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Welcome to this NPTEL lectures on Robotics Basics and Advanced Concepts. In the last 

lecture, we had looked at Inverse Kinematics of Serial Robots. Just to recapitulate, the 

inverse kinematic problem is stated as follows; given the end effector position and 

orientation and the constant DH parameters, obtain the joint variables. We had looked at 

the cases when the number of joint variables were 3 for planar motion and 6 for 3D motion. 

I showed you that the inverse kinematics problem involve solution of a set of non-linear 

transcendental equations and then there are no general approaches to solve the inverse 

kinematics of arbitrary serial manipulators. Once we solve the inverse kinematics problem, 

we had this notion of existence of a solution, which in turn led to the very important 

concept of workspace of a serial manipulator.  

One of the way to solve the inverse kinematics problem was to obtain a single polynomial, 

a monomial of in one joint angle. The order of the polynomial gave the number of 

configurations possible for a given end effector position and orientation. For the planar 3 

R manipulator, I showed you that the inverse kinematics could be solved very easily using 



simple trigonometric identities and tricks and we obtained this notion of a reachable and 

dexterous workspace.  

The PUMA 560 which was a 3D spatial 6 degree of freedom manipulator had 8 possible 

configurations. And I have just briefly mentioned, which we will see later that the general 

6 degree of freedom robot with rotary joints has 16 possible configurations. 
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So, in this lecture, we will look at the inverse kinematics of serial robots, when the number 

of joints is less than 6 when it is moving in 3D space or less than 3 when it is moving in a 

plane.  
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So, [𝑇]𝑛
0  which is the link transformation matrix for the last link end effector, defines the 

position and orientation of the link n with respect to {0} coordinate system, with respect 

to the fixed base. The [𝑇] 𝑛
0 in general, provide up to 6 for 3D and 3 for planar task space 

pieces of information, ok. So, what do we mean by 6 or 3 task space pieces of information? 

We have 6 independent equation sorry, 6 independent parameters when it is moving in 3D 

space.  

So, in 3D space, we have x, y, z and 3 from orientation. Similarly, for planar we have x 

and y and the orientation of the last length. And n in this discussion is the number of 

unknown joint variables. So, if n is less than 6 for 3D motion or n is less than 3 for planar 

motion, there must be 6 minus n or 3 minus n for planar functional relationships involving 

the task space variables. So, basically these are constrained manipulators.  

So, you can think of it that, I have a robot which is moving in 3D space; but there are only 

4 joints, n is 4. So, out of those x, y, z and 3 pieces of orientation, which is given for the 

end effector; I cannot have 6 independent equations, ok. So, 2 of those parameters must be 

related to the other 4 somehow, ok. So, we are looking for functional relationships obtained 

by inspection or of geometry or by using theory of elimination, ok.  

So, most of the time a robot designer would make a robot with let us say 4 joints for a 

particular task, ok. So, we know why the 2 degrees of freedom in the task space, how they 

are related ok; why they have been removed for say for some reason.  
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So, let us look at the simple example of n less than 6 and we have looked at this before; 

this is the SCARA robot on the left, it is a 4 degree of freedom robot. So, there is a joint 

which is along 𝑍1, there is another rotary joint along 𝑍2, there is a translatory joint which 

is along 𝑍3 and then there is a rotation about 𝜃4 about the last 𝑍3 again.  

So, this [𝑇]4
0  which is the transformation matrix of the 4th link with respect to the 0th link 

contains the position and orientation of the link 4, ok. So, due to geometry and seen from 

the figure, only the last angle 𝜙 represent orientation of 4 ok. 

So the other two Euler angles are zero. So, we can only rotate about the Z axis; the end 

effector cannot rotate about the X and Y axis, that is the way the robot designer made this 

robot. So, hence only the position x, y and z and the angle 𝜙 rotation about the z axis of 

the link 4 is relevant, ok.  

