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Statics of Serial and Parallel Manipulators 

 

Welcome to this NPTEL lectures on Robotics: Basics and Advanced Concepts. In the last 

few lectures we have done the velocity analysis of serial and parallel robots. In this last 

lecture, we look at the Statics of Serial and Parallel Manipulators. We will see that there 

is an intimate connection between the velocity kinematics and the statics.  

In particular, we will see that the Jacobian matrix which appears when we do the velocity 

kinematics also appears in the statics of serial and parallel manipulators. So, let us 

continue. This is the last lecture on statics of serial and parallel manipulators. 
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So, what do we mean by statics we basically lock all the joints in a serial robot and if we 

lock all the joints in a serial manipulator, the manipulator becomes a structure. So, if you 

have three degrees of freedom serial robot and so, there are three motors and if you lock 

all these three motors then the manipulator will not move. 



So, the forces and moments acting at the joints when the manipulator structure is subjected 

to external forces and moment is the topic of statics of serial manipulators. The same thing 

will happen when we look at the statics of parallel manipulators. 

So, basically we are interested in finding out what is happening at the joints when the 

manipulator structure is subjected to external forces and moment. Remember, the joints 

are locked. The actuated joints are locked in a parallel manipulator, ok. Another problem 

which we are interested in the statics of serial and parallel manipulator is the following.  

So, let us assume that the manipulator is pushing some object or carrying a payload ok. 

So, when it is pushing an object it is moving very slowly, it is more or less static, ok. We 

would like to know what are the forces and moments which are acting at the joints due to 

this pushing force which this end-effector is applying, ok. 

So, we want to know what are the forces and torques which need to be applied at the joints; 

such that there is static equilibrium when it is pushing an object or when it is holding on 

to a payload.  

And, how do we obtain these forces and moments at the joints when there is an external 

force or a moment acting on the manipulator structure? Basically we have to use the notion 

of free-body diagram and equations of static equilibrium. So, this is a very well known 

well understood and in undergraduate many places. 
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So, basically what we want to do is we want to draw the free-body diagram. So, basically 

the free-body diagram of a link will consist of the link and we show all the external forces 

and moments which are acting on this link. So, this is a link 𝑖. So, Z-axis is along the joint 

axis, the link 𝑖 + 1 is after this joint axis same as before there is no change in our 

convention. 

So, the only thing is the X, Y and Z-axis and the origin are shown for link 𝑖. Similarly, the 

X, Y and Z axis {𝑖 + 1} coordinate system and the origin 𝑶𝑖+1 is shown. There is a vector 

which locates the (𝑖 + 1)th origin with respect to the 𝑖th origin. So, this is this vector 𝑶𝑖
𝑖+1. 

Now, let us store all the forces and moments, which are acting on this link 𝑖. So, we will 

denote all the moments which are acting on this link 𝑖 by 𝒏𝑖 the symbol 𝒏𝑖 bold phase 𝒏𝑖 

and all the forces which are acting on link 𝑖 by 𝒇𝑖 ok. So, what is this 𝒏𝑖 and 𝒇𝑖 when you 

draw the free-body diagram?  

These are basically the forces and moments acting on link 𝑖 from the link 𝑖 − 1, ok, this is 

important. So, it is the forces and moments exerted on link 𝑖 by link 𝑖 − 1 ok. So, what is 

𝒇𝑖+1 and 𝒏𝑖+1 it is the forces and moments acting on link 𝑖 from link 𝑖 + 1, ok. 
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For static equilibrium the sum of all the forces must be equal to 0. So, 𝒇𝑖
𝑖 − 𝒇𝑖+1

𝑖 = 0. 

Ok where is this minus sign coming? Because 𝒇𝑖+1 is the force which is acting on the link 



𝑖 + 1. So, the equal and opposite force is acting on link 𝑖, ok. So, is that clear? And, we 

are going to do vector summation. So, they must be written in the same coordinate system. 

So, we are describing this 𝒇𝑖 in the 𝑖th coordinate system and a 𝒇𝑖+1
𝑖  in the 𝑖th coordinate 

system. So, some of these two forces must be equal to 0 ok. So, as I said 𝒇𝑖+1 is the force 

and link 𝑖 + 1 exerted by link 𝑖. Hence the force on link 𝑖 exerted by link 𝑖 + 1 will be 

equal and opposite sign and the leading superscript 𝑖 signifies that the vectors are described 

in {𝑖}. 

For static equilibrium not only the sum of the forces must be equal to 0, the sum of the 

moments must also be equal to 0. So, what is the moment on a link 𝑖 from 𝑖 − 1? That is 

𝒏𝑖. 𝒏𝑖+1 is the moment acting on link 𝑖 + 1 from link 𝑖. So, an equal and opposite moment 

will act on link 𝑖 which is this term and then we have the 𝒓 × 𝒇 term. 

