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Welcome to this NPTEL lectures on Robotics Basic and Advanced Concepts. In this last 

three lectures we had looked at the Lagrangian formulation to derive the equations of 

motion. I had showed you examples of equations of motion and then I had shown you what 

to do with the equations of motion. Basically, inverse dynamics and simulations of 

equations of motion. 

In this last part, we will look at Recursive Formulation of Dynamics of Manipulator. So, 

basically the idea is how we can obtain efficiently the equations of motion and how 

efficiently we can solve the inverse and dynamics on the simulation of equations of motion. 

So, this last lecture deals with recursive formulation of dynamics of manipulators. 
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Ok little bit of introduction, why do we need to find efficient ways to derive equations of 

motion or solve both the inverse problem and the direct problem in dynamics. So, lately 

there has been a lot of interest in what are called redundant robots, proteins, automobiles 

etcetera which have large number of links ok. These are multi body system with many 

many links. 

So for example, in this picture it shows a part of a protein ok. So, basically these are amino 

acid residues these are unit there are various types of amino acids. There are 20 types of a 

amino acid residues, and all these amino acids are arranged as a serial chain initially in a 

protein ok, and then there could be between 50 and 500 residues. So, each of this residue 

is like a rigid body ok with two degrees of freedom connecting both these two residues. 

So, these are the very well known 𝜙 and 𝜓 angles between two of them so, this is 𝜙 and 

this is 𝜓. I have shown in this picture here. So, if you have between 50 and 500 such 

residues connected in sequence as a series each with 2 degree of freedom joints, then we 

have to deal with between 100 and 1000 joint variables.  

So, you can see in a robot with 6 degrees of freedom we have only 6 joints, but something 

like a protein chain ok we have between 100 and 1000 joint variables. So, it is clearly of 

interest to derive these equations of motion properly. So, that we can solve them or do the 

inverse problem direct problem quickly and efficiently ok. 
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So, the basic motivation is that we have this 2 degrees of freedom between two residues 

and we need to solve the direct and the inverse problem of large multi body systems ok, 

efficient 𝒪(𝑁) algorithms are better are desired, ok. 
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So, let us go back and review inverse dynamics once more. So, we are given 𝒒(𝑡), �̇�(𝑡) 

and �̈�(𝑡) so, we have to find 𝜏(𝑡). So, there is one formulation which is called as the 

Newton Euler formulation, which basically uses Newton’s law and Euler equations of 

motion for each link 𝑖 and what does it say?. 

It says that the force external force is related to the acceleration of the CG by Newton’s 

law so 𝐹 = 𝑚𝑎 so, �̇� = 𝑎. And the external moment is related to the 𝛼 ok the angular 

acceleration and the angular velocity by this equation. So, 𝐼𝛼 + 𝜔 × 𝐼𝜔 ok so, 𝑚𝑖, 𝐶𝑖 , [𝐼𝑖] 

are the mass, centre of mass and inertia of the link 𝑖 respectively ok.  

So, we require computation of position orientation velocity and acceleration ok so it 

involves all of these. So, the position and orientation can be computed using the [𝑇]𝑖
𝑖−1  

transformation matrices ok. So, we have a set of rigid bodies, we can use either the DH 

parameters or just simply 𝑥, 𝑦, 𝑧 and the rotation matrix. We can obtain the transformation 

matrix, and we can obtain the position and orientation ok of any link with respect to any 

other link. 

Linear and angular velocities can be computed using propagation formulas, specially if it 



is a serial chain, serial change we can start from one end and go to the other end ok. If it is 

not a serial chain if there are parallel chains. If there are closed loops in the chain then we 

need to go back and use the basic formulas of angular velocity and linear velocity. 
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So, for rotary joint the propagation formulas are presented once more. So, 𝜔𝑖 𝑖 =

[𝑅]𝑖−1
𝑖 𝜔𝑖−1

𝑖−1 + 𝜃�̇�(0,0,1)
𝑇. It is pre multiplied by rotation matrix so, that all the vectors 

are in the same coordinate system. Similarly, the velocity of the origin is given by the 

velocity of the origin of the previous link plus some 𝜔 × 𝑟 again pre multiply by a rotation 

matrix. 

