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Parallel Manipulator Jacobian Matrix 

 

Welcome to this NPTEL lectures on Robotics: Basic and Advanced Concepts. In the last 

lecture, we had looked at the serial manipulator Jacobian matrix, ok. So, we started with 

propagation of linear and angular velocity vectors, then we reorganize this angular velocity 

vectors into something times the joint rates and then we equated that to the linear and 

angular velocity of the end effector ok. 

So, we could start from 0 which is the fixed coordinate system propagate upwards to link 

1, link 2 and so on ok. In this lecture we look at Parallel Manipulator Jacobian Matrix. So, 

in the parallel manipulator Jacobian matrix we do not have a single way of going from the 

fixed to the chosen end effector. There are multiple parts, there are multiple loops. So, we 

need to look at how to obtain the parallel manipulator Jacobian matrix ok. 
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So, in a parallel manipulator it has both actuated and passive joints. So, the configuration 

vector or configuration space vector 𝒒 contains both 𝜃 and 𝜙. And we have been using 𝜃 

to denote the actuated joints and 𝜙 to denote the passive joints. The loop closure equations 

do not contain all the joint variable. So, for example, we had looked at this 3-RPS parallel 



robot and when we broke up at the spherical joint, then it did not contain the joint variables 

of the spherical joint. 

Other important thing is there is no natural choice of end effector. So, hence we cannot do 

velocity propagation. So, we do not know which one is the end effector and where to start 

from and where to end ok. In a platform type parallel manipulator like the Stewart platform 

or the 3-RPS manipulator the position of centroid and orientation of the platform is of 

interest most of the time ok. 

So, how do we find the linear and angular velocity of the centroid of the top platform and 

the orientation of the top platform? Ok. So, given the orientation of the top platform and 

if we choose that the centroid is the point of interest the angular velocity of the top platform 

or the coordinate system can be obtained by [𝑅]̇𝑇𝑜𝑜𝑙
0 [𝑅]𝑇𝑜𝑜𝑙

0 𝑇. 

So, remember I had shown you that in general the space fixed angular velocity vector can 

be obtained as [𝑅]̇𝑇𝑜𝑜𝑙
0 [𝑅]𝑇𝑜𝑜𝑙

0 𝑇. So, that is what is shown here. And we can rearrange this 

expression once we have obtained the space fixed angular velocity vector into a matrix 

times 𝒒̇. 

So, now note that there will be both 𝜃̇ and 𝜙̇ because the position vector or the rotation 

matrix of the top platform or the Tool coordinate system will contain both 𝜃 and 𝜙. 

Likewise, the linear velocity of the centroid of the top platform can be obtained as in this 

case the sum of the linear velocity of the 3 connection points ok. 

So, in the 3-RPS case we had 3 connection points, 3 spherical joints and we can obtain the 

velocity of the centroid as a mean of all these 3 velocity vectors ok with respect to {0} 

coordinate system. For Stewart platform with many other connection points again we can 

obtain similar angular velocity and linear velocity vectors. 

So, this matrix [𝐽𝜔(𝒒)]𝑇𝑜𝑜𝑙
0  which is a function of 𝒒 and [𝐽𝑣(𝒒)]𝑇𝑜𝑜𝑙

0  are the angular and 

linear velocity Jacobian matrices ok and 𝒒̇ is the time derivative of the configuration 

variable 𝒒.  
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So, the linear and angular velocity vectors are function of all 𝒒 and 𝒒̇. However, in a 

parallel manipulator only the actuated joints 𝜃𝑖 are assume there are 𝑛 of them. The 𝑚 

passive joints can be obtained from direct kinematics ok. We also need expressions for the 

𝜙̇’s, the rate of change of the passive joint variables ok.  

And obtain linear and angular velocity in terms of only 𝜃̇ because 𝜃̇ are the ones where 

there are motors we know what is the actuated joint rates. So, we should be able to find 

the linear and angular velocity of the chosen output link in terms of the actuated joint 

variables ok. So, basically we need to find 𝜙̇ in terms of 𝜃̇. How do we do that? We can 

obtain this from the loop closure constraint equations ok.  
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So, let us start. So, the 𝑚 passive variables we have m constraint equations 

𝜂𝑖(𝑞1, … , 𝑞𝑛+𝑚) = 0. So, this is a general form, but basically there are 𝑚 constraint 

equations which is of the form 𝜂(𝒒) = 0. So, it is a vector equation. So, we can 

differentiate this equation with respect to time ok.  

