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Welcome to this NPTEL course on Robotics: Basics and Advanced Concepts. In the last 

lecture we had looked at the direct kinematics of serial robots. In this lecture, we will look 

at the Inverse kinematics of serial robots. To recapitulate in the last lecture the direct 

kinematics problem was stated and the direct kinematics problem is given the DH 

parameters find the position and orientation of the end effector.  

I had shown you three examples a planar example the PUMA 560 example and the SCARA 

robot. The direct kinematics can always be solved for any number of links. It just simply 

involves multiplication of matrices ok. So, there is no reason why we cannot multiply 

matrices and hence for any number of links you give me I need to obtain the link 

transformation matrices and then just multiply in some appropriate order.  

The direct kinematics in serial manipulator is unique ok. So, there is only one possible 

solution to the direct kinematics problem and the direct kinematics problem for serial 

manipulator is the simplest problem. In this lecture we look at the inverse kinematics of a 

serial robot.  
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So, what is the inverse kinematics problem? To restate it once more, given the constant D-

H link parameters and the position and orientation of the last link or the end effector [𝑇]𝑛
0 , 

find the joint variables θi, i equals 1 through n ok. So, what are the constant D-H link 

parameters? Just to recapitulate we have a twist angle, we have a link length and either a 

link offset or a link rotation depending on what kind of joint it is.  

To continue for 3D motion, we have 6 task space variables. So, 3 position and 3 orientation 

in this transformation matrix [𝑇]𝑛
0 . And for planar motion there are 3 task space variables, 

2 position let us say x and y and one orientation in this given transformation matrix.  

So, there are following cases which are possible now. So, if n is equal to 3 for planar 

motion or n is equal to 6 for 3D motion, we have the same number of equations or same 

number of unknowns. Just or what do you mean by same number of equations? In [𝑇]𝑛
0  we 

know that there are independent equations coming from the rotation matrix and from the 

last column which is the position vector.  

If n is 6 then in the [𝑇]𝑛
0 , we can get 3 equations from the rotation part and 3 from the 

translation part and hence we have 6 task space variables and we have 6 joined variables -  

n is equal to 6. For n less than 6 for 3D motion or n less than 3 for planar motion, the 

number of task space variables are larger than the number of equations and hence there 

must be 6 - n for spatial and 3 - n for planar relationships involving the task space variables.  



So, if you recollect in the SCARA robot the motion which is the 4 degree of freedom robot 

and the end effector can be determined by position can be determined by x, y, z and 1 

orientation. So, although the end effector is moving in 3D space there are the 2 other angles 

orientation angles are not there. So, hence there are some constraints between the task 

space variables.  

If n is greater than 6 for 3D motion or n is greater than 3 for planar motion, we have more 

unknowns than equations and hence infinite number of solutions. These are a special class 

of manipulators which are called redundant manipulators and we will be looking at them 

in detail later. So, let us start the inverse kinematics problem for the simplest case of a 

planar 3R manipulator. 
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So, the figure in this slide show a planar 3R manipulator, basically there are 3 rotary joints 

at O1, O2 and O3. The direct kinematics equation are known. So, we can obtain the x, y and 

orientation of the {Tool} coordinate system or the third coordinate system as given by l1 

c1 + l2 c12 + l3 c123   and y is the l1 s1 + l2 s12 + l3 s123. And the orientation of the tool 

coordinate system or the n th coordinate system, in this case n is 3, is given by θ1 + θ2 + 

θ3. So, what is the inverse kinematics problem for this planar 3R manipulator? We are 

given x, y and ϕ, the left-hand side of these equations and we want to obtain by θ1, θ2 and 

θ3. 



So, what you can see is these are 3 non-linear equations. So, the first 2 involves sin and 

cosine of angles ok. So, they are non-linear transcendental equations, the third one is linear. 

In order to solve these 3 non-linear equations or 2 non-linear and 1 linear equation we do 

not have any general method to solve non-linear transcendental equations.  