So, basically a moment generated by this force 𝒇𝑖+1 at a distance 𝑶𝑖+1, ok. So, this is like 

standard undergraduate statics. So, the moment due to a force is 𝒓 cross that force; cross 

means cross product, ok. So, here also we have I have 𝑂𝑖
𝑖+1 × 𝒇𝑖+1

𝑖 .  

This minus sign again comes from the fact that 𝒇𝑖+1 is the force acting on the link 𝑖 + 1, 

so, equal and opposite force is acting on link 𝑖, ok. So, again the negative sign is due to the 

same reason as for forces. So, we have these two equations some of the forces acting on 

link 𝑖 equal to 0.  
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And, some of the moments acting on link 𝑖 is equal to 0. We can rewrite these two 

equations in this form. It is a nice iterative form. So, 𝒇𝑖
𝑖  was equal to 𝒇𝑖+1

𝑖  previous 𝒇𝑖
𝑖  

is 𝒇𝑖+1
𝑖 , but we can rewrite this by pre multiplying by a rotation matrix [𝑅]𝑖+1

𝑖 𝒇𝑖+1
𝑖+1  . 

So, what is this rotation matrix? This is the link 𝑖 + 1 in with respect to the 𝑖th coordinate 

system. Similarly, 𝒏𝑖
𝑖  can be written as [𝑅]𝑖+1

𝑖  𝒏𝑖+1
𝑖+1 + 𝑶𝑖+1

𝑖 × 𝒇𝑖
𝑖 . There is a reason 

why we want to write it in this way because we will go backwards, ok. So, we will do what 

is called as an inward recursion for forces and moments on each link. 

So, typically the forces and moments at the end-effector which is the 𝑛 + 1 link; remember 

the end-effector is the after the joint 𝑛, ok. So, the force and moment which are acting on 

the end-effector either in its own coordinate system or in some other coordinate system is 

known, ok.  

So, most of the time if it is not in contact with the environment if it is free space, then it is 

0 ok, otherwise if it is pushing against something or lifting some payload or doing some 

work then this force which is acting on the end-effector is known. So, knowing the force 

and the moment acting on the end-effector we can substitute on the right hand side and we 

can find out what is happening to the force and moment in that previous link.  

And, likewise if I know on the 𝑛 − 1 is link I can go back and calculate on the 𝑛 − 2th 

link and so on ok. So, this is the idea of invert recursion. Remember, in the case of velocity 

we went out what we started from the fixed base and went to the end-effector. In the case 

of forces we are going backwards and it is intuitively correct; in the case of velocities the 

base velocity is fixed or 0.  

In the case of forces external force is acting on the end-effector and that is known. So, we 

can recursively compute 𝒇𝑖
𝑖 , 𝒏𝑖

𝑖  for 𝑖 = 𝑛 to 1 using this equation. So, the joint can only 

apply force and moment along the Z-axis. We are dealing with one degree of freedom 

rotary or prismatic joints. So, a rotary joint can apply a moment about the joint axis, a 

sliding joint can apply a force along the joint axis.  

All other components of the force 𝒇𝑖 and 𝒏𝑖 which is acting at the joint are resisted by the 

structure, ok. So, there are bearings which will take care of radial loads and other kinds of 

loads. So, the torque required to maintain equilibrium at joint 𝑖 is nothing but the 



component of the moment along the Z-axis if it is a rotary joint or the component of the 

force along the Z-axis if it is a prismatic joint ok.  

So, you can think of that there is an external force acting. How much force or how much 

torque should I apply at a joint 𝑖 such that the whole manipulator remains as a structure. 

So, we know that the motors can only apply along the joint axis or rotate about the joint 

axis. So, hence we can find the Z-component of this 𝒏𝑖 or the 𝒇𝑖 vector, ok; 𝒇𝑖 if it is a 

prismatic joint, 𝒏𝑖 if it was a rotary joint. 
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So, example: So, let us consider a planar 3R manipulator applying a force environment. 

So, the forces (𝑓𝑥, 𝑓𝑦, 0)
𝑇
 and it is with respect to the 0th coordinate system. So, somehow 

we have figured out that this planar 3R manipulator is applying a force with components 

(𝑓𝑥, 𝑓𝑦 , 0)
𝑇
; 0 because it is in a planar example and it is with respect to the 0th coordinate 

system. 

It is also applying a moment about the environment. So, you can think of it as carrying a 

wrench and it is trying to tighten a nut for example, ok. And, again the moment is only 

along the z axis the x and y components are 0. So, first thing to do is we want to convert 

this force and moment into the Tool coordinate system ok because remember we need 

𝒇𝑖+1
𝑖+1 . 



So, we need the force in its own coordinate system, the moment in its own coordinate 

system, ok. So, how do we do that? Let us call this force is (𝑓𝑥′, 𝑓𝑦′, 0)
𝑇

, we have to pre 

multiply by a rotation matrix. So, instead of writing it in the 0th coordinate system we can 

write with respect to [𝑅]0
𝑇𝑜𝑜𝑙  times this will give me that force in its own coordinate system. 