If they have a prismatic joint, then the angular velocities are same the two consecutive 

links. And the linear velocity is the linear velocity of the origin of the previous link plus 

𝜔 × 𝑟 plus the translation at the prismatic joint which is 𝑑𝑖̇ . The acceleration of an arbitrary 

point on the rigid body {𝑖} we can differentiate velocity with respect to time. And we can 

get �̇� as the acceleration of the origin, acceleration of the particle in its own coordinate 

system, then we have this term called 2𝜔 × 𝑉. 

So, those are few remember basic mechanics this is the Coriolis term ok, then we have 

�̇� × 𝑝 which is the angular acceleration times [𝑅]𝑖
0 . And finally, also we have this 

centripetal term which is like 𝜔 × (𝜔 × 𝑟). So, we have written this in this robotics 

language using rotation matrices, but the basic idea is exactly same ok. 



So, we have terms which are acceleration of the origin, acceleration of the particle in its 

own coordinate system, Coriolis term, angular acceleration times [𝑅]𝑖
0 , and centripetal 

term. If 𝒑𝑖  is constant then this 𝑽𝑖 𝑝 = �̇�𝑖 𝑝 = 0. 
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So, when the joint 𝑖 + 1 is rotary ok. We can find the acceleration of the origin of the (𝑖 +

1)th coordinate system in terms of the acceleration of the origin of the 𝑖th coordinate system, 

then 𝛼 × 𝑟 and then 𝜔 × (𝜔 × 𝑟). 

And the acceleration angular acceleration can be written in terms of acceleration of the 

previous link, plus 1 term which is 𝜔 × �̇�𝑖+1. So, this term will appear, this is not really 

obvious where it comes from but, if you take the derivative you will get 1 term and then 

finally �̈�𝑖+1. 

If joint 𝑖 + 1 is prismatic, again we can find the acceleration of the (𝑖 + 1)th link in terms 

of the previous link and some 𝛼 × 𝑟, 𝜔 × (𝜔 × 𝑟), then this Coriolis term 2𝜔 × �̇� and then 

�̈� ok acceleration of the prismatic joint itself. And the acceleration of the (𝑖 + 1)th link 

angular acceleration is the same as the angular acceleration of the previous link, because 

the prismatic joint only allows relative translation. 

So, the acceleration of the centre of mass of link 𝑖 is the acceleration of the origin of the 

link 𝑖 then, 𝛼 × 𝑟 where 𝑟 locates the centre of mass of link 𝑖 and then 𝜔 × (𝜔 × 𝑟) this is 

the centripetal term. So, 𝒑𝑖 𝐶𝑖
 is the position vector of the centre of mass of link 𝑖 with 



respect to the origin 𝑂𝑖. 

(Refer Slide Time: 09:30) 

 

So, we can use propagation formulas for position and orientation of the link. Then we can 

do this outward iteration from 0 to (𝑁 − 1) and obtain the link angular velocity, angular 

acceleration, linear acceleration, and the acceleration of the CG of the link 𝑖 + 1 starting 

from 0. So, first from 0 we go to 1 from 1 we go to 2 and so on. 

Basically we will use these formulas these formulas are for the rotary joint, if you have 

any joint in between prismatic we have to change the formula. So, once we have the 

accelerations we can use Newton’s and Euler’s equation. So, basically what is the force, 

which is acting on the (𝑖 + 1)th link it is the mass times the acceleration of the (𝑖 + 1)th 

link. 

What is the moment? The moment is nothing but 𝐼𝛼 + 𝜔 × 𝑟 again all this superscript and 

subscripts to are to make sure that we are doing it in the correct coordinate system and the 

correct link. So, we have to be consistent that is all. But the basic idea is simple mechanics, 

we find the angular velocity, we find the angular acceleration by derivative, we find the 

linear acceleration of the origin, we find the linear acceleration of the centre of mass of a 

link, and then equate to force and moment  
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Now, 𝑭𝑖 𝑖 and 𝑵𝑖 𝑖 are known from outward iteration. So, if I go from position, then 

velocity, then acceleration, then the left hand side which are the forces and moments are 

given. So, now we use free body diagram and we compute the joint torques from 𝑭𝑖 𝑖 and 

𝑵𝑖 𝑖. So, what is the force which is acting at the joint it is nothing but the external force 

which is computed from the Newton’s law and the force which is being exerted from the 

outward link to the previous link. 

Likewise the moment it is nothing but the external moment plus some 𝑟 cross the force ok, 

moment due to this external force and then we have this moment due to the reaction force 

from the next link, and then we have this reaction moment which is coming from the next 

link. 