The other two angles are not relevant, they are constrained, in fact they are zero. So, we 

now have an equal number of equations and unknowns. So, we have x as 𝑎1𝑐1 + 𝑎2𝑐12; y 

as  𝑎1𝑠1 + 𝑎2𝑠12; z as minus −𝑑3; and 𝜙 as 𝜃1 𝜃2 𝜃4. So, 𝜃1is the rotation here𝜃2 is the 

rotation at the second rotary joint, and then 𝜃4 is the rotation as the last rotary joint. So, 

although its n is less than 6 here; but we have been able to derive 4 equations in 4 

unknowns. So, its a consistent set of equations.  
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And this we can easily solve and obtain the inverse kinematics solution of this SCARA 

robot. So, very straightforward the first 𝜃1 and 𝜃2  are very similar to the 2 R planar robot. 

So,𝜃2 = ± cos−1 𝑥2+𝑦2−𝑙1
2−𝑙2

2

2𝑙1𝑙2
. 𝜃1is atan2 (𝑦, 𝑥)- atan2 some function of 𝜃2; 𝑑3 is z, directly 

we can see from this equation 𝑑3 is z.  

And once 𝜃1 and 𝜃2 are solved from these first two equation x and y; we can find out 𝜃4, 

which is 𝜙 − 𝜃1 − 𝜃2. So, in this case of the SCARA robot, there are two possible sets of 

joint variables for a given x, y, z and 𝜙. And what is the workspace? Again it is intuitively 

clear, this is basically nothing, but an annular cylinder of inner and outer radii given by 

𝑙1 − 𝑙2and 𝑙1 + 𝑙2; we are assuming 𝑙1 > 𝑙2.  
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So, the case of n less than 6, basically we will assume that there are inherent constraints in 

the task space variables. In the space of SCARA, there are two Euler angles other than the 

one rotation about z axis at zero. We will next look at inverse kinematics of serial robot 

with n greater than 6, ok. 
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So, if n is greater than 6 for 3D motion or greater than 3 for planar motion, there are more 

unknowns, ok. So, the number of joints are more than the number of equations, and hence 

an infinite number of solutions are possible. So, these are called redundant manipulators.  



So, for example, a simplest case is a planar 3R robot, but we are not interested in the 

orientation of the last link. So, the direct kinematics equations are nothing, but 𝑥 = 𝑙1𝑐1 +

𝑙2𝑐12 + 𝑙3𝑐312, and 𝑦 = 𝑙1𝑠1 + 𝑙2𝑠12 + 𝑙3𝑠312. So, again 𝑠1 means sin 𝜃1; s 1 2 3 means 

sin of 𝜃1 + 𝜃2 +𝜃3.  

So, what is the inverse kinematics problem? We are given the left hand side x and y and 

we have to find 𝜃1, 𝜃2, 𝜃3. So, there are two equations in 3 unknowns, 3 variables. So, 

clearly there are infinite number of 𝜃𝑖, 1, 2 and 3, which can satisfy these two equations 

given any x and y.  
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So, if you want to solve inverse kinematics of a robot with similar problems or similar 

situation; we need to use additional equation for unique 𝜃𝑖, ok. So, and this is not a cooked 

up problem; there are robots which have been constructed, where the number of joints. So, 

number of theta’s are more than the number of task based variables, ok. So, what do we 

do? So, one natural thing is to do some optimization, ok. So, we can find the function of 

the joint variables and we can use optimization.  

So, one obvious thing is we want to minimize the joint rotations; we can also minimize 

joint velocities and accelerations. Researchers have also suggested that we can use this 

extra degree of freedom or extra joint to avoid obstacle and singularities, ok. We can also 

use this extra degree of freedom or extra joint to minimize the torques ok, actuator torques 

in some least square sense. 



So, this notion of obtaining additional useful and meaningful solution or constraints to 

obtain unique joint values is also called as resolution of redundancy. So, what is the 

additional equation? What does it mean? Why do we use that additional equation to obtain 

what?  