And, rotation matrix if you think a little bit is this it is nothing but [
𝑐123 𝑠123 0

−𝑠123 𝑐123 0
0 0 1

] and 

the z-axis is remaining same. The moment in it is own coordinate system is a single vector 

along the z-axis and it will be the same, ok.  

It does not matter whether it is you know because only rotation is about z axis. So, if the 

moment is already about z axis nothing happens ok. So, 𝒏𝑖
𝑖+1  for the tool coordinate 

system is (0,0, 𝑛𝑧 )𝑇, 𝒇𝑖
𝑖+1  for the force in the Tool coordinate system is given by 

(𝑓𝑥′, 𝑓𝑦′, 0)
𝑇
.  
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So, for 𝑖 = 3, we know 𝒇𝑖
𝑖+1  which is (𝑓𝑥′, 𝑓𝑦′, 0)

𝑇
. So, we can compute 𝒇3

3  ok. Then for 

𝑖 = 3, we know what is 𝒏3
3 , how do I find out 𝒏3

3 ? That is by based on this inward 

recursion formula. So, basically we can show that it is a moment plus some 𝑙3𝑓𝑦′. So, there 

is a moment which is acting here, but then it will have some 𝑙3𝑓𝑦′.  



So, 𝑓𝑦𝑙3 will give another moment which is along the z axis. The 𝑓𝑥𝑙3 is along the same 

direction and will not contribute to the moment. So, 𝒏3
3  will be given by this. Then we 

substitute 𝑖 = 2 in the recursion formula and we can obtain 𝒇2
2  and it turns out to be 

(𝑐3𝑓𝑥
′ − 𝑠3𝑓𝑦

′, 𝑠3𝑓𝑥
′ + 𝑐3𝑓𝑦

′, 0)
𝑇
. 

And, moment is 𝒏𝑧′ which is there then 𝑙3𝑓𝑦′ which is there, but then we have an additional 

component coming because of the moment arm at 2. So, 𝑙2(𝑠3𝑓𝑥
′ + 𝑐3𝑓𝑦

′). Finally, we can 

substitute 𝑖 = 1, in the recursion formula and we can get 𝒇1
1  and 𝒏1

1 , ok.  

So, 𝒇1
1  is some cos(𝜃2 + 𝜃3) 𝑓𝑥

′ − sin(𝜃2 + 𝜃3) 𝑓𝑦′ and so on, ok. And, similarly the 

moment is 𝒏𝑧′ then 𝑙3𝑓𝑦′ then this term and then one more additional term due to 𝑙1 ok.  
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So, and what are now the joint torques which are required to maintain equilibrium? We 

just take the Z component of 𝒏1
1  for 𝜏1, Z component of 𝒏2

2  for 𝜏2 and again Z 

component of 𝒏3
3  for 𝜏3. So, in this case we are looking at the moments because all the 

joints are rotary joints and they can only apply a moment. 

So, if you take the Z component we will get some 𝒏𝑧
′ + 𝒇𝑥

′ (𝑙1𝑠23 + 𝑙2𝑠3) +

𝑓𝑦′(𝑙1𝑐23𝑙2𝑐3 + 𝑙3) and so on; 𝜏3 will be 𝒏𝑧
′ + 𝑓𝑦

′𝑙3. So, these above equations these three 

equations can be rearranged to be written like this. So, the left hand side is this vector 𝜏 

which is 𝜏1, 𝜏2, 𝜏3 the right hand side is (𝑓𝑥, 𝑓𝑦 , 0,0,0, 𝑛𝑧)
𝑇
. 



So, we have a force which is acting at that end in the 0th coordinate system we have 

reconverted it back to 𝑓𝑥, 𝑓𝑦, 𝑛𝑧 not primes anymore, ok. And, the left hand side is 𝜏1, 𝜏2, 

𝜏3 and this we have a matrix with elements like this. So, the first element is (−𝑙1𝑠1 −

𝑙2𝑠12 − 𝑙3𝑠123) then (𝑙1𝑐1 + 𝑙2𝑐12 + 𝑙3𝑐123) and three 0s 1 ok.  

The last row for example, is minus (−𝑙3𝑠123, 𝑙3𝑐123, 0,0,0,1). So, if we look a little bit 

carefully at this matrix you can see that you have seen this matrix before, ok. So, if we go 

back to velocity kinematics, you may recall what is this matrix for the planar 3R 

manipulator.  
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So, it turns out that the terms in this square bracket is nothing but the transpose of the 

Jacobian matrix remember we had derived Jacobian matrix using velocity propagation and 

then again rearranging terms for the planar 3R example. So, the term here what we get is 

transpose of that Jacobian matrix which we have already seen, ok. So, this is the interesting 

part.  