So, when we differentiate with respect to time we will have 𝜃̇ and 𝜙̇. And then we can 

reorganize all terms containing 𝜃̇ in a matrix which I am going to call [𝐾(𝒒)], ok. So, 

[𝐾(𝒒)] is a function of all the configuration variables. Likewise, I reorganize the terms 

containing 𝜙̇ into a matrix which is [𝐾∗(𝒒)]. 

So, we can always do this. Why? Because when we take the derivative of this, constraint 

equations, we can only get 𝜃̇ and 𝜙̇. We will not get any other non-linear terms in 𝜃̇ and 

𝜙̇. So, the columns of this 𝑚 × 𝑛 matrix [𝐾(𝒒)] are basically nothing but the partial 

derivatives of this 𝜂(𝒒) with respect to the actuated joint variables, ok. 

So, just by chain rule; so, 
𝑑𝜂(𝒒)

𝑑𝜃
𝜃̇ will be this term ok in a matrix form. Likewise, [𝐾∗(𝒒)] 

which is 𝑚 × 𝑚 matrix. Why? Because these are 𝑚 constraint equations ok and we take 

the partial derivatives of 𝜂(𝒒) with respect to the passive variables 𝜙 which are 𝑚 of them, 

𝜃̇  are 𝑛 of them. 

So, this [𝐾(𝒒)] is an 𝑚 × 𝑛 matrix whereas, [𝐾∗(𝒒)] is always a 𝑚 × 𝑚 matrix, it is a 

square matrix ok. So, that is what I am mentioning again. [𝐾∗(𝒒)] is always a 𝑚 × 𝑚 

square matrix ok and [𝐾(𝒒)] and the [𝐾∗(𝒒)] are functions of both 𝜃 and 𝜙, ok. 
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Let us continue. So, if determinant of [𝐾∗] is not equal to 0, then I can solve for 𝜙̇ which 

is −[𝐾∗]−1[𝐾]𝜃̇. So, you can see that this is a linear equation. If determinant of [𝐾∗] is not 

equal to 0, can we take the determinant of [𝐾∗]? Yes, it is a square matrix. So, 𝜙̇ =

−[𝐾∗]−1[𝐾]𝜃̇, which is what is written here. 

Now, we can go back to the angular velocity expression which is 𝜔0
𝑇𝑜𝑜𝑙 and partitioned 

it into two parts. One is [𝐽𝜔]𝜃̇ and then [𝐽𝜔
∗ ]𝜙̇. We can always do this because the linear 

and angular velocity vectors are always linearly related to 𝜃̇ and 𝜙̇. 

Similarly, the linear velocity of the Tool ok or chosen point on the platform ok or on the 

chosen output link can be written in terms of [𝐽𝑣]𝜃̇ + [𝐽𝑣
∗]𝜙̇. Once you have this we can 

substitute 𝜙̇ in these two equations ok. So, if I substitute 𝜙̇ in the first equation we will get 

the angular velocity of the Tool is ([𝐽𝜔] − [𝐽𝜔
∗ ][𝐾∗]−1[𝐾])𝜃̇). 

So, you can see this 𝜙̇ will become −[𝐾∗]−1[𝐾]𝜃̇ and then we can take all of this together 

then we will have [𝐽𝜔] minus this. Likewise, the linear velocity of the Tool will be ([𝐽𝑣] −

[𝐽𝑣
∗][𝐾∗]−1[𝐾])𝜃̇. So, we can now define an equivalent Jacobian matrix for the angular 

velocity for the parallel robot.  