The solution of non-linear transcendental equations depends on the problem. This is unlike 

a linear set of equations - a set of linear equations where we can easily solve if you have y 

equals [A]x, we can always find solution x for a given y provided certain conditions are 

met on that matrix [A]. 
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So, what do we do? So, what we can do is we can see that we can define a new variable 

capital X which is x -  l3 cos ϕ and a capital Y which is  y -  l3 sin ϕ ok. So, X and Y, capital 

X and capital Y, are known, because since small x small y and ϕ are given - this is the 

inverse kinematics problem.  

So, if you now add and square and add X2 + Y2 square we can see that you will get l1 
2 + l2 

2 + 2 l1 l2 cos θ2. Hence, from equation (5) we can show that θ2 is cos -1 (X 2 + Y 2 -  l1
2 - l2 

2 ) divided by 2 l1 l2 ok.  

So, what have we done? We have started from these 3 equations we have defined capital 

X as x -l3 cos ϕ, so this has gone there. So, X is now l1 c1 +  l2 c12, Y is also l1 s1 +   l2 s12; 

so, when you square and add X and Y, so (l1 c1 )
2 + (l1 s1 )

2, θ1 will go away. 



Likewise, θ12 will go away and we will be left with only this equation - X2 + Y2 = l1
2 +    l2 

2 + 2 l1 l2 c2 and we can find θ2 ok. So, I am going over this little slowly because we can 

easily see what we are trying to do ok.  

Once θ2 is known we can find out what is θ1 by doing this atan2(Y, X) - atan2(k2, k1) ok, 

where k2 is l2 s2 and k1 is l1 + l2 c2 ok. So, basically what are we doing? We are saying X is 

some l1 c1 +   l2 c12. So, we can expand c12 as cos a cos b - sin a sin b and so on, and then 

take terms which are in θ2 which is now known and solve for θ1.  

So, we are going to use atan2 again such that we can get this θ1 in the correct quadrant. 

And then finally θ3 is obtained from ϕ – θ1 - θ2. So, as you can see, we have used some 

knowledge of trigonometry to first find θ2, then we taken terms which are now known and 

solved for θ1 and then finally θ3 is simply ϕ – θ1 - θ2 ok.  
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So, let us continue. So can we solve this inverse kinematics problem everywhere? The 

answer is no. Why? Because if you look at this equation θ2 is ± cos -1 of something; so, 

whatever is inside this bracket which is (X 2 + Y 2 - l1
2 - l2 

2) divided by 2 l1 l2 must be 

within ± 1, because only cos -1 of a number which is within ± 1 is defined ok. 

So, hence we can say that this condition must always be true - which is  this quantity ( (X 

2 + Y 2 -  l1
2 - l2 

2 ) / 2 l1 l2 ) lie between ± 1. And we can now simplify this and write it as 

(X 2 + Y 2) should be greater than (l1 - l2 )
2 and less than (l1 + l2 )

2.  



And finally, we can substitute back X as x -l3 cos ϕ  and   Y as  y -l3 sin ϕ ok. The figure in 

this right-hand side shows a plot of x, y and angle ϕ phi ok. So, every section represents a 

circle of radius between (l1 + l2 )
2 and (l1 - l2 )

2 and then if you substitute back this x -l3 cos 

ϕ and y -l3 sin ϕ, you will get this complicated looking figure ok.  

So, hence only points which are lying between these big circles and small circles, x, y and 

ϕ - and ϕ is along the vertical direction, you can only find cosine inverse of that number 

ok. So, this is called the workspace of the planar robot. So, all x, y and ϕ which is inside 

this region, which is shown here, I can solve the inverse kinematics.  
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We can also try and see what is exactly happening a little bit more detail. So, I can project 

all these circles back to the X-Y plane. So, I will get the following circles. So, I will get 

one completely outside circle which is l1 + l2 + l3 there will be also one small inside circle 

which is l1 - l2 - l3 and then there are these 2 other circles - one is l1 + l2  - l3 and one is l1 - 

l2  + l3  ok. So, this is nothing but the projection of those that figure onto the X-Y plane ok. 