We are doing statics, but the Jacobian matrix which we are derived for velocity kinematics 

appears not exactly the Jacobian matrix, but the transpose of the Jacobian matrix appears, 

ok. So, as in velocities, we can denote forces and moment acting on the end-effector by 6 

× 1 entity not really a vector.  



So, first top three is the force acting at the end-effector and the bottom three are the three 

components of the moment which are acting at the end-effector. So, basically 

(𝑓𝑥, 𝑓𝑦 , 𝑓𝑧; 𝑛𝑥 , 𝑛𝑦, 𝑛𝑧)
𝑇
 so, this is not really a vector because the force and moment have 

different units, ok. So, what is force? Newton. What is moment? Newton meters ok. So, 

they have different units.  

This quantity is ℱ𝑇𝑜𝑜𝑙
0  is called a wrench in theoretical kinematics, ok. So, basically a 

wrench can be thought of as a screw with a magnitude which has units of force, ok. Let us 

not worry about it, but in theoretical kinematics a combination like this using some mindset 

approaches like using homogeneous coordinates can be thought of as a 6 × 1 entity proper 

entity without this messing up of units.  
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So, now consider an infinitesimal Cartesian displacement of the end-effector, ok. So, what 

do we mean by Cartesian displacement. So, there is a displacement of (𝛿𝑥, 𝛿𝑦, 𝛿𝑧) and also 

let us think of a small change in the orientation given by 𝛿𝜃, ok. So, a little bit of hand 

waving, but we know that we can derive the three Euler angles and then we can think of 

the change in orientation roughly in terms of 𝛿𝜃, ok. 

So, the and the virtual work done by this force and moment which is acting on this end-

effector. So, the virtual work done by the external forces moments can be equated to the 

virtual work done by at the joints. So, what is the virtual work done by the end-effector at 



the end-effector? It is the force and moment dot product with this infinitesimal 

displacement 𝛿 𝒳0
𝑇𝑜𝑜𝑙, ok. So, it is ℱ𝑇𝑜𝑜𝑙

0 ⋅ 𝛿 𝒳0
𝑇𝑜𝑜𝑙 which is nothing but 𝒇𝑇𝑜𝑜𝑙

0 ⋅

𝛿𝒙 + 𝒏𝑇𝑜𝑜𝑙
0 ⋅ 𝛿𝜃. 

And, what is the virtual work done at the joints? It is 𝜏 ⋅ 𝛿Θ. So, from the definition of 

Jacobian, what is this Jacobian? This is 𝛿 𝒳0
𝑇𝑜𝑜𝑙 is related to [𝐽(Θ)𝑇𝑜𝑜𝑙

0 ]𝛿Θ. So, it is very 

similar to velocity is equal to [𝐽(Θ)𝑇𝑜𝑜𝑙
0 ]Θ̇. So, now, we can say that this ℱ𝑇𝑜𝑜𝑙

0 ⋅

𝛿 𝒳0
𝑇𝑜𝑜𝑙 = ℱ𝑇𝑜𝑜𝑙

0 ⋅ [𝐽(Θ)𝑇𝑜𝑜𝑙
0 ]𝛿Θ = 𝜏 ⋅ 𝛿Θ. 

So, the above equation holds for all 𝛿Θ, this is the standard way we use this principle of 

virtual work. And hence we can show that this 𝜏 = [𝐽(Θ)]𝑇𝑜𝑜𝑙
0 𝑇 ℱ𝑇𝑜𝑜𝑙

0  because this dot 

product 𝑎 ⋅ 𝑏 is nothing but [𝐽(Θ)]𝑇𝑜𝑜𝑙
0 𝑇 ℱ𝑇𝑜𝑜𝑙

0 , ok. So, if you think a little bit if you think 

a little bit we can see that this torque at the joints is related to the external forces and 

moments by this [𝐽(Θ)]𝑇
𝑇𝑜𝑜𝑙

0 , ok. 

And, hence it is not very surprising that the Jacobian appears in statics ok. So, this is a 

very very useful expression it tells you that if you apply a force on the end-effector in a 

serial robot you need to apply some torque to keep it in equilibrium and this torque is given 

by [𝐽(Θ)]𝑇𝑜𝑜𝑙
0 𝑇 ℱ𝑇𝑜𝑜𝑙

0 . 
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Our parallel manipulator statics: so, for serial manipulators 𝜏 = [𝐽(Θ)]𝑇𝑜𝑜𝑙
0 𝑇 ℱ𝑇𝑜𝑜𝑙

0 . The 

principle of virtual work is equally applicable for parallel manipulator, ok. So, all we need 

to do is we need to say instead of [𝐽]𝑇𝑜𝑜𝑙
0  we have [𝐽𝑒𝑞]𝑇𝑜𝑜𝑙

0  and what was [𝐽𝑒𝑞]𝑇𝑜𝑜𝑙
0 ? 