That is called as the problem of resolution of redundancy. So, I am going to show you two 

resolution schemes; one is minimize joint rotation and I will illustrate this by using the 

planar 3R example and the second is minimize Cartesian motion of the links, ok. So, the 

first one is minimizing joint rotation, second is minimizing Cartesian motion of the links. 
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So, let us start with minimizing joint rotations. So, for the planar 3R robot ok, minimizing 

joint rotation means, something like minimize 𝜃1
2 + 𝜃2

2 + 𝜃3
2, ok. So, this is like the l 2 

norm of the joint variables 𝜃1, 𝜃2, 𝜃3, ok. So, what is the optimization problem? Minimize 

𝐹(𝜃) which is square of the joint angles; subject to constraints, we still need to make sure 

that it satisfies the given direct kinematics equation.  

So, we are still given x and y, which is related to 𝜃1, 𝜃2, 𝜃3 in this form and we need to 

make sure that these two constraints 𝑔1(𝜃) and 𝑔2(𝜃) which is given in these equations 

ok, they are basically the direct kinematics equation are satisfied.  



So, we have 𝜃 which is 𝜃1, 𝜃2, 𝜃3. it is a column vector and x and y which denotes the end 

effector trajectory. So, we can solve this optimization problem and it turns out that, we can 

solve this optimization problem using classical method of Lagrange multipliers.  

So, what is the classical method of Lagrange multipliers; we form another function 𝐹(𝜃), 

which is small 𝑓(𝜃), which is this objective function minus 𝜆1𝑔1(𝜃) − 𝜆2𝑔2(𝜃). And the 

solution procedure is well known; we take the derivative of this 𝐹(𝜃) to 0 by setting 
𝜕𝑓

𝜕𝜃
= 

equal to this 𝑔1(𝜃) and 𝑔2(𝜃), equals to 0 .  
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So, we can eliminate this 𝜆1, 𝜆2 which are called also as the Lagrange multipliers by 

writing these three equations in this form. So, 
𝜕𝑓

𝜕𝜃
, 

𝜕𝑔1

𝜕𝜃1
, 

𝜕𝑔2

𝜕𝜃2
 into 1, - 𝜆1,−𝜆2,.  

And similarly the second row is 
𝜕𝑓

𝜕𝜃2
and so on; third row is 

𝜕𝑓

𝜕𝜃3
 and  

𝜕𝑔1

𝜕𝜃3
,  and so on equal 

to 0, ok. So, this is a equation, linear set of equation of the form AX equal to 0. And for 

non trivial 𝜆1,  and 𝜆2, the determinant of this matrix 3 by 3 matrix must be zero ok, this 

is from linear algebra. 

So, we can obtain the determinant of this matrix and it turns out to be an expression of this 

form it 𝑙1𝑙2𝜃3𝑠2 + 𝑙2𝑙3(𝜃1 − 𝜃2)𝑠3 + 𝑙3𝑙1(𝜃3. −𝜃2)𝑠23 = 0 , ok. So, we need to solve this 

equation together with 𝑔1(𝜃)equal to 0 and 𝑔2(𝜃). equal to 0, ok.  



So, this cannot be solved analytically, but we can always do it numerically. So, the next 

slide shows a plot of 𝜃1, 𝜃2, 𝜃3. and 𝑓(𝜃),  the minimization the objective function, which 

we are trying to minimize as for a given x and y, ok. 
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So, we will start with this bottom figure. So, the bottom figure shows a plot of the 

workspace of this 3R robot. So, basically there is a outer circle which is 𝑙1 + 𝑙2 + 𝑙3 and a 

inner circle which 𝑙1 − 𝑙2 − 𝑙3. And we want to trace a trajectory along the Y axis. So, this 

dotted line shows a chosen trajectory; this has been chosen arbitrarily, we could have 

chosen any other trajectory ok, which is in the workspace, of course the whole trajectory 

must be in the workspace. 