And finally, we can obtain the torque which is acting at the joint which is nothing but the 

Z component of this moment. So, this is again assuming it is a rotary joint, if it was a 

prismatic joint then it will be the Z component of this force ok. So, what have we started 

with? 

We started with position and orientation we used homogeneous transformation matrices, 

then we found velocities and acceleration. Then we evaluated the external force using 

Newton’s and Euler’s law, and then we go backwards ok and find the torques at each joint 

ok. 



So, we go outwards for position and velocity and inwards for joint torques ok. To include 

gravity we basically have to make sure that the base which is the fixed coordinate system 

is accelerating upwards with the gravity vector 𝒈 ok 1.0g acceleration. Then automatically 

the gravity effect will percolate or propagate through all the links. 

So, the algorithm above is given for rotary joint, if you want to also include prismatic 

joints. We have to suitably appropriately use the equations for the prismatic joints at the 

correct places. 
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So, this Newton Euler algorithm has 𝒪(𝑁) computational complexity ok, what does it 

mean by 𝒪(𝑁) complex computational complexity? Is that it scales with the number of 

links linearly ok. So, the computation in sets (43-44) which is propagation of velocities 

evaluation of forces and moments and then backward propagation which is this 45 is done 

only once for each link ok. 

That is the basic bottom line. There are no iterations ok. So, the number of multiplication 

and additions to do these three sets, propagation of velocities and accelerations evaluation 

of external forces and moments and evaluation of joint torques is proportional to 𝑁, which 

is the number of links ok. 

So, it is very easily adapted for any serial robot with rotary and prismatic joint. So, if you 

give me a serial robot with 100 links, I can use this algorithm to obtain the joint torques 



ok for at each one of these joints ok. We can also use this 𝒇𝑖 𝑖 and 𝒏𝑖 𝑖 to compute all the 

components of reaction at the joints ok. 

So, we took only the z components which are the joint torques, but the 𝑥, 𝑦 and the other 

components are basically absorbed by the structure of the joint. But if you need to design 

that structure say for example, you need to design the pairings of this serial chain. We can 

compute this complete force 𝒇𝑖 𝑖 and complete moment acting at the joint; and then we 

have an idea how to go about designing the structure. 

So, this algorithm can be used for symbolic computation of equations of motion in a 

computer algebra system ok. So, basic steps [𝑇]𝑖
𝑖−1  then product of transformation 

matrices, then propagation of angular velocity, propagation of linear velocity, propagation 

of linear acceleration, propagation of the acceleration of the centre of mass and then 

finally, we go backwards and find the joint torques ok. 

And this can be done in an automated manner using a computer algebra system, and this 

has been used extensively in robotics ok. So, for a given robot what is the joint torques 

required? So, basically this is the inverse problem which we are solving and we are solving 

the inverse problem using an 𝒪(𝑁) algorithm ok. 

So, think about it carefully is this the inverse problem? Yes. We are starting from the given 

position and orientation. Then the velocities then the acceleration and then we eventually 

end up in finding the torques, which are required to achieve the desired position and 

orientation and the velocities and accelerations ok. 
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In forward dynamics of serial manipulator ok, the problem is you are given the torque the 

joint torques you have to find 𝒒(𝑡). So, it involves basically two steps, first steps is to 

obtain �̈�(𝑡) then we have to integrate �̈�(𝑡) with initial conditions to obtain �̇�(𝑡) and 𝒒(𝑡). 

So, the algorithm if you say that we have an 𝒪(𝑁) algorithm for forward dynamics 

basically it involves only the first step, how to obtain �̈�(𝑡). So, it does not include this 

integration because, integration is a separate part altogether it involves using some 

integration routine ok that cannot be part of the computational complexity. 

So, forward dynamics you are given 𝜏(𝑡) obtain 𝒒(𝑡), but we will stop at how to obtain 

�̈�(𝑡). So, that �̈�(𝑡) is given to some integration routine to integrate and obtain 𝒒(𝑡) and 

�̇�(𝑡). So, we can think of first as a simple brute force approach. So, we can obtain the 

equations of motion using Newton- Euler formulation - 𝒪(𝑁) steps, remember we started 

with position and orientation velocities acceleration using Newton’s law and then obtained 

joint torques. 