[𝐽𝑒𝑞]𝑇𝑜𝑜𝑙
0  had to do deal with [𝐽𝑣], [𝐽𝑣

∗], [𝐾∗], [𝐾] and so on, and similarly, [𝐽𝜔
∗ ], [𝐾∗], and 

all these various things which we are derived in the velocity analysis. 

So, what is the subtle difference? Basically, we have to say that the {Tool} is the chosen 

end-effector, ok. In a serial manipulator the end-effector is very natural; in a parallel 

manipulator we have to derive this Jacobian for the chosen end-effector and this [𝐽𝑒𝑞] is 

the is the equivalent Jacobian, it is a function of all the passive and active joints. It is a 

function of the 𝒒 the configuration variables. 

And, 𝜏 is the vector of forces or torque applied at the actuated joints only, ok. So, in a 

parallel manipulator we have actuated joints and passive joints. You are not going to apply 

any torque on the passive joints. So, 𝜏 is only the forces and moments which are applied 

on the actuated joints. 

It is quite difficult to compute [𝐽𝑒𝑞]𝑇𝑜𝑜𝑙
0  basically because there is a [𝐾∗]−1, if you go back 

and see the notes you can see the [𝐽𝑒𝑞]𝑇𝑜𝑜𝑙
0  in a parallel robot contains is [𝐾] and [𝐾∗]−1. 

The inverse problem is to obtain the forces and moments applied by the Tool, ok.  

So, suppose I give you the joint torques that we are applying so much moment or so much 

torque at the joints, what is the end-effector applying to the environment? So, we could 

symbolically write it as inverse of this matrix which is what is written here [𝐽𝑒𝑞(q)]
−𝑇

𝑇𝑜𝑜𝑙

0

. 

So, that is the force which the end-effector is applying on to the environment.  

So, this is clearly very very hard to obtain, right because [𝐽𝑒𝑞(𝐪)]𝑇𝑜𝑜𝑙
0  already had some 

[𝐾], [𝐾∗]−1. Now, you have to find the inverse of that whole quantity, ok. So, this is not 

possible, who? For most parallel robots; however, it is required to be solved for several 

robots and it can solve very simply for the Gough-Stewart platform, ok. 
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So, it can be shown to be very easily solvable for as fully in parallel manipulator meaning 

that between the output and the input that is only one actuated joined. So, let us go back 

and look at this in a little bit more detail. So, the leg of a Stewart platform consists of one 

P joint, one S joint at the top platform moving platform and a U joint on the base fixed 

base.  

So, there is a vector 𝒃𝑖
𝐵0 , there is a vector 𝒕

𝐵0  to the origin of the moving platform, there 

is a local vector which locates the spherical joint in the moving coordinate system and then 

there is this two rotations at this hook joint, ok. So, we can rewrite this vector from 𝐵𝑖 to 

𝑆𝑖 ok. So, basically the vector along the leg is nothing but 𝒑𝑖
𝑃0  this plus this minus this 

vector, ok.  

So, 𝒕
𝐵0  plus 𝒑𝑖

𝑃0  rotated back into the base coordinate system in the {𝐵0} coordinate 

system minus this. So, that will give this vector. The unit vector along this leg is nothing 

but this vector divided by 𝑙𝑖 because the magnitude of this vector is the translation at the 

prismatic joint. 
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So, the force exerted by the actuated prismatic joint is nothing, but 𝑓𝑖 𝒔𝑖
𝐵0 , so, the from the 

unit vector. The moment of the force about the origin {𝐵0} ok; so, the unit vectors there is 

a force acting this. So, the moment will be this vector cross that force which is what is 

written here 𝑓𝑖( 𝒃𝑖
𝐵0 × 𝒔𝑖

𝐵0 ). 

So, if you denote the external force and moment by ℱ𝑇𝑜𝑜𝑙
0  which is nothing, but the force 

acting on the end-effector and the moment acting on the end-effector. This must be 

balanced by the force along the leg and the moment which is acting with respect to the 

fixed coordinate system. So, this must be equal to this, ok. 

So, in matrix form we can rewrite this portion as some matrix [𝐻]𝒇𝑇𝑜𝑜𝑙
𝐵0 , ok. So, the end 

effective force and the end-effector moment is equal to 𝒔𝑖
𝐵0 𝑓𝑖 and ( 𝒃𝑖

𝐵0 × 𝒔𝑖
𝐵0 )𝑓𝑖. So, we 

can rewrite this in a matrix form and times 𝒇. So, what is this matrix? It is nothing but the 

unit vectors and the moments of the unit vectors. What is this 𝒇? That is 𝑓1, 𝑓2, 𝑓3 altogether 

till 𝑓6, ok. 
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So, we have the force transformation matrix as I said the top portion is this unit vector 

along the leg and the bottom portion is the moment of that unit vector from the fixed origin. 

Second column is the second unit vector along the second leg and the moment of the 

second unit vectors and so on till the sixth unit vector along the sixth leg and the moment 

of that sixth unit vector. 