For numerical purposes, we have chosen 𝑙1, 𝑙2, 𝑙3 as 5, 3 and 1 arbitrarily; we could have 

chosen any others. And this end effector trajectory is along this Y axis. So, we solve this 

optimization problem and in this top plot, it shows the variation of 𝜃1, 𝜃2, 𝜃3 and the 

objective function, ok.  

So, what you can see is, we will get some values of 𝜃1. ok; then we will get some values 

of 𝜃2, and we will get some values of 𝜃3. So, this plus signs are 𝜃3 , this one is 𝜃1 minimum, 

and this one is rather 𝜃2minimum, this circles and this dark solid line is the value of the 

objective function.  



So, what have we done? So, what we have done is, we had a redundant system; we had 

two equations in 3 unknowns, we are chosen to minimize the sum of the squares of the 

joint rotation, ok. And then we have solved it as an optimization problem.  
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The interesting part of this optimization problem is, we can even impose additional 

constraints. So, for example, if you say now that in addition to minimizing the square of 

the joint rotations, sum of the squares of the joint rotation; we say that 𝜃2 should not cross 

plus minus 120 degrees, ok. So, again we can solve this optimization problem for the same 

trajectory and you can see that this plots of 𝜃1, 𝜃2, 𝜃3 are slightly different ok; they do not 

cross, 𝜃2 does not cross 120 degrees.  
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Now, let us continue with as I said, we can also minimize the Cartesian motion of the links. 

So, this is a very well known problem; we are going to draw on a very well known problem 

called the classical tractrix curve ok, also sometimes called the hund or the hound curve 

and it was invented by this famous mathematician called Leibniz, ok. Leibniz also invented 

calculus, the way we do it nowadays.  

So, what is the basic idea that, consider a link which is lying along the Y axis, so 

somewhere 0 to 10. What I want to do is, I want to move the head of the link which is 

lying, which is at 0 along the X axis, ok. With the constraint that the velocity of this tail 

which is at this end of the Y axis is always along the link, ok.  

Why do I put this constraint? Because if you just move this head along the Y axis without 

any constraint, the tail can move arbitrarily in all possible directions, ok. So, the constraint 

posed by Leibniz was that, we want the velocity of the tail to be always along the link, ok. 

So, this problem has a solution and he showed that the curve traced by this link is called 

the tractrix, ok. So, you can see more details about this tractrix curve, some of the very 

nice properties in Google, in some Wikipedia link is there.  

So, in so basically what are we doing; we have a link a planar case right now and it is being 

moved, the head of the link is moved along the X axis or parallel to the X axis and at every 

instant, the velocity of the tail is along the link. So, the curve traced by the tail is this dotted 

line and this is what we call tractrix.  



So, you can see here two quantities which is marked. So, dy is the motion along the Y axis, 

dx is the motion along the X axis for the tail, and dr is this you know the hypotenuse of dy 

and dx, small triangle.  
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So, since the velocity vector at the end or at the tail or at the 𝑗0 is always aligned with the 

link; the equation of the tractrix is given by
𝑑𝑦

𝑑𝑥
=

−𝑦

√𝐿2 −𝑦2
. So, the length of the link is L. So, 

it turns out that the there is a closed form solution for this differential equation, ok.  

And it is a interesting solution; because we can solve this differential equation x as a 

function of y; most of the time we solve y as a function of x, ok. So, in this case, it is𝑥 =

𝐿 log
𝑦

𝐿−√𝐿2 −𝑦2
− √𝐿2 − 𝑦2, ok.  Or if you go back to this picture and if you consider this 

small motion as dp, like p is a parameter along this X axis motion; so we can write this 

closed form solution in a parametric form, which is𝑥(𝑝) = 𝑝 − 𝐿 tanh(
𝑝

𝐿
)  𝑎𝑛𝑑 𝑦(𝑝) =

𝐿 sech(
𝑝

𝐿
)  , ok. So, this is a closed form solution for this curve traced by the tail, when the 

head is moved parallel to the X axis.  