So we have these 4 circles, so now if you pick a point on this region between l1 - l2  + l3  

and l1 + l2  - l3  so this is the point. As you can see so this point is nothing but X, Y ok, it is 

x -l3 cos ϕ and y -l3 sin ϕ. So, this X, Y this is the point and I can reach this point in 2 ways. 

So, the planar robot can be like this and the (Refer Time: 14:00) and it could be like this, 

that is what is meant by there are 2 possible solutions for theta 2.  



So, if you go back and see there are 2 possible solutions of θ2 is ± cos -1 of this ok. And 

geometrically what is happening? One is like this. So, this is the angle θ2 and the other one 

is - θ2 to reach that same X and Y.  
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So, the reachable workspace is defined as all (x, y) between the maximum reach which is 

(l1 + l2 + l3) and minimum reach which is (l1 - l2 - l3). We can also define something called 

as a dexterous workspace and this is all (x, y) between the radius (l1 + l2 - l3) and (l1 - l2 + 

l3) ok. 

So, all points inside the dexterous workspace can be reached with any ϕ. So, as the size l3 

increases what you can see that the dexterous workspace will become smaller ok. The 

reachable workspace will increase because it is (l1 + l2 + l3) ok, whereas the dexterous 

workspace is (l1 + l2 - l3) ok. So, this is the well-known result which was obtained long 

time back and it is very nice result which says that as the size of the end effector l3 increases 

reachable workspace increases and dexterous workspace decreases. And this is also sort 

of intuitively correct. So, if you are holding a long stick you can reach far away you can 

reach the roof of the room, but if you use a long stick at the end you have very little freedom 

in orienting the tip. So, that is the whole idea of a dexterous workspace I can reach any 

point with whatever orientation I feel I want.  
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Let us go back to again that equation of θ2 ok. So, I showed you θ2 is ± cos inverse this. 

So, hence for any (X, Y), there are two possible values of θ2 and these 2 values merge at 

the workspace boundary. So, at a given (X, Y) can be achieved by 2 configurations as 

shown in the figure, I showed you this figure, that if I take any point (X, Y) here I can reach 

either like this or I can reach like this. So, one of them is + θ2 and the other one is - θ2. 

So, in general what we can say is for a planar 3R manipulator, given x, y and ϕ  we can 

obtain this x, y and ϕ by 2 sets of values of θ, 1, 2 and 3 ok. So, in conclusion the inverse 

kinematics problem does not give unique solutions ok. Remember in direct kinematics we 

always could get a unique solution ok. Multiplying matrices given θs I could find the 

position and orientation of the end effector uniquely. In the inverse kinematics problem 

given the position and orientation of the end effector, I get in this case of a planar 3R, 2 

possible sets of values of θ1   θ2 and θ3. 

So, in general or more abstractly what we have is something called as a existence and 

uniqueness issues in solution of non-linear equation ok. So, it is quite hard and non- trivial 

to obtain the existing and uniqueness conditions for solution of non-linear equation. In this 

case uniqueness means what? We have 2 possible sets the solutions are not unique and 

existence means what we can obtain the values of x, y and ϕ such that we can get a inverse 

kinematic solution ok. So, all x, y, ϕ for which inverse kinematic solution exists, that gives 

us this existence criteria and uniqueness criteria is how many possible joint angles satisfies 

the given x, y and ϕ. 
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Now, let us continue we look at a 6 degree of freedom PUMA 560 robot. This has been 

shown earlier also there are 6 joints 1 is along Z1, one is along Z2 then Z3 and then there 

are 3 more which are intersecting at this point which is the point of intersection of axis 4, 

5 and 6. So, this origins of {4}, {5} and {6} are coincident and this is called the wrist 

point.  
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So, it turns out that the position vector of this wrist point is only a function of θ1, θ2 and θ3 

ok. So, these are the 3 equations O6x which is shortened as x is given by c1 (a2c2 +a3c23 – 



d4s23 ) – d3s1 and so on ok. So, does this make sense? Yes if you think about it little bit that 

the links 4, 5 and 6 are after the joint axis 4, 5 and 6 ok. So, hence the position vector 

which is lying on the joint 4, axis 5, or 6 axis because all of them are at the same place, 

can only of be a function of all the angles before this origin. And what are the angles? One 

is θ1, one is θ2 and one is θ3, the θ4, θ5 and θ6 affect the orientation of the end effector it 

does not affect the origin of the last link ok.  