So, in a Stewart Gough platform there are six legs and so, the H matrix consists of these 

six column vectors and it is multiplied by 𝒇 which is nothing but the 𝑓1 through 𝑓6. The 

prismatic joints can only apply force along that like along the direction of the prismatic 

joint. So, like the Jacobian matrix, this matrix is also not a dimensionally homogeneous 

matrix. Why?  

Because this is a unit vector, but this has some length cross that unit vector. So, this portion 

has units of length, this portion does not have any units, ok. But, as you can see this is so 

much easier to compute or so much easier to evaluate corresponding to [𝐽(𝐪)]−𝑇
𝑇𝑜𝑜𝑙

0 ; both 

must be same, ok.  

In previous case also we obtained the external force in terms of the leg forces using 

[𝐽(𝐪)]−𝑇
𝑇𝑜𝑜𝑙

0  and in this case it is in terms of a matrix which we call as the force 

transformation matrix. But, this force transformation matrix is much simpler to compute. 

And, you can easily extend to any fully in parallel manipulator and then in that case, there 

will be 𝑛 columns, ok. 
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 So, now, let us look at the singularity in the force domain, ok. So, what is the direct force 

analysis? Obtain the external forces and moment given the leg forces. So, what is the leg 

forces? This vector 𝒇 and if we know this force transformation matrix, we can find the 

external forces and moments. 

How about inverse? Again, the leg forces given the external forces and moments. So, if I 

tell you that the top platform of a Stewart platform, moving platform is experiencing some 

force and moment, an external force and moment is acting on the top platform. What is the 

forces required in the prismatic joints to keep it in equilibrium? The answer is 𝒇 =

[𝐻]−1
𝑇𝑜𝑜𝑙

𝐵0 ℱ𝑇𝑜𝑜𝑙
𝐵0 . 

So, there is an inverse which is coming in; if the determinant of [𝐻] is equal to 0 then the 

inverse problem cannot be solved that is obvious, right. So, determinant of [𝐻] equal to 0, 

I cannot find a 𝒇 for the external force and moments which are acting on the moving 

platform of this Stewart platform. So, this is called as force singularity, ok. So, as 

determinant of [𝐻] tends to 0, this 𝒇 will tend to infinity and any external force moment 

along certain directions cannot be resisted by the parallel manipulator, ok.  

So, analogous thing in velocity singularity, no joint rates can cause motion along certain 

singular direction, but �̇�’s goes to infinity if you want to move in the singular direction. 

Here any external force/moment along certain singular directions cannot be resisted by the 



parallel manipulator. So, thing is one is cannot be resisted and in velocity it cannot be 

applied, ok. 
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So, the force singularity can be visualized as using degeneracy of the force ellipsoid, ok. 

So, what is the force ellipsoid. So, in a Stewart Gough platform the external force is given 

by 𝑭 = [𝐻𝑭]𝒇. So, we are taking some part of the [𝐻] matrix which is the top half 𝒔1, 𝒔2 

all the way till a 6 times 𝒇. 

So, the square of this force or the magnitude of the force can be written as 𝒇𝑇[𝑔𝑭]𝒇, where 

[𝑔𝑭] = [𝐻𝑭]𝑇[𝐻𝑭]. So, just like we did for the velocity analysis, velocity ellipse and 

velocity ellipsoid.  

So, the maximum intermediate and minimum values of this force, magnitude of this force 

subject to a constraint of the form 𝒇𝑇𝒇 = 1, very similar to what we did for velocity Θ̇𝑇Θ̇ =

1 and eigenvalues of [𝑔𝑭], ok. So, since the rank of [𝑔𝑭] is 3, the tip of the force vector 

lies on the ellipsoid in ℜ3. 
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If the rank of [𝑔𝑭] is 2, the force ellipsoid shrinks to an ellipse and this Stewart platform 

manipulator cannot apply a force normal to the plane of the ellipse. If the rank of [𝑔𝑭] is 1 

the Stewart platform manipulator cannot apply a force in a plane or cannot apply any 

external force respectively; if it becomes 0, then it cannot apply any external force, ok. 

Example: Stewart platform with fixed base and moving platform as regular hexagon. So, 

the top is a hexagon regular hexagon 6 sided equal and the bottom is also a regular hexagon 

with all the 6 sides been equal, ok. And, we consider all the legs as parallel. So, basically 

considered that hexagons are equal in size. 

So, for such a configuration the [𝐻] matrix will be all the leg vectors are along the Z-axis 

(0 0 1) (0 0 1) and so on and the moment of this Z-axis can be written in terms of y and x. 

So, 𝑏1𝑦, −𝑏_1𝑥,  𝑏2𝑦, −𝑏2𝑥 and the z components will be 0. So, there is a vertical line and 

there is a vector which is in the x-y plane. So, the moment is 𝒓 cross that line and this is 

what you will get.  
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So, now, you can see that the three rows of [𝐻] are 0, ok. So, 1, 2 and 3 rows of [𝐻] are 0. 