So, [𝐽𝜔]𝑒𝑞 and likewise [𝐽𝑣]𝑒𝑞. So, [𝐽𝑣]𝑒𝑞 = [𝐽𝑣] − [𝐽𝑣
∗][𝐾∗]−1[𝐾]. [𝐽𝜔]𝑒𝑞 = [𝐽𝜔] −

[𝐽𝜔
∗ ][𝐾∗]−1[𝐾]. So, it is really straight forward. So, all I have done is if determinant of 



[𝐾∗] is not equal to 0, I have solved for 𝜙̇ and substituted back into the expressions for the 

linear and angular velocity vector and then reorganize them. 
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Now, with [𝐽𝑣]𝑒𝑞 and [𝐽𝜔]𝑒𝑞 we can write the equivalent Jacobian in this form. So, we 

have on the left hand side the linear velocity of the Tool and the angular velocity of the 

Tool they are separated by this dash. So, remember this as meters per second then this as 

radians per second. These are different units and we can write together [𝐽𝑒𝑞]𝑇𝑜𝑜𝑙
0 𝜃. 

So, what is [𝐽𝑒𝑞]𝑇𝑜𝑜𝑙
0 ? The 6 × 𝑛 matrix here will contain the first 3 × 𝑛 rows are from 

[𝐽𝑣]𝑒𝑞 and the next 3 × 𝑛 rows are from [𝐽𝜔]𝑒𝑞. So, this is the matrix which is the parallel 

manipulator Jacobian matrix ok. So, like in serial manipulators it is not true Jacobian 

matrix. In the sense that it is not derived from the derivative of a vector valued function 

ok. It contains the top half contains units of meter, the bottom half contains unitless ok. 

So, at a known 𝒒, we can solve or we can relate the 𝜃̇’s with the linear and angular velocity 

of the Tool ok. So, if I know what is 𝒒, this [𝐽𝑒𝑞]𝑇𝑜𝑜𝑙
0  is a function of 𝒒 of the configuration. 

At every configuration this [𝐽𝑒𝑞]𝑇𝑜𝑜𝑙
0  should be different. If I give you 𝜃̇ you can multiply 

this [𝐽𝑒𝑞]𝑇𝑜𝑜𝑙
0 𝜃̇ and obtain the linear and angular velocity of the Tool ok. 



Very similar to the serial manipulator Jacobian matrix except now that we have taken some 

effort to eliminate the passive joint rates and obtain an equivalent Jacobian in terms of only 

the actuated joint rates ok. 
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So, like serial robots ok or serial manipulators this [𝐽𝑣]𝑒𝑞 can be also be used to define a 

[𝑔𝑣]𝑒𝑞 for parallel manipulators. So, remember we have in during the geometric 

interpretation of the Jacobian matrix we have taken [𝐽]𝑇[𝐽] and then we had found the 

eigenvalues of the equivalent [𝐽]𝑇[𝐽]. 

So, in this case we have to find the [𝑔𝑣]𝑒𝑞 which is ([𝐽𝑣] − [𝐽𝑣
∗][𝐾∗]−1[𝐾])𝑇([𝐽𝑣] −

[𝐽𝑣
∗][𝐾∗]−1[𝐾]). So, this [𝑔𝑣]𝑒𝑞 is symmetric and positive definite ok. It is symmetric 

because it is like 𝐴𝑇𝐴. And similar to serial manipulator the tip of the linear velocity vector 

lies on an ellipse or an ellipsoid. So, if it is moving in a plane, it lies on the ellipse. If 

platform is moving in 3D space the linear velocity vector traces an ellipsoid. 

However, as you can see this is so much more complicated. It is not simply [𝐽𝑣]𝑇[𝐽𝑣]. We 

have all these [𝐽𝑣
∗], [𝐾∗]−1, [𝐾]. So, it also contains the loop closure constraint equations 

and the effect of the loop closure constraint equations because we have taken derivatives 

of those and obtained [𝐾] and [𝐾∗] matrices ok. 

