So, the eigenvalues of [𝑔] are only functions of 𝜃2, because remember 

𝑔𝑖𝑗 contains only 𝜃2. So, what does this mean? That the shape and size of the ellipse will 

change with 𝜃2 only, ok and we can plot ellipses at all points in the workspace.  

So, we pick a value of 𝜃1, 𝜃2, so which gives the point (𝑥, 𝑦), and I can plot the ellipse at 

that point. So, for example here for a particular value of 𝜃2 and 𝜃1, ok important is 𝜃2 I 

can find this ellipse it may look like this at this point, ok. 

Now, let us go back and recall for this 2R manipulator the workspace lies between two 

circles of radii  (𝑙1 + 𝑙2) and (𝑙1 − 𝑙2). The maximum is (𝑙1 + 𝑙2) and the minimum is 

(𝑙1 − 𝑙2). The ellipse is independent of 𝜃1, ok. So, all ellipse at the chosen radii in the 

annular region are same, ok. So, if you think about it, it does not depend on 𝜃1. So, if I am 

at some point and then I rotate 𝜃1, so basically I trace a circle in this annular region the 

ellipses which I draw will look the same. 
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The shape of the velocity ellipse indicates which directions are easier to move for a given 

joint rates, ok. So, is this true? Yes, because the magnitude of the velocity vector is larger 

along the major axis and smaller along the minor axis. So, you can think of it that if I give 

you �̇�1 and �̇�2, I can move more easily along the major axis than along the minor axis, ok. 

That is what is mentioned here.  



If the ellipse reduces to a circle, we can move equally easily in all the directions, ok. All 

points in the workspace where the ellipse is a circle are called isotropic, ok. Isotropic is 

word we use in many areas. So, it basically means it is same in all directions. So, in this 

case the magnitude of the velocity vector in same in all directions and it was coined by 

Salisbury in 1982. 
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So, isotropic configuration basically the eigenvalues of [𝐽(Θ)] or [𝑔] are equal, ok. So, for 

planar 2R manipulator eigenvalues are equal only if 𝑔11 = 𝑔22 and 𝑔12 = 0. So, we can 

go back and see the expression for the eigenvalues which we derived for this case, ok. It 

is a quadratic equation. So, it is like √𝑏2 − 4𝑎𝑐, so that √𝑏2 − 4𝑎𝑐 = 0. 

So, from the expression of 𝑔𝑖𝑗’s and using this above condition we can show that it leads 

to two expressions, one is 𝑙1
2 + 2𝑙1𝑙2𝑐2 = 0, and 𝑙2

2 + 𝑙1𝑙2𝑐2 = 0, ok. And this is only 

possible if you have 𝑙1 = √2𝑙2.  

So, we can think of it one is 𝑙1
2 + 2𝑙1𝑙2𝑐2 = 0, and the other one is 𝑙2

2 + 𝑙1𝑙2𝑐2 = 0, ok. So,  

𝑙1 = 2𝑙2
2, ok. So, 𝑙1 = √2𝑙2. And 𝑐2 = −1/√2. So, this is some angle. 

What is this angle? 𝜃2 = 135 degrees. So, a planar 2R manipulator can possess isotropic 

configuration only if the link lengths have a ratio of √2 and 𝜃2 = 135 degrees. So, since 

𝜃1 can change between 0 and 2𝜋 all the isotropic configurations lie on a circle, ok.  



Remember if the link lengths are not related by this relationship 𝑙1 = √2𝑙2, then we do not 

have any isotropic configuration. The degenerate form of the velocity ellipse is something 

called as the singular configuration and we will look at singular configurations later. 
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Let us continue. If you have spatial motion and 2 degrees of freedom the velocity vector 

lies on a tangent plane to the surface, ok. So, 2 degrees of freedom motion the end point 

lies in a surface in 3D space and the velocity vector will be tangent to that surface at that 

point. And on that tangent we again have a velocity ellipse. If it is spatial motion and 3 

degrees of freedom the velocity vector lies in 3D space, ok.  

And you can see that the velocity will have 3 components x, y, z and the tip of the velocity 

vector will describe the ellipsoid in 3D space, ok. The same ideas can be extended to 

angular velocity vector. So, you can think of the angular velocity vector lying on a plane 

and we have an ellipse in 3D space it will be on the left side. 

The extension to 6 × 6 manipulator Jacobian matrix because in general for a 6 degree of 

freedom robot will have a 6 × 6 Jacobian matrix. It is much more complicated, since the 

Jacobian matrix is not dimensionally homogeneous matrix. Again, we have some part 

linear velocity with units of meters per second and some parts which are radians per 

second, ok. If you want to analyze both of them together we need to use this notions of 

screws and twists, ok.  



It has been done by several theoretical kinematics researchers; for example, Hunt. So, the 

velocity ellipse which we get for planar 2R will extend and be called something as a 

cylindroid and two screw system. The velocity ellipsoid can be extended to a hyperboloid 

and a three screw system. So, we are not going to discuss this, but those of you who are 

interested can look up this book by Hunt. 

And we can extend this notion of velocity ellipsoids to parallel manipulator using parallel 

manipulator Jacobian, ok. So, what is the geometric interpretation of the Jacobian? It tells 

you that there are certain directions where the tip of the velocity vector can be larger than 

in the perpendicular direction. It is easier to move along certain directions than in the 

perpendicular direction and this is true for plane and in 3D space, ok. 
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So, for square Jacobian matrix can be inverted to obtain joint rates. What happens if the 

Jacobian is non-square? Ok. And this happens in redundant systems, the Jacobian matrix 

is non-square because the number of joint variables will be more than 6, ok. So, it will 

have 6 × 𝑛, suppose I have 𝑛 joint variables the number of rows are still 6 because they 

represent the linear and angular velocity of the end effector. But if I have 7 joints, so it will 

the Jacobian matrix will be 6 × 7, ok. It is non-square. 