So, this can be done symbolically also not numerically, it will be a lot of effort it will be 

involving lot of computer algebra. But nevertheless we can find the equations of motion 

ok and this can be done in 𝒪(𝑁) steps. So, once we have the equation of motion we can 

write [𝑴(𝒒)]�̈� = 𝜏 − [𝑪(𝒒, �̇�)]�̇� − 𝑭(𝒒, �̇�). 

So, we can obtain �̈� by inverting this mass matrix ok, and it is known very well from 



numerical analysis that if you give me an 𝑁 ×𝑁 square matrix. I can do what is called as 

gauss elimination and solve an equation which is of the form 𝐴𝑋 = 𝑌; and the complexity 

of this gauss elimination process is 𝒪(𝑁3). So, this is 𝐴�̈� is equal to some right hand side. 

So, �̈� can be obtained in 𝒪(𝑁3) where 𝑁 is the size of this matrix ok 𝑁 ×𝑁 matrix. 

So, although it is 𝒪(𝑁3), coefficients of 𝑁3 is small for normal robots ok so which is not 

very bad. So, if you have let us say a 2 degree freedom robot or the 6 degree of freedom 

robot it is 63. It will scale as cube of 𝑁, it is reasonably efficient when you have 𝑁 less 

than or equal to 6 ok. So, we can obtain various brute force approaches to find �̈� and this 

is given in this book by Saha ok on forward dynamics algorithms. 

It is not a good idea when 𝑁 is very large. So, for example, in the protein chain 𝑁 is let us 

say 500 ok. So, then 5003 is too much ok, we cannot even use normal computers to invert 

such a big matrix ok. So, in protein chains with 𝑁 between 50 and 500 this inversion of 

this mass matrix is not possible it is not feasible. So, we need more efficient algorithms 

when 𝑁 is large. 
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So, for a while this was a very important topic of research. However, around 1983 this 

researcher whose name is Featherstone, he provided an algorithm which is called as the 

articulated body algorithm. And he showed that we can derive or we can obtain �̈� in 𝒪(𝑁) 

computational complexity ok. 



So if we do not have to do this 𝑁3 business. And to explain this idea of this articulated 

body algorithm we will look at a very simple example so, basically what do we have? We 

have a rigid body 1 and we have a rigid body 2. So, the rigid body 1 can slide along this 

prismatic joint along this direction 𝑋1. So, there is a prismatic joint whose motion is shown 

here. 

Rigid body 2 is mounted on rigid body 1, but there is a slider here. So, the rigid body 2 

can move along this vertical direction ok. So, as I said simplest example: body 1 slides in 

the horizontal rail fixed to the ground body 2 slides on the vertical rail fixed to body 1. So, 

there are no rotations of the bodies ok the 𝑋,𝑌 or the Cartesian coordinates are enough to 

describe the two bodies. So, that is not coordinate for body 1 is (𝑥1, 𝑦1), absolute 

coordinate for body 2 is (𝑥2, 𝑦2). 

So, as soon as you say these are absolute coordinates we can see that there are constraints. 

First one is 𝑦1 = 0 because, the body one translates along the horizontal direction and 𝑥2 −

𝑥1 = 0. Because the body 2 is moving relative to body 1 ok, body 2 is moving in the Y 

direction. So, the X coordinate of body 2, 𝑥2 will be same as X coordinate of body 1. 
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So, the key idea is that we introduce two Lagrange multipliers 𝜆1 and 𝜆2 for the two 

constraints, where we have two constraints we introduce two Lagrange multipliers. The 

equation of motion and the algebraic constraints of body 1 can be written in this form. So, 

if we have 𝑚1�̈�1 = 𝑓𝑥1 + 𝜆2. The equation of motion for 𝑚1�̈�1 + 𝜆1 = 𝑓𝑦1. 



And the constraints are �̈�1 = 0. So, it is written in this nice form. So, that we can generally 

see what is the structure of these equations of motion and the structure of the constraints. 

The equation of motion and the algebraic constraint for body 2 can be written as 𝑚2�̈�2 +

𝜆2 = 𝑓𝑥2, 𝑚2�̈�2 = 𝑓𝑦2. 

So, this is the force which is acting in the y direction for the second mass. And the 

constraint equation is (1,0)(�̈�2, �̈�2)
𝑇 = 𝟎 − (−1,0)(�̈�1, �̈�1)

𝑇. So, it is basically taking the 

derivatives of those equations properly, and 𝑓𝑥𝑖 and 𝑓𝑦𝑖 are the external forces for 𝑥𝑖 and 

𝑦𝑖. 