We can also find [𝑔𝜔]𝑒𝑞 again using [𝐽𝜔]𝑒𝑞 and again the angular velocity can be described 

as an ellipse. The tip of the angular velocity method this is an ellipse or an ellipsoid. So, 



all this is happening only if and only if determinant of [𝐾∗] not equal to 0. So, if [𝐾∗] were 

equal to 0, then we could not solve 𝜙̇ because it has [𝐾∗]−1. 
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So, let us take an example. So, again we will take the simplest possible example, which is 

a planar 4-bar mechanism. So, we break this 4-bar mechanism at this 3rd joint. So, we will 

get one planar 2R and a single 1R manipulator. So, in the planar 2R, we have 𝜃1 and 𝜙2 

these 2 angles and 𝑙1 and 𝑙2 whereas, the 1R we will have 𝜙1 and 𝑙3, these are the main 

important things.  
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So, the constraint equation of the 4-bar for breaking at the third joint we are seen this 

earlier. It is 𝑙1 cos 𝜃1 + 𝑙2 cos(𝜃1 + 𝜙2) − 𝑙0 − 𝑙3 cos 𝜙1 = 0. So, this is the x component. 

Similarly, the y component is 𝑙1 sin 𝜃1 + 𝑙2 sin(𝜃1 + 𝜙2) − 𝑙3 sin 𝜙1 = 0. 

So, in these two constraint equations 𝜃1 is the actuated joint variable and 𝜙1 and 𝜙2 are 

the passive joint variables. So, we can take the derivative of these two equations with 

respect to time and then take all terms containing 𝜃1̇ and all terms containing 𝜙1̇ and 𝜙2̇ 

and write it in this form. 

So, the first term is a column vector which is (
−𝑙1 sin 𝜃1 − 𝑙2 sin(𝜃1 + 𝜙2)

𝑙1 cos 𝜃1 + 𝑙2 cos(𝜃1 + 𝜙2)
). When you 

take the derivative you will get these terms times 𝜃1̇; and then the next term. So, this is the 

[𝐾] matrix. So, this is [𝐾]𝜃1̇.  

Then we can also find the derivative its [𝐾∗] matrix and rearrange the derivatives and then 

we can write (
𝑙3 sin 𝜙1 −𝑙2 sin(𝜃1 + 𝜙2)

−𝑙3 cos 𝜙1 𝑙2 cos(𝜃1 + 𝜙2)
) and multiplying 𝜙1̇ and 𝜙2̇. So, this is the 

[𝐾∗] matrix. So, this is [𝐾]𝜃̇ + [𝐾∗]𝜙̇ = 0.  
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So, the [𝐾] and [𝐾∗] matrix for the planar 4-bar are. So, [𝐾] is a column vector actually, 

[𝐾∗] is a 2 × 2 matrix. So, that as expected the [𝐾] and [𝐾∗] matrices are functions of both 

the actuated joint variables which is 𝜃1 and the passive joint variables with this 𝜙1 and 𝜙2. 



So, 𝜙1 does not appear in [𝐾], but it does appear in [𝐾∗]. So, as you can see it is very very 

easy to calculate for a planar 4-bar. For multi degree of freedom spacial mechanisms this 

is not so easy to do ok; because the loop closer equations will be much more complex and 

then we have to take the derivatives, and then we have to organize each one of these into 

something into 𝜃̇ and something into 𝜙̇. 

So, it requires a lot of effort, but we can use a symbolics algebra software such as MAPLE 

to do this ok. And in fact, I will show you examples later where we have use this symbolic 

software package called MAPLE ok and then derive the [𝐾] and [𝐾∗] matrices ok.  
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So, let us take another example which is a spatial 3 degree of freedom manipulator. So, 

this is that well known 3-RPS manipulator which we have looked at earlier. So, there is a 

fixed base. There is a moving platform. Then each point the top platform is connected to 

the point in the fixed base by RPS ok. 

So, R rotation is 𝜃, actuated joint variable is 𝑙 and 𝑆 is the spherical joint which since we 

are going to break it. At the spherical joints the angles at the spherical joints do not appear. 

So, there are 3 actuated joints 𝑙1, 𝑙2, 𝑙3 and there are 3 passive joints 𝜃1, 𝜃2, 𝜃3. So, as I 

said we break at the spherical joint.  

Then we obtain the position vector of 𝑆1 which is spherical joint one 𝑆2 and 𝑆3 with respect 

to the fixed coordinate system which is at the centroid of the bottom platform ok. And the 



point which is of interest the output link is the moving platform and the point of interest 

or the linear velocity which we will calculate is for the centroid of the top platform, which 

is 𝑝(𝑥, 𝑦, 𝑧). How do I finds a loop closer equations? 