So, how do we solve the inverse kinematics of the PUMA? So, basically what are we 

given? We are given x, y and z and fortunately we now have 3 equations in 3 unknowns. 

What are the unknown’s  - θ1, θ2 and θ3.  

So, from this first 2 equations if you multiply the first equation by  - s1 and the second 

equation by + c1 --   s1 is sin θ1, c1 is cos θ1 -- and add them you can see everything drops 

out and we get a nice simple equation which is - s1 x + c1 y = d3. So, you will get d3 s1 
2, d3 

c1 
2, when you add them, they will become 1 ok. So, we have a single transcendental 

equation in θ1 ok. So, how do we solve this?  
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So, the kinematics people have figured out this really nice way of trying to solve a single 

transcendental equation. So, the idea is that we convert a transcendental equation into a 

polynomial and how can we do that? Let us define a new variable x1 which is tan θ1/2 ok. 

So, if x1 is tan θ1 /2, cos θ1 is (1 - x1
2)/ (1 + x1 

2) and sin θ1 is 2x1/ (1 + x1
2).  



So, hence - s1 x + c1 y = d3 can be written as a quadratic in x1 and remember x1  is         tan 

θ1 /2. So, what have we done? We have taken a transcendental equation in sin and cos θ1 

and obtained a quadratic in tan θ1 /2 ok. So, this is the well-known tangent half angle 

formulas from trigonometry.  

So, once I have a quadratic of this form, I can easily solve for x1. Now quadratic equations, 

we know the roots of a quadratic equation in closed form and then we can find out θ1 which 

is tan-1 of that quantity and since we are finding out θ1 /2. So, actual θ1   is 2 tan-1 of the 

roots of the quadratic equation ok. 

So, a few observations so tan inverse gives an angle between 0 and π normally. So, hence 

2 tan-1 gives the value between 0 and 2π, so we are getting the angle in the right quadrant. 

So, we do not have to use atan2 here -- this idea of a tangent half angle makes ensures or 

makes us get an angle which is in the right quadrant. 

The second observation is we get two possible values of θ1 due to this ± sign in the square 

root ok. So, again uniqueness no ok. So given x, y and z in this form of equation of the 

wrist point, I am getting a value of θ1 which are 2 of them. So, this is not unique - very 

similar to the previous case of the planar 3R case, where we could get two possible values 

of an angle which satisfies a given position and orientation. In this case two possible values 

of θ1 which for a given wrist point ok. 
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Let us continue. If you square and add those 3 equations, which is x 2 + y 2 + z 2, you can 

see that you will end up with a single equation in θ3. So, this is correct? Yes. So, x 2 +   y 

2 + z 2, so θ1 will vanish, θ2 will also vanish.  It turns out, because you can see the pattern 

- it is - a2 s2 – a3 s23 - d4 c23; whereas, here it is, you know, plus and minus, sort of very 

similar but here it is c2, here it is s2 ok. 

So, if you expand, the square and adding that expression and do a little bit of simplification 

you can get a single equation in cosine θ3 and sin θ3 ok. Again, this is a transcendental 

equation in cosine and sin θ3, we can again use the tangent half angle formulas to obtain 

θ3.  

So, here also you can see that you get 2 sets of values of θ3. Again square root solutions of 

the quadratic equation where K is a constant ok. Finally, we can see that the last equation 

z is function of only θ2 and θ3. So now that we know θ3, we can collect terms with a θ3 

inside this bracket and again we have a simple transcendental equation in θ2.  

So, - s2 into something which is now known, c2 into something which is now known equal 

to z and we can solve this again using tangent half angle substitution. And we will get θ2 

as 2 tan-1  of really complicated long expression ok. So, how many values of θ2 we get? 