So, think about it, it is nothing but to write the equations of motion, the two constraints ok. 

So, because body 2 is moving with respect to body 1, so there are certain constraints and 

we can use this Lagrange multipliers to introduce those constraints. 
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So, the effect of body 2 is seen in equations of motion on body 1 ok. So, you can see that 

the body 2 will cause some motion because, 𝜆2 is here ok 𝜆1 and 𝜆2 are both places. So, 

these two equations have coupled ok. 

So, both Lagrange multipliers 𝜆1 and 𝜆2 appears in the equation of motion for body 1. So, 

not possible to get 𝒪(𝑁) algorithm to obtain accelerations �̈�𝑖, �̈�𝑖 − 𝜆1 and 𝜆2. So, these 

can be at best be solved in 𝒪(𝑁3) complexity algorithm ok. 



To obtain 𝒪(𝑁) recursive forward dynamics algorithm, we need to obtain the equation of 

motion for all connected bodies similar to body 2 ok. So, what is the body 2 equation? So 

body 2 equation is much simpler basically 𝑚2�̈�2 + 𝜆2 = 𝑓𝑥2, which is only 𝜆1 is not 

coming into this equation, ok. 

So, body 2 is the last body so, this is also in this language of Featherstone it is called as 

the terminal body. So, we have somehow to figure out equations of motion all bodies prior 

to this last body in a very similar form as to the last body. And it turns out that this is 

possible this is what Featherstone showed in 1983 that for the 2P example, 2 bodies 

connected by 2 prismatic joints.  

The equations of motion of body 1 are (𝑚1 +𝑚2)�̈�1 = 𝑓𝑥1 + 𝑓𝑥2, 𝑚1�̈�1 + 𝜆1 = 𝑓𝑦1. So, 

we do not have 𝜆2 anymore in this equation, ok. Let us go back and see what we obtained 

for the body 1. So, for the body 1 we had 𝜆1 here and 𝜆2 here for body 2 we had only 𝜆2. 

So, what have you done? What we have done is somehow we have figured out. If the mass 

matrix is (𝑚1 +𝑚2) then, we can derive a simpler expression for the equations of motion 

for body 1 including only 1 𝜆1. 
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So, in general, let us look at it in general generalize in to any multi body system. The 

equation of motion of a single rigid body under the action of force 𝑭 and moment 𝑵𝐶 

acting at the centre of mass can be written as 𝑭 = 𝑚𝑎 = 𝑚�̇�𝐶 and 𝑵𝐶 = 𝐼𝛼 = [𝐼]𝐶 �̇�. 



So, remember these are the mass and inertia with respect to the centre of mass. There is no 

𝜔 × 𝐼𝜔 term, since all quantities are with respect to the coordinate system at the centre of 

mass ok. So, we can rewrite the above equation in terms of 𝑭 and 𝑵𝐶. So, we create this 6 

× 1 vector which we have seen earlier ok it is not a real vector you concatenate the force 

and the moment. 

So, this is like Newton and this is Newton meter and we can rewrite this equation as 𝑚 

into an identity matrix ,0 and then 0 and some inertia matrix in the {𝐶} coordinate system 

times 𝒜𝐶 . What is 𝒜𝐶? 𝒜𝐶 = (�̇�𝐶; �̇�)
𝑇
. So, it is again that vector like thing which has 

first top three as the linear acceleration and the bottom three as the angular acceleration 

ok. 
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So, the Newton Euler equations for an arbitrary be point 𝑂 not the centre of mass can also 

be written we can find that 𝑭 is 𝑚 into some identity matrix into velocity at that point 𝑂 

minus 𝒓𝐶 × �̇�, 𝒓𝐶 is a location of the centre of mass with respect to this the point 𝑂. 

And the moment above that point is [𝐼]�̇� + 𝒓𝐶 × 𝑭𝐶 . So, this is 𝒓 × 𝑭 and this is 𝐼𝛼 ok 

where the centre of mass is located by 𝒓𝐶 from O. So, in compact form we can write these 

two equations as some ℱ𝑂 = [ℐ]𝒜𝑂. So, where this I tilde ([ℐ]) you know change looking 

I ok scripted I is a 6 × 6 equivalent inertia matrix. It consists of this [𝐼]𝐶  and 𝑚 and this 

identity matrix ok. 



