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Interface controlled growth 

So in the last several lectures I have devoted a lot of time on discussing the rate of nucleation. 

And now in any phase transformation first a nuclei forms and then a nuclei grows. So now what 

we are going to look from today onwards or from this lecture onwards is the rate at which an 

nuclei grows a stable nuclei grows or the growth kinetics of the stable nuclei. 

It is together the rate of nucleation and the growth kinetics put together will give us quantitative 

idea of the rate of phase transformation. So now considering growth kinetics of a stable nucleus, 

there are several steps in which or couple of steps in which stable nuclei will grow, this may 

involve diffusion over large distance distances and atomic jump across the parent phase and the 

nucleus phase interface. 

So in the case of liquid to solid it would be the liquid solid interface. In the case of solid to solid 

it would be a atom jumping from the parent solid phase to the product solid phase. So it is the 

rate of diffusion of atoms within the parent phase and then the rate of jump of atoms. Now the 

question is which of the two processes will control the rate of growth would be dependent on 

which process is slow and which process is fast. 
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For example if there is no large distance diffusion involved and only jumping of atoms from a 

parent phase to the product phase is involved. Then in that case that is going to be the rate 

controlling step or what we call as an interface controlled growth. In a situation where there is 

diffusion involved and if the diffusion step is a slow step compared to the jump of atoms across 

the interface. 

So the barrier for jumping across the interface must may be far smaller as compared to the 

barrier for the diffusion then what the kind of growth we mechanism that is going to control is 

called as diffusion controlled growth. And of course there can be a situation where both the 

processes may be contributing significantly to the growth in that case we would call that as 

mixed growth. 

Now let us consider first growth kinetics where interface growth or the atomic jump across the 

interface is controlling the growth kinetics. And such a growth an example of that could for 

example occur in the example that we have been taking in the last few lectures of ice nucleating 

in water. It is a single component system where actually it is the water molecules jumping across 

the liquid to solid interface. 

Or another example in the solid case could be gamma FCC iron transforming to alpha body 

centered cubic iron. Again a single component system where it is going to be an interface 



controlled growth because there is no diffusion involved but atoms have to jump from the parent 

phase centered cubic phase across the interface to the product phase which is alpha or the body 

centered cubic iron. 

So let us consider that kind of a situation now what is the so there is a for the atomic jump in this 

case across the gamma alpha interface. So alpha is a (nucl) stable nucleus that forms in the 

gamma FCC iron phase when the temperature is below the transformation temperature which is 

of the order of 910 degrees celcius. So considering this what is the barrier to this atomic jump 

and that also we have already encountered when we were talking about nucleation and that 

barrier is delta GD, the energy barrier across the interface. 

So this is the term whose magnitude also we have we have some idea from our earlier lectures 

where essentially an atom would jump from the parent phase to the product phase. Let us look at 

this in this following representation so I have this is FCC gamma. So for an atom to jump to 

body centered cubic alpha it has to cross this barrier delta GD. And this is for temperature less 

than the transformation temperature Tr. 

You would also know from this diagram that there is a reduction in the free energy as we 

transform from phase centered cubic to body centered cubic iron for temperatures less than the 

transformation temperature. And that reduction is is given by this level and what is that level 

well one atom jumps and if that atom has a volume of v than this barrier is of the order of v times 

delta GV, the volume free energy change per unit volume multiplied by the volume of the singe 

atom. 

So delta GV also we have seen and of course this is going to be a function of temperature and 

hence this these levels will change for different temperatures. Now, I want to figure out from 

here what would be the rate or the net rate of atoms jumping from the gamma phase to the alpha 

phase, ok. So let us first look at what is the probability of a jump for an atom on the phase 

centered cubic side to jump across the solid interface to the body centered cubic phase. Well that 

also we have already seen and that probability is simply exponential minus delta GD divided by 

KT. 