So, let us look at a few very important properties of the tractrix curve. So, one important 

property is, for an infinitesimal motion of the head given by dp; the length of the path 

traveled by the tail dr is minimum of all possible paths, ok. So, there is a small infinitesimal 

motion of the tail of the head which is happening along the X axis; the tail is moving such 



that it is always, velocity is always along the link and the infinitesimal motion of the tail 

given by d r is minimum of all possible motions of the tail.  

More importantly, dr is less than or equal to dp and it is equal when the velocity of the 

head is along the link, ok. So, in this figure dr this quantity is less than or equal to dp; if 

the head is moving along the Y axis, then dp will be equal to dr, ok. So, this is a rigid link, 

ok. So, hence this distance will always be conserved between 0 and the head and the tail.  
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So, we could extend this idea of a tractrix not moving along the X axis, but in an arbitrary 

direction. So, along a line which is given by 𝑦𝑒 is equal to m𝑥𝑒. So, basically it is in some 

along a angle which is given by tan of the angle is m. So, if the head is moving along 

𝑦𝑒equals m𝑥𝑒, where m is xp / yp. So, xp and yp are the destination points; we can have a, 

modified differential equation of the tractrix which is given by 
𝑑𝑦

𝑑𝑥
=

𝑦−𝑦𝑒

𝑥−𝑥𝑒
, ok.  

So, this can also be solved and a plot of how it, how the tail moves is shown in this picture. 

So, initially the link is along the Y axis; we make a motion along the 𝑋′direction ok, in 

this direction. As you can see, initially the tail will move backwards, ok. So, it goes 

backwards and then comes forward and then again eventually it will go like this. So, it 

goes backwards and then comes backward forward.  
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So, let us define a simple algorithm. So, first define vector S, which is 𝑋𝑝 − 𝑋ℎ. So, 𝑋ℎ is 

the current location of the head, 𝑋𝑝 is the desired location of the head. So, we define a 

vector T which is 𝑋 − 𝑋ℎ, where 𝑋 is the x, y, z is the tail of the link lying on the tractrix, 

ok. So, we are trying to extend it to 3D. So, first define a reference coordinate frame r with 

the X axis lying along S; z axis lying along S x T, of course we will make it as a unit vector 

divided by magnitude of S x T.  

And then we define a rotation matrix 𝑅𝑟
0 . So, the rotation matrix of this reference frame 

with respect to the fixed global reference frame; the first column is the X axis, second 

column is the Y axis, and third column is X axis standard definition of a rotation matrix. 

Then we obtain y which is 𝑌�̂� . T. And then in this terms of this parameter p, which 

is 𝐿 sech−1 𝑦

𝐿
± |𝑆|; we from this p we obtain  𝑥𝑟 𝑎𝑛𝑑 𝑦𝑟 in this reference coordinate 

system r.   

So, we can find what is 𝑥𝑟  just by the solution of the tractrix equation in terms of this 

parameter p, which is given by ±|𝑆| − L tanh
𝑝

𝐿
, and 𝑦𝑟 is L sech

𝑝

𝐿
. Then we obtain x, y, z 

in {0} coordinate system by transform it back to the 0th coordinate system by pre 

multiplying 𝑥𝑟 , 𝑦𝑟 , [𝑅𝑟
0 ] with and addition of this X head, the current location of the head. 

So, what have we done? So, if I want to move not in the plane, but in some arbitrary 

direction.  