This matrix [𝑟𝐶] ok is a skew symmetric matrix, which is equal to 

𝑚(

0 −𝑟𝐶𝑧 𝑟𝐶𝑦
𝑟𝐶𝑧 0 −𝑟𝐶𝑥
−𝑟𝐶𝑦 𝑟𝐶𝑥 0

) [𝑈]. So, this is a vector which is extracted from this skew 

symmetric matrix ok. So, these above equations must be modified for rigid bodies 

connected by joints. So, this is just a single rigid body in 3D space. So, we need to account 

the effect of link (𝑖 + 1) through N on link 𝑖. 

So, we are looking at the equation of motion of link 𝑖. So, all further links away from 𝑖 

should somehow be because, they are coupled they have reaction forces which are coming 

on this link 𝑖. And we also need to take into account the generalized forces 𝑄𝑖+1 through 

𝑄𝑁. So, remember in the Lagrangian formulation we had something called generalized 

forces which are the external forces. 
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So, for arbitrary link 𝑖, we seek an equation of the form that the force ok. This is nothing 

but force and moment vector is this inertia matrix times some 𝒜𝑖 and some 𝒫𝑖
𝐴 ok some 

bias term. So, we have a 6 × 6 matrix which is also called the articulated body inertia. 

Then, we have a 6 × 1 vector which is 𝒫𝑖
𝐴  which is the bias term which contained effects 

of link after 𝑖 ok. 

So, this is the form we want ok an equation, and it turns out that we can indeed obtain 

them. So, we can show that the following formulas obtained this quantity [ℐ]𝑖
𝐴 and 𝒫𝑖

𝐴  in 



𝒪(𝑁) steps ok. So, we can obtained this expression in an 𝒪(𝑁) algorithm and it is given 

in a complicated form. Let us not go into very detail, but basically this articulated body 

inertia can be written as some one more inertia plus [ℐ]𝑖+1
𝐴  and then this product of these 

inertia matrices divided by something else ok. 

Similarly, the bias term can also be obtained by 𝒫𝑖+1
𝐴   and then again some complicated 

terms, and the last bias term is 0 ok. So, this  is nothing but a 6 × 1 entity representing 

the (𝑖 + 1)th joint axis. So, joint axis has some line in space some rotation and so on and a 

magnitude ok. 

So, it is like a screw. So, lot of this work is based on this notion of a screw and a twist ok, 

which we do not do in this course. But anyone who is interested in doing further research 

in theoretical kinematics will come across this notion of a screw a twist and so on ok. So, 

he used this generalized notions of a position and orientation as a screw and generalized 

notion of force and moment as a twist ok, and then he derived this articulated body 

algorithm ok. 
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So, the articulated body inertia in the bias term for the end- effector link is known ok, why? 

Because this is the simple and the bias term is 0. So, we start with (𝑁 − 1) compute [ℐ]𝑖
𝐴, 

𝒫𝑖
𝐴  for each 𝑖 in 𝒪(𝑁) steps ok. 

Again as you can see that there is no iteration in obtaining this. So, it is just some 



multiplication and division of matrices ok. So, there are no iterations involved, so, hence 

it is in 𝒪(𝑁) steps ok. So, once you have this inertia and this bias term we can obtain �̈�𝑖 

for each 𝑖 as in the following form. 

So, the acceleration 𝒜𝑖 is related to 𝒜𝑖−1 by 𝒜𝑖 is equal to 𝒜𝑖−1 and �̈�𝑖 along the screw 

axis along this line along the joint axis and 𝒜0 = 0. The generalized force 𝑄𝑖 is the 

component of this force along the joint axis, similar to remember when we found the torque 

which is acting at the joint we took torque was 𝑭𝑖 𝑖 ⋅ 𝒛𝑖 𝑖 or 𝑵𝑖 𝑖 ⋅ 𝒛𝑖 𝑖. So, exactly same 

thing we are doing in a more general setting. 

So, this  transpose ℱ𝑖 is 𝑄𝑖 and finally, after these two steps and simplification, you can 

show that  

 

So, this is a scalar this is like if you think of it as a vector it is 𝑋𝑇𝑋 ok but, however this is 

the 6 × 1 entity. 