So, the [𝐻] which is the top portion, two rows are 0 and the bottom portion only one row 

is 0, ok. So, [𝑔𝑭] has a rank 1; obviously, right because there is only one column vector. 

So, it is 0 0 1 everywhere, so it has rank 1. 

So, the tip of the force vector can only lie along a line, ok. It has dropped by two ranks and 

only a vertical external force can be resisted is not that obvious? That we have a hexagonal 

top and a hexagon on bottom all the legs are exactly vertical, ok. So, you can only apply a 

force from the top and that will be resisted. Any other force in the x or y direction cannot 

be resisted, the Stewart platform will just follow over, ok. 

So, the Stewart platform in this configuration which is the you know very simple 

configuration which you can visualize as singularity along 𝐹𝑥 and 𝐹𝑦, ok. The singularity 

is also along 𝑀𝑧, why? Because you can see the last row is also 0 0 0. So, if I apply a 

moment about the Z-axis again it cannot be resisted, ok. 

So, this kind of analysis was used in a work by one of our IISc students and he showed 

how we can design a sensitive Stewart platform. Why? Because if you can make the 

Stewart platform very close to a singular configuration a very small force will lead to a 

very large value of force in the legs.  

Remember it is divided by the determinant, ok. So, he showed that you can design very 

sensitive 6 component force tourqe sensors and these sensors are basically Stewart 



platform based sensors which are very close to a singular configuration not exactly a 

singular configuration, ok. 
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Finally, let us look at the relationship between gain and force singularity. Remember, in a 

parallel robot we had something called as a gain singularity and to recollect if determinant 

of [𝐾∗] equal to 0, the parallel manipulator gains one or more degrees of freedom 

instantaneously, ok. I have shown you for the 4-bar as well as for the 3 RPS robot. 

If determinant of [𝐻] equal to 0, the parallel manipulator cannot resist forces or moment 

in one or more directions at that configuration this is what I have shown in the last few 

slides. So, the question is, is there a relationship between the two? What happens when 

you cannot resist forces and what happens when you gain one or more degrees of freedom, 

ok. So, what I will do is, I will illustrate what is happening in these two cases by using a 

simple 4-bar mechanism because that can be worked out.  
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So, let us look at a 4-bar mechanism. So, we have this 4-bar mechanism and there is a 

force which is acting at third joint. So, this is that vector 𝑭 which is acting. So, when we 

are looking at singularity the actuator joint is locked. So, 𝜃1 is locked. So, which means 

basically this point 𝑂2 is also fixed. So, what do we have? We have like a truss member, 

we have one link, one joint, another link and this is the fixed link. So, this is drawn here 

in more detail. 

So, we have a fixed base and we have a truss, we have three links and there is a force 

acting 𝑭 maybe at an angle 𝛽 to the horizontal axis and then we can define these angles 𝛼1 

and 𝛼2. So, 𝛼1 is this angle and 𝛼2 is this angle. So, this is not 𝜙1 or 𝜙2, but it is sort of 

related to 𝜙1 and 𝜙2. 

So, if you have a force which is acting at an angle 𝛽, this will lead to two forces in these 

two links. Let us call them 𝑇1 and 𝑇2 and the angle with these two links makes at this vertex 

is 𝛾. Because of this force or because of this forces along the axial members between these 

this link or along this link, we will have reactions 𝑅1 and 𝑅2 at this joint ok.  

There will be an action at this joint also, but we can just concentrate on what is happening 

to 𝑅1 and 𝑅2 the reaction. So, we will try to find out what is 𝑅1 and 𝑅2 as a function of 𝑭 

this angle 𝛼1, 𝛾 and 𝛽 ok.  
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So, let us repeat with theta 1 locked, point 𝑂2 is fixed. For a given 𝜃1, 𝑙0 and 𝑙1 the length 

𝑑 opposite to 𝜃1 is known. Draw the planar truss structure determined by link 2, link 3 and 

the now fixed side 𝑂2 − 𝑂𝑅. Angles 𝛼1 and 𝛼2 can be computed in terms of theta 1, 𝜙1 

and 𝜙2, not important, but if necessary we can find out depending on the lengths. 

Now, consider a force (𝐹𝑥, 𝐹𝑦)
𝑇
 acting at an angle at point 𝑂3 whatever I have shown you 

in the previous drawing and we want to find the axial forces 𝑇1 and 𝑇2 acting along the 

links 𝑂2 − 𝑂3 and 𝑂3 − 𝑂𝑅 of the planar truss. 
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How do we find this we draw the free-body diagram and you can show that 



(
𝐹𝑥

𝐹𝑦
) = (

cos 𝛼1 − cos 𝛼2

sin 𝛼1 sin 𝛼2
) (

𝑇1

𝑇2
) 

This is a standard problem which we do in statics in undergraduate. So, there is a three 

link we have a force. Only difference here is the force is not acting vertically, it is acting 

at some random angle 𝛽. 