The Jacobian matrix cannot be inverted to obtain joint rates given linear and angular 

velocity of the end effector, because we have more unknowns than variables. In such a 

case we can do what is called as a pseudo inverse, to resolve this redundancy. So, the 



pseudo inverse of an 𝑚 × 𝑛 matrix, where 𝑛 > 𝑚, is given by this formula and this [𝐽(Θ)]# 

denotes the pseudo inverse of Jacobian matrix.  

It is given by [𝐽(Θ)]𝑇([𝐽(Θ)][𝐽(Θ)]𝑇)1. So, what you can see is if this is  𝑚 × 𝑛, J transpose 

will be 𝑛 × 𝑚, so this product together is 𝑚 × 𝑚 and we and it is a square matrix and we 

can find the inverse, ok. So, we can pre-multiply by the Jacobian matrix to make it 

consistent, ok. So, this is the formula of the pseudo inverse. 
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So, let us look at some of the properties of the pseudo inverse. The dimension of this 

[𝐽(Θ)]# is 𝑛 × 𝑚, it is also not square. The left inverse [𝐽(Θ)][𝐽(Θ)]# is identity you can 

prove this; however, [𝐽(Θ)]#[𝐽(Θ)] is not identity that is it is not a right inverse, ok. So, 

remember normal matrix 𝑛 × 𝑛 matrix square matrix 𝐴−1𝐴  is identity and 𝐴𝐴−1 is also 

identity, both the left and right inverse exist and gives you identity matrix. In this case it 

is not true, ok. 

The general solution to this linear equation which is the linear and angular velocity of the 

Tool is [𝐽(Θ)]Θ̇, ok. When [𝐽(Θ)] is non-square can be written as Θ̇ = [𝐽(Θ)]# 𝒱0
𝑇𝑜𝑜𝑙 plus 

another term, ok. This term is ([𝐼] − [𝐽(Θ)]#[𝐽(Θ)]) into something �̇�, called omega dot. 

So, this quantity here lies in the null space of [𝐽(Θ)], ok. So, this part is this, simple pseudo 

inverse part and this is the null space term. 



So, the pseudo inverse without the null space minimizes Θ̇𝑇Θ̇. So, we can show that if you 

give 𝒱0
𝑇𝑜𝑜𝑙 = [𝐽(Θ)]Θ̇. So, there are many �̇�s which satisfies this linear and angular 

velocity which is given.  

If you minimize Θ̇𝑇Θ̇, if you find the solution which minimizes Θ̇𝑇Θ̇ then that quantity is 

this [𝐽(Θ)]#, ok. So, Θ̇ = [𝐽(Θ)]# 𝒱0
𝑇𝑜𝑜𝑙 not this part only this first part is the minimum 

Θ̇𝑇Θ̇ from the infinitely many Θ̇s which are possible. 

The null space term have been used to avoid obstacles joint limits and to maximize a 

manipulability index which is det (([𝐽(Θ)][𝐽(Θ)]𝑇)
1

2). Because this null space part exists 

people have thought of why not use it and they have used it to avoid obstacles joint limits, 

so if there are ranges of joint limits and to maximize something else. So, there is a book 

by Nakamura, and we can see this. 

The disadvantage is that this is a numerical scheme, ok. This [𝐽(Θ)]# which you obtained 

numerically and at any instant of time, ok. So, [𝐽(Θ)]# can be obtained at any instant of 

time it is not a global or an analytical result. And this Θ̇ which you are obtaining it is like 

resolution of redundancy.  

Remember we had looked at finding a solution to the redundant robot when we introduce 

another constraint, in this case the constraint is we are minimizing Θ̇𝑇Θ̇ which in turns 

gives you this [𝐽(Θ)]#. So, this resolution of redundancy is at the velocity level, we are 

discussing everything at the level of velocity, not at the position and orientation level, ok. 

So, it is a resolution scheme at the velocity level not at the position and orientation level.  
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In summary the propagation of linear and angular velocities used to obtain linear and 

angular velocity of the end effector in terms of joint rates, ok. From these linear and 

angular velocity of the end effector we can obtain the Jacobian matrix which relate the 

linear and angular velocity to the joint rates, ok. It must be noted that the manipulator 

Jacobian matrix is not dimensionally homogeneous, some part contains meters per second 

or meters and some part is related to radians per second or unit less. 

I gave you an interpretation of this Jacobian matrix which is that the Jacobian matrix is 

related to this velocity ellipse and ellipsoid. There are certain directions which are easy to 

move and certain directions which are harder to move, ok and they are related to the 

eigenvalues of this 𝑔𝑖𝑗 = [𝐽(Θ)]𝑇[𝐽(Θ)], ok. 

The geometric interpretation of manipulator Jacobian for linear and angular velocity can 

be done separately, ok. So, we can look at the linear velocity, angular velocity, and again 

we have two kinds of ellipses.  

If you want to look at it together then it is much more complicated and I have not discussed 

this but we get things called cylindroids for two degrees of freedom motion, ok. So, when 

full rigid body motion is considered, full means both position and orientation at the same 

time together the Jacobian matrix leads to something called screw cylindroid, ok. 

If you have a non-square Jacobian matrix, then we have to use the pseudo inverse to obtain 

theta dot, given the linear and angular velocity. And this can be also thought of as 



resolution of redundancy at the velocity level because pseudo inverse minimizes the square 

of the joint rates, ok. 
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So, with this we will stop here. In the next lecture, we will look at Parallel Manipulator 

Jacobian Matrix. 