So, initial point is 𝑋ℎ and I want to move to x, y, z some other points in 3 D space. By 

following this algorithm, I can find out in closed form ok, of course discretized closed 

form in terms of this parameter p; where is the tail and where is the head ok, following the 

tractrix curve.  
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So, now consider a redundant manipulator with n links and joints 𝑗1  𝑗2 all the way till 𝑗𝑛−1 , 

where 𝑗𝑖 is the joint connecting link 𝑙𝑖 and 𝑙𝑖+1. So, the joints could either be spherical 

joints or rotary joints, ok. Consider the last two links 𝑙𝑛 and 𝑙𝑛−1. So, the head of the link 

𝑙𝑛 it is denoted by 𝑗𝑛  is to be moved to a new location, 𝑗𝑛𝑛𝑒𝑤
 and this new location is given 

by  𝑋𝑝., which is vector which is  𝑥𝑝 , 𝑦𝑝, 𝑧𝑝 ok. 

So, obtain the new displaced location of the tail 𝑗𝑛−1 using the previous tractrix 3 D 

algorithm and let us call that point x, y, z. So, now, the tail of link 𝑙𝑛 is the head of the link 

𝑙𝑛−1 and desired location of the head of the link 𝑙𝑛−1 is x, y, z.  

So, basically the last link has moved to one position, the tail has moved along the tractrix 

to some position; then the link before that last link, now we know what is the desired 

motion of the head, ok. And then we find that this motion of the tail again according to the 

tractrix algorithm. So, we recursively do this till we go from the head all the way to the 

tail of the first link  𝑙1, ok. 
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So, this is given in terms of a algorithm that, input the desired location of the head of the 

last link which is  𝑥𝑝 , 𝑦𝑝, 𝑧𝑝 and set  𝑗𝑛𝑛𝑒𝑤
 as  𝑥𝑝 , 𝑦𝑝, 𝑧𝑝 column vector. Then from i equals 

n to 1, you call this tractrix 3D and obtain the location of the tail of the link i, ok.  

So, n then tail of the link, then the previous link, I know what is the location of the head, 

new location of the head; find the tail and we keep on going backwards, ok. So, you set 

the new location of the head of link i - 1 to  𝑗𝑖−1𝑛𝑒𝑤  which is x, y, z transpose i- 1, which 

you have calculated in this previous step.  

So, at the end of step 2, 𝑗0  would have moved. To fix 𝑗0 , move 𝑗0  to the origin, ok. So, 

because every link is moving, the end will also move a little bit. So, we fix the first joint; 

because normally in a robot, the first joint is fixed, ok.   

So, if you want to keep the last joint fixed, we translate rigidly all the links with no 

rotations at the joint. So, the last first joint has moved a little bit, you translate it back to 

the origin (0, 0, 0). And due to the rigid translation, the end effector will not be at the 

desired  𝑥𝑝 , 𝑦𝑝, 𝑧𝑝 ok. 

So, then you repeat steps 2 and 3 till the head reaches  𝑥𝑝 , 𝑦𝑝, 𝑧𝑝. So, you have to do a little 

bit of a arbitration and then you stop when the last link is within the error bound is (0, 0, 

0), ok. So, this was an algorithm which was first developed by Reznick and Lumelsky in 

92, 93 and 95; they wrote several papers.  
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So, let us look at some of the properties of this algorithm, ok. So, let we are I am calling 

this resolution tractrix. So, the algorithm complexity is O(n), ok. What do we mean by 

O(n)? It scales linearly with the number of rigid links, ok. So, if you have five links and 

you apply this tractrix; if you make it double, if you have now ten links, then the effort 

will become twice only, ok. There are other algorithms, where it can go square of the 

number n or even worse to the power of n, ok. 

So, this is a linear complexity. How do I find the 𝜃𝑖, which is the rotation at the joints? 

Because eventually we have to rotate by means of a motor; it is very simple, we find the 

angle between the unit vectors from the tail to the head of the i th link, at the k th and k 

+1th instant, ok.  

So, at one instant I draw a vector, in the next instant I draw the same vector from the tail 

to the head and I find the angle between these two vectors, ok. And this as the link is 

moving, we can constantly find at every instant. 