So, we can find �̈�𝑖 again for each link without doing any iteration. So, that is the bottom 

line ok. So, we are going from base to the end and coming back and we are not doing any 

iterations. 
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So, let us just review it once more. So, for fixed base this acceleration generalized 

acceleration is 0, compute �̈�1 from this generalized inertia or articulated body inertia and 

the bias term for a given external force for a given generalized force. Then we iterate from 

𝑖 = 1 to 𝑁 to obtain all the �̈�𝑖. So, the overall algorithm is 𝒪(𝑁) because, every single part 

is 𝒪(𝑁) there is no iteration in any sub part. 

This algorithm can be also used in a tree structure this is very important so, not all multi 

body systems are one after another. So, we can have something like a root node at a fixed 

base and there are two arms, you can think of it like a body with two arms. So, and one 

arm on 1, 3, 6 and again there can be a bifurcations. So, this is a leaves which are the end 

effector. 

The other arms can be again a chain like this 2, 4, 5 and so on. So, this is called as a tree 

structure ok just from the way tree looks you know we have a core fixed base and then we 

have all these branches and then we have all these leaves. So, the leaves are the end 

effectors ok. 

So, this articulated body algorithm can be also used for a typical tree structure like this, 

and we can obtain the forward dynamics which is basically �̈�𝑖. For each one of these links 

in this tree structure ok. 
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Now let us continue let us look at the forward dynamics of a parallel manipulators. So, in 



a parallel manipulators we have basically closed loop chains ok, it is neither a serial chain 

nor a tree structure ok. So, we cannot really apply this recursive inverse and forward 

dynamics algorithm to a parallel manipulator because, they are closed loop mechanisms 

there are loops ok. Secondly, in a parallel manipulator we have presence of passive joints 

and loop closure constraints relating passive joints and active joints ok. 

So, it is one option would be to eliminate all the passive joints and look at only the active 

joints. But that is very impractical ok where we can have a very complicated mechanism 

with many active and many passive joints. And remember we need to derive single 

monomial in one of the passive joints in terms of the all actuated joints to solve for the 

passive joints. So, that is requires too much effort to eliminate the passive joints ok. 

So, if you have parallel robot with 𝑚 loop closure constraints we can introduce 𝑚 

Lagrange multipliers ok. So, remember for the 4 bar mechanism we had [𝑴]�̈� = 𝜏 −

[𝑪]�̇� − 𝑮 − 𝑭 + [Ψ]𝑇𝜆, where 𝜆 was a Lagrange multipliers. 

So, in general we can rewrite that as [𝑴]�̈� = 𝜏 − [𝑪]�̇� − 𝑮 − 𝑭 + [Ψ]𝑇𝜆. And we can also 

write [Ψ]�̈� = −[Ψ̇]�̇� so, that is the constraint equation. So, we can rewrite in a matrix 

form where this is �̈� and this is −𝜆 and the right hand side is this. 

So, the right and side is known. So, 𝜏 is known ok we are doing the forward dynamics 

problem. At initial condition [𝑪], 𝑮, 𝑭 these are all known and our job is to find out �̈� and 

𝜆. So, this is 𝑛 +𝑚 equations in 𝑛 �̈�𝑖’s and 𝑚 𝜆𝑖’s ok so, these are from the loop closure 

equations. So, one brute force thing is to solve this 𝐴𝑥 = 𝑏 so, this is like a linear set of 

equations right hand side is 𝑏 this is 𝐴 and this is 𝑥. 

So, we can find �̈� and 𝜆 using Gaussian elimination, just standard linear algebra technique. 

And one can show that this will have a complexity of 𝒪((𝑛 +𝑚)3), where 𝑚 is the number 

of loop closure equations and 𝑛 is the number of 𝑞𝑖’s ok. But this is again too much because 

say suppose you have 6 and then some 20 loop closure equation. So, this is like 263 which 

is not a small thing to do. 
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So, the other option is we can form the mass matrix using an 𝒪(𝑛) inverse dynamics 

algorithm, remember Newton Euler algorithm we can obtain mass matrix we can form [Ψ] 

using an 𝒪(𝑚2) algorithm why? Because, we can write 𝑚 loop closure equations ok so, 

when you take the partial derivatives and we found the [Ψ] matrix which is 𝑚 ×𝑚 ok 

[𝐾∗] was 𝑚 ×𝑚, [𝐾] was 𝑛 × 𝑛, but nevertheless it is 𝒪(𝑚2) algorithm. 