We get four possible values of θ2. Why? Because θ3 already had 2 possible values and θ2 

depends on θ3, so you can see it is a3 c3 is there a3 c3,  d4 s3  all these terms are here. So, 

we get four possible values of θ2 in the range 0 to 2π. 
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To obtain θ4, θ5 and θ6 which is basically the last 3 angles after the wrist, you can see that 

the rotation matrix [𝑅]6
3  is of this form -- it is (c4 c5 c6 - s4 s6 ) r11 is this.  r23 

 is c5,  r21 is s5 

c6 and so on ok. This matrix [𝑅]6
3   can be written as [𝑅]3

0 𝑇 [𝑅]6
0  right, because [𝑅]6

0 =

[𝑅]3
0 [𝑅]6

3 . We multiply by the inverse which is the same as the transpose and we get this 

matrix equation.  

The right-hand side is known because [𝑅]6
0  is given to you for the inverse kinematics 

problem and [𝑅]3
0  contains only θ1, θ2, and θ3. So, basically right-hand side is known and 

left-hand side has 3 variables θ4, θ5 and θ6 ok.  
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So, we can just compare term by term and find out what is θ4, θ5 and θ6. So, for example, 

c5 will be equal to some known number. So, θ5 will be cos-1 of that known number. It turns 

out that in this case it is even simpler. Why? Because this matrix is very similar to what is 

called as the Z-Y-Z Euler angles with the Y rotation of – θ5 ok. 

So, last week we had looked at Euler angles representation of orientation of a rigid body 

using simple rotations. So, we have, in this example, a simple rotation about Z a simple 

rotation followed by a simple rotation about Y and another simple rotation about Z. 

However, unlike what we had done earlier the second rotation is by a minus angle θ5.  
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So, we can write the inverse Euler angle transformation just like we had done last week. 

So, given rij how do I find out θ4, θ5 and θ6? Again, there is a singular configuration when 

r23 is ± 1. So, if r23 is not equal to ± 1, θ5 can be first found out by atan2 (± Ö(r21 
2 + r22 

2 

), r23 ). Is it true? Yes, (r21 
2 + r22 

2) and then this will be a function of only sin θ5 and cos 

θ5 and we can use atan2 to find θ5.  

Then we can divide by sin θ5 and find θ4 again using an atan2. And θ6 - divided by sin θ5 

these 2   - r22 and r21 and find θ4, θ5 and θ6. If r23 is + 1, this is a special or a singular 

configuration, we set θ4 as 0, θ5 as 0 and θ6 this. If r23 is – 1, then we set θ4 as 0 θ5 as π and 

θ6 this ok.  
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So, in summary what have we done? We have obtained two sets of θ1, two sets of θ3, since 

θ3 appears on the right-hand side of equation (14). So, four possible values of θ2 and then 

we also have two possible sets of θ4, θ5 and θ6 - because you can see θ5 has ± sign here. 

So, I can get two possible θ5 and then when we divide it by θ5 you will get two possible 

values of θ4 and θ6 ok. So, overall, what have we obtained? We have obtained eight 

possible sets of joint angles θi for a given position and orientation of the sixth link with 

respect to the 0th link - given [𝑇]6
0  ok. 
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Now, let us see whether you can discuss a little bit about the workspace of this robot. So, 

basically under what condition the inverse kinematic solution exist. So, usual definition 

that all position and orientation of this 6th coordinate system such that the inverse kinematic 

solution exists. In this case it is very difficult to imagine or even visualize or describe, 

because it is a six-dimensional entity -- we have 3 positions x, y, z and 3 orientations.  

It is possible to derive the position workspace of the wrist point. Why? Because we know 

that the position vector of the wrist point is x, y and z and they are functions of only θ1, θ2 

and θ3 and the constant D-H parameters. So, x, y, z are functions of three independent 

variables θ1, θ2 and θ3, so it represents a solid in 3D space. So, it is like a solid region in 

3D space where the inverse kinematics exist solution exist. We can find the bounding 

surfaces of the solid region ok. 
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And how do we find out that? So here are the steps, so if we square and add these three 

equations, let us call that as R 2 which is x 2 + y 2 + z 2 we can see it is a function of only 

θ3, K1, K2, K3 are constant. So, this is a family of surfaces. So, if (x y z) x 2 + y 2 + z 2 was 

equal to constant; that is a sphere ok. But then as θ3 changes we have a family of surfaces.  