So, this resolution of redundancy is in Cartesian space and then the joint angles are 

computed. So, remember we are trying to minimize the linear velocity of the tail, ok. So, 

the velocity dr, which is in some sense related to the linear velocity of the tail; it is always 

along the link and dr is what is less than dp, ok.  



So, the head of the link moves by 𝑑𝑟𝑛, the displacement obeys the inequality 𝑑𝑟0, 𝑑𝑟1 all 

the way till 𝑑𝑟𝑛. So, remember dr was less than dp and what is first one is dr; the second 

for the second link, the dp will become like dr for the previous link. 

So, at every instant dr is less than dp; which means that 𝑑𝑟0 is less than 𝑑𝑟1 all the way till 

𝑑𝑟𝑛, ok. So, what is happening? The motion of the link appears to die out as we move 

towards the first link. So, I have moved the head, calculate the motion of the tail; then I 

use the second link, the motion of the head is the motion of the tail of the next link and so 

on and since dr is less than equal to dp, that motion will always die down, ok. 

This is a very good idea, because joints near the base sees large inertia and a desirable 

strategy would be to move them the least, ok. So, if you have a robot, like let us say the 

Puma robot and we have motors at the base which are very big and heavy we; because it 

needs to move the outer links also, ok. So, if you move the first joint the smallest, then it 

is a good idea.  

To fix the tail of the first link, perform iterations of step 3; convergence is guaranteed, ok. 

Remember if the head is moved, the tail moves little bit; then the head that becomes the 

head of the previous link and so on. But eventually the first link will also move a little bit; 

because of this going dying down property; but we can rigidly move it back to the origin 

and then again repeat the step. So, this will converge, because always dr is less than or 

equal to dp and there is a dying out property of the links.  
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So, this is an algorithm which was developed by long time back; but we have also worked 

on it and we implemented it on an experimental hardware. So, we have an experimental 8 

link planar robot; each link is 70 millimeters long. So, this is one link ok. And each joint 

of the robot is some motor, which is an RC hobby servos motor, Futaba S 3003. 

So, this motor can rotate, ok. So, we can give some theta rotation of each link and then we 

have this controller, which can pass from some laptop or somewhere and then there is a 

driver circuit, which can power all these motors. So, we build this 8 link hyper redundant 

robot to move on a plane, ok. So, in a plane, anything more than 3 degrees of freedom will 

make it redundant, ok. So, 8 means, that is large number of joints and ok. So, we have 

infinitely many possible solutions.  
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So, if we implemented this tractrix based solution and we did some simulations. So, here 

are two simulations. So, I want the end of this 8 link robot to move from 1 to 2, 2 to 3, 3 

to 4, 4 to 5, and 5 to 6 and then again 6 to 1. So, it should trace a hexagon, ok. So, these 

are straight line motions in a plane. So, we can solve this tractrix equation. So, initial 

location is given here, ok. So, 1 to 2, and 3, 4, 5, and 6.  

See this blue dotted line shows how the robot looks like when it has come back to 6, ok. I 

will show you later how each one of these joints are moving; but this is a picture of the 

robot, when it has completed this task. There are other ways to resolve redundancy ok, we 



will go to, we will see this later; many researchers have worked on it, it is called the pseudo 

inversed solution, ok.  

So, for the moment let us assume, you accept my word that there is something called as a 

pseudo inverse solution; there is something called as a modal solution. The pseudo inverse 

is nothing, but something similar to minimizing the joint velocities, ok. 

This modal solution basically means that, we have a backbone curve and we move the 

backbone curve, ok. So, if you were to use this pseudoinverse solution for this task, then 

the green dotted line shows how the robot will look like after it has completed the task.  