We can use an 𝒪(𝑚3) Gaussian elimination algorithm to solve for 𝜆. So, remember we 

can show ([Ψ][𝑴]−1[Ψ]𝑇)𝜆 = −[Ψ̇]�̇� − [Ψ][𝑴]−1(𝜏 − [𝑪]�̇� − 𝑮 − 𝑭). So, the 

complexity of obtaining 𝜆 is 𝒪(𝑛𝑚2 +𝑚3). So, it is a little improvement previously we 

have 𝒪((𝑛 + 𝑚)3), but now we have 𝒪(𝑛𝑚2 +𝑚3). 

So, for known 𝜆 parallel manipulators is equivalent to a serial manipulator with extra right-

hand side ‘forcing’ terms. Is that correct? Yes. So, if I tell you what are the Jacobean matrix 

ok, [Ψ]𝑇𝜆 so, that is like a terms that is like an extra forcing term. So, we have (𝑛 + 𝑚) 

equations and (𝑛 + 𝑚) unknowns ok so, that is correct. 

So, we can solve for �̈� using 𝒪(𝑛) algorithm ok. So, what is the improvement we can solve 

for 𝜆 using an algorithm with complexity 𝒪(𝑛𝑚2 +𝑚3), and we can solve for �̈� using 

𝒪(𝑛) ok. If was little confusing, but if you think about it then if you go back and see what 

we are trying to do we can see that there is an improvement in the forward dynamics 

algorithm ok. 
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So, the efficient forward dynamics algorithm for large multi-body systems such as proteins 

with closed-loops. So, you have a partly serial partly closed loop again serial it could be a 

very complicated system. So, that is still a subject of research ok. I am not going to go into 

some of this newer algorithms or more sophisticated algorithms, there is an algorithm 

called MEXX and this is the reference Lubich et al, 1992. 

They showed that we can obtain an algorithm which is 𝒪(𝑛 +𝑚3). So, this is definitely 

much better than 𝒪((𝑛 + 𝑚)3). So, the number of links is 𝑛 number of close loops is 𝑚 

so, it is a still 𝑚3. There is also an iterative algorithm, which was acted by this two 

researchers well known researchers this is called as a Sequential regularization method. 

So, it is an iterative algorithm and each step in the iteration is 𝒪(𝑛) ok to solve for a closed 

manipulator or a system with serial and closed loop chains in between. They argue that it 

requires 𝑘 iterations for numerical convergence, 𝑘 is claim to be independent of the number 

of loops 𝑚 and also 𝑘 is small ok. 

So, we have 𝑘𝒪(𝑛), but this 𝑘 is small number ok and it is independent of the number of 

loops ok. Finally, which I am not going to discuss and we need to do or read lots of things, 

there are also attempts and successful attempts to obtain parallel 𝒪(log 𝑛) algorithms 

which are very useful for very large multi-body system ok. So, we can parallelize some of 

this forward dynamics algorithm and get 𝒪(log 𝑛) complexity ok. 
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So, with this I am going to summarize this lecture. So, we need efficient algorithms for 

large multi body systems such as proteins ok. Ideally we need a algorithm which has a 

complexity of 𝒪(𝑛) or even better ok. We can have 𝒪(𝑛) recursive Newton Euler 

algorithm which have been extensively used for inverse dynamics of serial manipulators 

ok. 

In a serial manipulator I showed you we can easily get an algorithm to obtain the forward 

dynamics using 𝒪(𝑛) algorithm ok. We can also solve the direct problem ok, which is 

obtaining �̈� in 𝒪(𝑛) steps so, this is the articulated body algorithm ok. 

So, in the previous one that recursive Newton Euler is for the inverse dynamics of serial 

manipulators and this articulated body algorithm you obtain �̈� in 𝒪(𝑛) steps. Remember, 

we still need to integrate to obtain 𝒒 and �̇� as a function of time, but that is not counted in 

the complexity of the algorithm. There has been extensive work done to develop dynamic 

algorithms for closed loop and parallel manipulators which is still continuing ok. 

And it is good to know that there are possibility of parallel computation and we can 

obtained the inverse and forward dynamics of complicated multi body system using 

𝒪(log 𝑛) algorithms ok so, with this I will stop. 

Thank you very much. 