The envelope of this family of surfaces can be obtained by taking the partial derivative of 

this equation with respect to this variable θ3 which is on the right-hand side. If you take 

this we will get one single equation K2 s3 + K3 c3 equal to 0 and then we eliminate θ3  from 

these 2 equations ok.  

So, we can eliminate in formally using Sylvester’s method, but we can just simply see that 

we can eliminate θ3 and if you denote a3 
2 + d4 

2  by l 2 we will get this expression, which 

is x 2 + y 2 + z 2. So, basically this is the radius vector, the distance from the origin is minus 

some number and this is also minus, so bounding surfaces at 2 spheres. So, there is a sphere 

which is at a distance of surface is (a2 +  l) 2 + d3 
2 and the other is (a2 -  l) 

2 + d3 
2 ok. So, 

we have 2 spheres which are the bounding surfaces of this solid region, where the inverse 

kinematic solution exists. And at all (x, y, z) where this inverse kinematic solution exist, 

we can find the orientation except two special singular configurations when r23 is ± 1 ok. 
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So, let us look at a numerical example ok, so this is taken from literature the DH parameter 

of a PUMA 560 the constant values are given in this table. We have chosen θi arbitrarily 

as 45 degrees, 60 degrees, 135, 30, - 45, and 120 and these numbers 0.4318 for ai-1 for link 

3 and di is 0.125 and so on this is from literature. 

So, PUMA robot comes with these D-H tables. So, once we have this D-H table and once 

I give you this θ then I can find out [𝑇]6
0 . So, this is 4 by 4 homogeneous transformation 

matrix the last row is 0 0 0 ,  the rotation matrix is this top 3 by 3 and the position vector 

of the 6 th or the last coordinate system is given by 0.1304, 3071 and 0.0482. This is just 

multiplication of 6 matrices derived from taking each row of the D-H table. 
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We can now take this [𝑇]6
0  and run our inverse kinematic steps whatever we have 

discussed. What are the inverse kinematic steps? We first find out θ1 then find out θ3 then 

find out θ2 and then find out θ4, θ5 and θ6 using those steps which I have discussed few 

minutes back. So, it turns out that I will get 8 possible solution sets - we expect 8 possible 

solution sets so ok. 

So, θ1, θ2, θ3, θ4, θ5, and θ6 and the solution sets - each row corresponding to a single 

solution set. So, as you can see the set 7, 45, 60, 135, 30, - 45, 120 is what we started with 

here in the D-H table. So, that makes sense right because I took a set of constant D-H 

parameters and a set of values of θs, I obtained the [𝑇]6
0  transformation matrix and then I 

would run this took that same data set and run the inverse kinematics. So, one of the 

solution sets better be what we started with and that is indeed true.  
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What is the workspace looks like? We know it is bounded by 2 spheres. So, there is a 

outside sphere and there is an inside sphere, interestingly there is also some kind of a small 

hollow region where it is not reachable ok. So, it is like a cylinder with some spheres and 

so the workspace of a PUMA robot the wrist point looks like this 2 spheres bounded by 2 

spheres.  
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So, let us just quickly review the inverse kinematics whatever we have done till now. So, 

first important observation is to solve the inverse kinematics problems we have to deal 

with transcendental equations. So, first step is we can obtain polynomial equations using 



tangent half angle substitution. So, the polynomial equation is always of a higher degree. 

So, if you have sin θ and cos θ it will become quadratic in x 2, where x is tan θ/2 ok.  

For analytical solutions to the inverse kinematics problem, we have to eliminate joint 

variables from a set of non-linear equation in several joint variables ok. So, what do we 

want? We want a single equation in one joint variable that is very useful or important. So, 

in the case of the planar 3R example, we started with three equations in three joint 

variables, we obtained two equations in θ1 and θ2 - remember capital X and capital Y - and 

then we obtained one equation in θ2 alone ok.  