So, they all start from the same configuration which is 1 traces that are straight lines and 

come to this point 6. The tractrix solution looks like this; the pseudoinverse solution looks 

like this, and the modal solution looks like this, this pink dotted line. We also tried another 

task, which is tracing a circle; here also you can see that the blue dotted line or piecewise 

line is the tractrix solution, ok. 

So, what you can see is that, the first joint here, the second joint here or even the third 

joint, they are moving very little; the last joints are moving a lot ok, they are rotating a lot. 

Whereas, in the pseudoinverse and modal solution, the first joints and the first links they 

also rotate; the same thing can be seen when it is trying to trace a circle, ok. 
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We can solve for the tractrix by finding the joint angles at each instant of time. And we 

can see that the joint 1 which is this pink line, it has moved very little; whereas the joint 8 

which is this yellow line, it has moved a lot, ok. So, that is the same story when you are 

trying to trace a circular trajectory. So, what is the basic idea? That, in a tractrix solution, 

we mean move the farthest link at the furthest joint as much as possible and then we move 

the previous joint, then we move the previous to that and so on.  

So, because this dr is less than or equal to dp; because of this dying motion, the first few 

joints move very little. So, joint 1, joint 2 moves very little; joint 3 is moving a little bit 

ok, joint 4 is little bit more, joint 5 and 6 and 7 they will move much more, ok. This work 

was published in a paper in 2010 by our students.  
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And I am going to show some experimental results later on, after this lecture is over; I will 

show you videos of this 8 link robot tracing this hexagon or tracing this circle, ok. So, 

basic thing is we will see later that, this minimizing Cartesian motion, the motion dies out 

from the end effector to the base. The tractrix base solution scheme is more natural ok; the 

joints far away from the base move more and then slowly the motion dies down as you 

come towards the base.  

We will also see in the videos that, the trajectory traced while tracing this hexagon or the 

circle seems much more smoother and natural as compared to the pseudoinverse solution 

or as compared to the modal solution.  
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The tractrix based approach can be extended to any spatial hyper redundant system; it need 

not be a robot. So, we tried this idea of moving according to tractrix for simulating the 

motion of a thread. So, basically a thread can be discretized into small small circles 

connected by joints, in this case spherical joints and then we showed that it could move 

the tip of the thread to tie a knot, ok.  

So, we can have a knot which is what is called as a single handed knot. So, only one end 

of the thread is moving; we can also simulate the motion of a thread when it is tying a two 

handed knot. So, two handed knot means, both ends of the thread are moving, ok. We also 

showed that you could simulate the motion of a snake ok.  

So, each of the simulations used in this video which I will show later, uses a tractrix based 

approach, ok. And we can see later or we can see from this videos that, this motion appears 

to be quite natural looking.  
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So, in summary, we can have constraint motion when the number of actuated joints is less 

than 6 or less than 3 in a plane. So, in the case of the SCARA robot, the last two rotations 

of the end effector are not allowed, those are the constraints. If you have redundant serial 

manipulators, basically the number of joints is greater than 6 in a 3D and greater than 3 in 

a plane.  

In a redundant system or in a redundant manipulator, we have infinitely many inverse 

kinematic solutions. So, naturally we need to enforce or require additional constraints. So, 

this notion of requiring or generating additional constraint is called resolution of 

redundancy. So, I have showed you one where we can optimize or minimize the joint 

motion; so we can minimize 𝜃1 
2+ 𝜃2 

2  and so on, ok. 

So, this is minimizing the joint space motions. We can also minimize the Cartesian motion 

of the links of a robot, ok. And one such approach is this Cartesian based approach which 

turns out to give a more natural looking motion, ok. And this tractrix based approach can 

be shown or has been shown using both simulation and experimentally, ok. 
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And so, with this I am going to stop and in the next lecture, we will look at with more 

abstract concepts on elimination theory and solution of non-linear equations, and how we 

can apply this elimination theory and solution of non-linear equations to find the inverse 

kinematics of a general 6 degree of freedom or 6R robot. 