As I have shown you earlier we find these vectors with respect to {0} and then {0} to {𝑆1}, 

{0} to {𝑆2}, {0} to {𝑆3} ok. And then we show that the distance between 𝑆1 and 𝑆2 is 

constant, distance between 𝑆1 and 𝑆3 is constant and between 𝑆2 and 𝑆3 is constant. So, we 

use the S-S pair constraint equations.  
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So, for the 3-RPS manipulator the 3 constraint equations are first equation is 3 − 3𝑎2 +

𝑙1
2 + 𝑙2

2 + 𝑙1𝑙2𝑐1𝑐2 and so on ok. So, here 𝑙1 and 𝑙2 are the actuations at the 2 prismatic 

joints, first and second prismatic joint; 𝑎 is one of the sides of the top platform, 𝑏 is taken 

to be 1 very similar to what we have done earlier and 𝑐1 means cos 𝜃1 ok, 𝑠1 means, sin 𝜃1. 

The second equation is the distance between 2 and 3 ok. So, it contains 𝜃2 and 𝜃3 and 𝑙2 

and 𝑙3 point spherical joint 𝑆2 and 𝑆3. The third equation is the distance between spherical 

joint 𝑆3 and spherical joint 𝑆1 is constant ok and hence we get another equation. 

So, they all look similar except the angles are different slightly. So, we can again take the 

derivatives of this 3 constraint equations with respect to time and rearrange to find [𝐾] and 

[𝐾∗] matrix ok. So, [𝐾] will involve the derivatives with respect to the actuated joints 

variables 𝑙1, 𝑙2, 𝑙3 ok. So, you can see that if I take the derivative of the first equation with 



𝑙1, I will get one term like this. So, it is 2𝑙1, −3𝑐1 from here and then 𝑙2𝑐1𝑐2, and −2𝑙2𝑠1𝑠2 

from here. 

Second term is derivative with respect to 𝑙2. So, we can again this term. There is no 𝑙3 

appearing in this first equation. So, that term will be 0 ok. Likewise, if the second row 𝑙1 

does not appear.  

So, when you take the derivative of the second equation with respect to 𝑙1 partial 

derivatives, it will be 0 something and something and the third row will be again there is 

𝑙1 appearing. So, partial derivatives there will be a term and you can see there will be 2𝑙1 

and then 𝑙3𝑐3𝑐1 and so on ok and you can just by inspection see that this is the [𝐾] matrix. 
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The [𝐾∗] matrix involves partial derivatives with respect to the joint variables. In this case 

the passive joint variables are 𝜃 ok. So, we have to take derivatives of this with respect to 

𝜃1. So, derivative of 𝑐1 will become − sin 𝜃1 and so on. So, this will not be there ok. 

So, you can see that the partial derivative with the first equation with respect to 𝜃2, in the 

second term is with respect to 𝜃2 ok, 𝜃2 is also here. There is no 𝜃3 occurring in this 

equation ok. So, the term will be 0.  

Likewise, there is no 𝜃1 occurring in the second equation because it is the distance between 

the second and the third spherical joint. And in the third equation one more term will be 0 



ok. So, for the centroid [𝐽𝑣] and [𝐽𝜔
∗ ]  are given by this. [𝐽𝑣]is this and [𝐽𝑣

∗] can also be 

computed; so, [𝐽𝑣
∗] corresponding to the [𝐽] corresponding to the passive joint variables, 

ok.  
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So, we have [𝐾], we have [𝐾∗], we have [𝐽𝑣] and we have [𝐽𝑣
∗] ok. To obtain [𝐽𝜔] and [𝐽𝜔

∗ ]  

we have to take the [𝑅]̇ [𝑅]𝑇 first ok and then rearrange. So, we have to find the angular 

velocity vector using [𝑅]̇ [𝑅]𝑇. Then rearrange it into something into 𝑙 ̇and something into 

𝜃̇, 𝑙 ̇is the actuated joint variable. So, it will be [𝐽𝜔]𝑙 ̇and [𝐽𝜔
∗ ]𝜃̇. 