So, this single equation was solved for θ2 and then we solve for θ1 and θ3. For the PUMA 

560 we have 3 equations in 3 joint variables - the wrist point. So, the position and 

orientation could be decoupled, we could just take the position equations and solve for 3 

angles and then using those 3 angles we could solve for the last 3 joint angles, which is 

which uses the orientation information. 
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So, this decoupling of position and orientation was first noticed by Pieper in 1968 for 

manipulators with intersecting wrist - intersecting wrist means the last 3 joint angles joint 

axis intersect at a point. This was eventually generalized to any six degree of freedom 

serial manipulator, where three consecutive joint axes intersect. It was shown that at most 

a fourth order polynomial in the tangent of a joint angle is what we will get. 



So, the wrist point can reach any position in the workspace in at most 4 possible ways, 

because we have 4 possible solutions of the tangent of the joint angle and this fourth degree 

polynomial which we get can be solved in closed form - this is very important. You know 

we can solve a quadratic equation in closed form, we can solve a cubic equation in closed 

form and we can also solve a quadratic equation in closed form. Any polynomial higher 

than 4 we cannot solve in closed form. 

So, it turns out that the inverse kinematics of all six degree of freedom serial manipulators 

with three consecutive intersecting axis can be solved in closed form. It is a very useful 

and neat result. So, for the PUMA 560 the workspace of the wrist point is bounded by two 

spheres and requires the solution of only a quadratic. We do not have to solve a quartic 

equation for PUMA because of the special geometry. So, you know some axis are 

intersecting some axis are parallel and so on. 

It was shown eventually that for general geometry robot with intersecting wrist the 

boundary is traced by the wrist point form a torus. So, they are not spheres, they are this 

solids or surfaces called torus, which is the fourth degree surface ok. A sphere is second 

order second degree torus is fourth degree. 
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Let us continue. What happens if you have non intersecting wrist? So, intersecting wrist 

problem is more or less solved - you know we have 4 solutions quartic and then we can do 



this inverse Euler angle transformation and find the last 3 angles. However, it is very very 

difficult to manufacture three intersecting axis wrist.  

Why? Because it is sort of - you can - imagine that you have 3 lines which are meeting at 

a point and then we are going to manufacture this or locate these 3 motors such that their 

axis intersects at a point. It will never happen manufacturing wise ok. It is much easier if 

the wrist has two intersecting axis ok.  

So, here is an example of a robot with the last two axis intersecting and then again previous 

two axis intersecting; but not all three intersecting at the same place. So, schematically it 

is shown here θ4 and θ5 intersects at the same place and θ5 and θ6 intersect at the same 

place, but all of them do not intersect at the same place. 

So, the D-H table for this robot, this is well known welding robot, which was built long 

time back, it is very similar to the PUMA except there is a d5 here and this d5 is non zero. 

So, the d5 is the last this joint link offset for the 5 th link ok. 
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So, it is a six degree of freedom robot - first 3 joints are very similar to the PUMA 560, 

the last three axes do not intersect, there is an offset d5. So, from the D-H table we can 

compute [𝑇]1
0 , [𝑇]2

1  and all the way till [𝑇]6
0 . So, if you compute [𝑇]6

0  then last column of 

[𝑇]6
0 , which is the position of the last link with respect to the fixed link can be shown to be 

a function of now 4 joint angles. It is θ1, θ2, θ3 and also θ4. 



So, if d5 were to be 0 we will get back the equations of the PUMA, but however there are 

these additional terms d5 s4s23   d5 (s1 c4 – c1 s4 c23) and so on ok. So, what can we notice? 

We can see that the x, y and z the nth origin of the 6th coordinate system or the last link is 

now a function of θ1, θ2, θ3 and θ4. So, we have 3 equations in 4 unknowns. So we need 

one more equation in the fourth joint variables and how can we obtain this as follows. 
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We can rewrite the [𝑅]6
3  which is the rotation matrix of the 6 th link with respect to the 

third link as product of 2 rotation matrices - [𝑅]3
0 𝑇 [𝑅]6

0 . Symbolically it is shown here. So, 

this [𝑅]6
3   is very similar to what we had for the PUMA, [𝑅]3

0 𝑇 will be a function of θ1, θ2, 

θ3 and [𝑅]6
0  is given to us - we are trying to solve the inverse kinematics problem. 