So, once we have 𝐹𝑥, 𝐹𝑦 in some function of 𝑇1, 𝑇2 we can also find out 𝑇1, 𝑇2 as a function 

of 𝐹𝑥 and 𝐹𝑦, ok. So, basically what you will end up is something which is some matrix 

1

sin(𝛼1+𝛼2)
(

sin 𝛼2 cos 𝛼2

− sin 𝛼1 cos 𝛼1
). 
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So, from 𝑇1 we can now obtain the reactions 𝑅1 and 𝑅2 at joint 𝑂2. So, let us go back and 

see this picture once more. So, I have a force which is acting at an angle 𝛽 this components 

𝐹𝑥 and 𝐹𝑦 they can be related to 𝑇1, 𝑇2 by simple force equilibrium at this node. And, then 

from 𝑇1, I can find 𝑅1 and 𝑅2 and it turns out that you will get these angles 𝛼1, 𝛼2 and so 

on, ok.  

So, 𝑅1 and 𝑅2 is obtained as 1/ sin(𝛼1 + 𝛼2) times some matrix which now contains both 

cos 𝛼1 sin 𝛼2 and so on times (𝐹𝑥, 𝐹𝑦)
𝑇

. So, the torque required at joint 1 to keep the four-

bar mechanism in equilibrium is 𝜏1 = 𝑅1𝑙1𝑠1 − 𝑅2𝑙1𝑐1. How did we get this? This is 

obtained again from equilibrium.  



So, if you look at this point so, there is 𝑅1 and 𝑅2 and 𝜏1 will not appear. So, equilibrium 

at this point moment equilibrium will give me what is the relationship between 𝑅1, 𝑅2 and 

this force what is a torque which is acting at the joint which is along the z-axis ok. So, this 

is the expression that you will get. 

If determinant [𝐻] is 0, i.e. sin(𝛼1 + 𝛼2) = 0. So, we have 𝛼1, 𝛼2 and 𝛾 ok. So, if 

sin(𝛼1 + 𝛼2) = 0 or 𝛾 = 𝜋, because the sum of the three angles inside the triangle will be 

𝜋, ok, so, then link 2 and link 3 will be aligned, ok. So, think of it this way. Let us go back 

to this figure once more. 

So, when determinant [𝐻] is 0, sin(𝛼1 + 𝛼2) = 0. So, 𝛼1 + 𝛼2 = 0. So, basically this link 

and this link at parallel are lying on top of this base ok, they are aligned. So, this is exactly 

the same as what was happening when you had gain singularity. 

So, in the case of gain singularity if 𝜃1 is locked, this second link and the third link were 

aligned ok. So, gain singularity is same as force singularity. So, determinant of [𝐻] equal 

to 0 is same as determinant of [𝐾∗] equal to 0, ok. So, gain singularity: Instantaneous 

velocity is perpendicular to link 2 and 3. 

Force singularity: Any force along the single direction gives rise to infinite 𝑅1 and 𝑅2 and 

infinite 𝜏1. So, if you apply a force along the singular direction which is perpendicular to 

link 2 and 3, then you need infinite thought to keep it in equilibrium ok. So, the bottom 

line is the gain singularity which is determinant of [𝐾∗] equal to 0 is same as determinant 

of [𝐻] equals to 0, which is the force singularity at least for the planar four-bar mechanism, 

ok. And, it turns out it is true for all parallel mechanisms.  
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So, in summary, when we look at statics all the actuated joints are locked and the 

manipulator becomes a structure. So, we can find the reaction forces and moments at the 

joints due to externally applied force and moment using free-body diagrams, ok. 

Propagation of forces and moments in serial manipulator is similar to propagation of 

velocities. 

So, remember 𝒇𝑖
𝑖  is something which is [𝑅]𝑖+1

𝑖 𝒇𝑖+1
𝑖+1 , except in a serial manipulator it 

is going backwards. For velocity analysis it went from the fixed base to the end-effector, 

in the case of serial manipulator statics the forces and moments go backwards from the 

end-effector to the fixed base. 

So, in serial manipulator joint torques are related to external forces moments by the 

transpose of the manipulator Jacobian. So, we have this well known expression 𝜏 = [𝐽]𝑇𝒇. 

In velocity kinematics it was 𝒱 = [𝐽]Θ̇. For parallel manipulators especially in parallel 

manipulators we can define something called as the force transformation matrix. 

So, the loss of rank of Jacobian or force transformation matrix is this singularity, ok. So, 

force/moment applied along the singular direction cannot be resisted. And, in gain 

singularity in parallel manipulator is identical to the loss of rank of force transformation 

matrix, ok.  

So, determinant of [𝐻] equal to 0, which is loss of rank of force transformation matrix is 

same as determinant of [𝐾∗] equal to 0, ok. So, with this we will stop this discussion on 

velocity analysis and static analysis of serial and parallel manipulators. Thank you. 