So, these expressions are very large. As you can see the rotation matrix derivatives, then, 

post multiplying where the transpose it will become too much ok. So, we have done this 

using MAPLE, but for simplifying the task of MAPLE we have taken 𝑙1 = 2/3, 𝑙2 = 3/5, 

and 𝑙3 = 3/4. 

And the corresponding to this 𝑙1, 𝑙2, 𝑙3 we can find 𝜃1, 𝜃2, 𝜃3 using the direct kinematics 

of this 3-RPS manipulator ok which we have done earlier ok. Remember we get an 8th 

degree polynomial and so on. And substituting this 𝑙1, 𝑙2, 𝑙3 and 𝜃1, 𝜃2, 𝜃3 in this [𝑅]̇ [𝑅]𝑇 

and simplifying we will get [𝐽𝜔] as a 3 × 3 matrix ok.  

So, these are terms and [𝐽𝜔
∗ ]  is another 3 × 3 matrix. Likewise, for this set of 𝑙1, 𝑙2, 𝑙3 and 

𝜃1, 𝜃2, 𝜃3 we can also find [𝐽𝑣]𝑒𝑞 and [𝐽𝜔]𝑒𝑞. 
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And for 𝑎 equals half, 𝑙1, 𝑙2, 𝑙3 is equal to 0.5, 1.0, and 2.0 meters. We can solve for 

𝜃1, 𝜃2, 𝜃3, we will get this by direct kinematics ok. So, I am picking a point and then at that 

point, I have going to draw the tip of the linear velocity vector ok. So, this is a motion in 

3D. So, we expect that the tip of the linear velocity vector traces an ellipsoid ok. 

So, I am going to show you the picture of this ellipsoid obtained numerically. And the 

maximum intermediate and minimum velocities along the principal axes of the ellipsoid 

are again we can compute because they are the square root of the eigenvalues of the 

equivalent Jacobian matrix ok. So, 0.3724, 0.3162, 0.2031 meters per second and the 

direction of the principal axes also we can find out, how is the ellipsoid located in 3D space 

with respect to the {0} coordinate we will get these vectors ok.  
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So, this is what is shown in this picture. So, this view is a 3D view 3D plot in MATLAB. 

So, it shows you that this is 𝑉𝑥, 𝑉𝑦, 𝑉𝑧. So, from (0, 0, 0) which is the center here the tip 

traces this ellipsoid. We can also look at the sectional views. We can see what is happening 

in the Z-Y plane or the Z-X plane or the X-Y plane and you can see all of them are ellipses 

which is what is expected. 
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So, if you look at an ellipsoid in these sections we will get ellipses. So, in summary the 

parallel manipulator Jacobian in terms of active and passive joint variables we can derive. 

Two more matrices [𝐾] and [𝐾∗] occur ok. So, these come from the derivative of the 

constraint equations. 



We can solve for the passive joints rates 𝜙̇𝑖 in terms of the actuated joint rates and then 

obtain an equivalent Jacobian. So, we can substitute 𝜙̇ into the Jacobian matrix ok. It will 

be some [𝐽𝜔]𝜃̇ + [𝐽𝜔
∗ ] 𝜙̇, we substitute 𝜙̇ and get a [𝐽𝜔]𝑒𝑞. We can obtain this equivalent 

Jacobian only if determinant of [𝐾∗] is equal to 0. Why? Because otherwise we cannot 

solve for 𝜙. 
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And we can obtain a geometric interpretation as in the case of the serial manipulator. So, 

we can show that the tip of the centroid or tip of the point chosen on the output link traces 

an ellipse if it is in moving in a plane and or if it is an ellipsoid. So, the 3-RPS it traced an 

ellipsoid ok. 

So, it is clearly much more difficult than serial manipulators right because there are several 

problems. We had to eliminate the passive variables; we had to find the point where you 

know for actuated joint variables what were the passive joint variables. We also have to 

compute this [𝐾∗]−1 , [𝐾] and [𝐽𝑣
∗] and [𝐽𝜔

∗ ]  it is a many many terms are there ok, but it 

can be done numerically as I have shown you in these two examples.  

(Refer Slide Time: 29:33) 



 

So, with this we will stop this lecture. In the next lecture we will look at the Singularities 

in Serial and Parallel Manipulators. 