So, basically we have one side θ4, θ5, and θ6 and we have another side θ1, θ2, and θ3. So, if 

you divide the (1, 3) term which is – c4 s5 and (3, 3) term which is c4 s5. So, θ5  not equal 

to 0 - because we cannot divide 0 by 0- we can get one equation which is s4 into whatever 

is there on the right side which is r13 c1c23 and so on; will be equal to c4 into something 

else where the rij in this equation are known. But θ1, θ2, θ3 are unknowns, so this is an 

equation which involves θ1, θ2, θ3 and the given rij’s and hence this is the fourth equation 

ok. 

We had 3 equations in x, y and z and somehow we have managed to derive a fourth 

equation again in terms of θ1, θ2, θ3 and θ4. So, we have 4 equations and 4 unknowns, and 

we can at least solve numerically these equations to obtain θ1, θ2, θ3 and θ4. And once θ1, 



θ2, θ3 and θ4 is obtained we can find theta θ4, θ5, θ6 by again this inverse Euler angle 

algorithm similar to the PUMA Z – (-Y) - Z. 
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So, let us look at a numerical example the [𝑇]6
0  is same as the PUMA example ok, we have 

taken the same set of angles and the same D-H parameters and we assume d5 is 20 mm. 

This is reasonable because the last link offset is small - it is not very large. So, if we solve 

these 4 equations in Matlab using this solve using the solution program called fsolve. How 

many if you have heard fsolve, I do not know but there is a way to solve non-linear 

equations in Matlab numerically using this routine called fsolve and we will get θ1, θ2, θ3 

and θ4 ok. So, it is a numerical procedure, so we will have to have a certain guess and then 

it will converge to the final solution and it turns out we will get θ1 as 41.82, θ2 as 60.43, 

θ3 as 135.33, θ4 as 31.96 ok. 

And using inverse Euler angle algorithm we get 2 sets of values of θ4, θ5, θ6, and we can 

see one θ4 matches - just to give you some confidence that our numerical solution is ok. 

So, θ4 is 31.96, here also one of the θ4 is 31.96 ok. If θ5 were 0 or π, this is the singular 

configuration, and we can only solve θ4 ± θ6 ok.  

So, do we know these numbers are ok? Yes, because, what have we done? We have added 

at d5 which is the small number. What was θ1 before for the PUMA? It was 45, θ2 was 60, 

θ3 was 135, θ4 was 30. So, although we have added an offset, it is sort of close to what we 



started with the PUMA example. So, it gives us more or less confidence that this numerical 

solution is correct. 
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So, in summary the inverse kinematics problem is defined as given end effector position 

and orientation and all the constant D-H parameters, obtain the joint variables. So, the 

number of joint variables must be 3 for planar motion and 6 for 3D motion. Only then we 

have the equal number of equations and equal number of unknowns. 

The inverse kinematics involve solutions of a set of non-linear transcendental equations. 

So, there are no general approach of inverse kinematics of serial robots. The existence of 

solution leads to the notion of workspace of a serial manipulator. So, we looked at the 

planar 3R example and stored that cos-1 of something, that something should lie between 

±1 and then that gives this whole idea of a workspace of the planar robot. 

The order of the polynomial, the single polynomial which you obtain to find one of the 

joint variables gives you the number of possible configurations for a given end effector 

position and orientation. So, in the case of planar 3R robot the IK inverse kinematics could 

be easily solved, we could also give this notion of a reachable workspace and dexterous 

workspace. So, we could find what is the furthest the robot can reach and what is the region 

in the workspace where you could achieve arbitrary orientation. 



The PUMA 560 has 8 possible configurations and we will see later on in this week that 

the general 6 degree of freedom robot has 16 possible configurations. So, with this I will 

stop. In the next lecture we will look at 2 special kinds of serial robots, one in which the 

number of joint angles is less than 6 and the number of joint angle is greater than 6. 