Now I want to find out the overall forward rate forward rate means atoms jumping from FCC 

side to the BCC side. So I will call that as the forward rate that would be a function of lattice 



vibration frequency which is we have already seen is of the order of 10 to power 13 per second 

multiplied by ns which is the number of atoms or molecules surrounding the nucleus per unit 

area. 

Now just as the atoms can jump from FCC to BCC similarly an atom can also jump from BCC to 

FCC there is a finite probability for that as well. And what is that probability well that 

probability would be exponential but here you will have a bigger energy hill would be this would 

be much delta GD plus v delta GV. So if I add this up well let me put this delta GV in modulus 

sign to indicate that I am going to take the positive quantity here. 

And let me write this as delta GD plus v delta GV divided by KT. So here we have a higher 

barrier in for an atom to jump from BCC to FCC for temperatures below the transformation 

temperatures. So the probability is less and in a similar manner I can express the backward rate 

of jumps as ns times new times the exponential. So obviously if I look at this these quantities the 

units are going to be meter square second inverse. 

Now, I want to know what is the net rate that is the number of atoms jumping per unit area per 

unit time in the forward direction. For the net rate of jump, let me call that as dn by dt the net 

rate.  
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So dn by dt is simply the forward rate minus the backward rate. Now forward rate minus the 

backward rate I substitute this two expressions in this and I would get well I can take out ns mu 

times exponential minus delta GD by KT minus exponential minus delta GD plus v delta GV 

upon KT. 
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So this gives me the net jump rate. Let me just rearrange some of the terms to write the net rate 

dn by dt as ns mu and I take out exponential minus delta GD upon KT common out of the 

brackets. And I will get inside the square brackets [1 – exponential (-v delta GV divided by 

KT)]. So this is the net jump rate per meter square per second. Out here this should also be per 

meter square per second, ok. 

If I look at this I multiply both sides by volume of an atom, so I can write this as nsv instead of 

ns mu. Now this gives me the growth rate. So if I basically I am adding a for basically I can put v 

times ns equal to lambda which is equal to a single atomic growth. Or a single atomic step I 

should say that is added per meter infact single atomic step that is added. 

So this term here actually I can then write it as a one dimensional growth rate as dr by dt which 

is equal to lambda mu exponential – delta GD by KT times [1-exponential (-v delta GV upon 

KT)]. And this essentially gives me growth as meters per second. So let us try to analyze this 



growth rate (equat). Let us consider a situation or let us consider temperatures close to the 

transformation temperature, ok. 

But keeping (T<Tr) but close to Tr. And if we look at what is the growth kinetics at this 

temperature. So let us try to see this what is delta GV at temperatures, at any temperature T 

below Tr. Well that is simply delta HV change in enthalpy per unit volume multiplied by the 

undercooling upon Tr, the transformation temperature. Or I can simply write this as delta HV 

times (Tr-T) upon Tr. 

So for small undercooling essentially temperatures close to the transformation temperature 

means we are talking about small undercooling. So for small undercooling the term v times delta 

GV could be much smaller than KT. If this is the case then I can make the following 

approximation using Taylor Expansion and how do we do Taylor Expansion very quickly.  
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If I have a function f(x), for a function f(x) which I expand around x is equal to 0. The Taylor 

Expansion can be written as in in the form of an infinite series as f(0)+f prime (0)x upon 1 

factorial + f double prime (0)x square upon 2 factorial and so on. Now for small undercooling 

means for small values of x here, I could neglect higher order terms and keep only the first 2 

terms. So here x actually is nothing but delta GV. So using only the first 2 terms the 



approximation is f(0) + f prime (0) times x. Now what is f(0) well the function is exponential –v 

delta GV upon KT. 

So x is putting this is 0, this is essentially 1, so this is equal to 1. Differentiate this find the 

derivative at 0 and the derivative is going to be –v upon KT multiplied by x and that is delta GV. 

So what this is telling us is that for v delta GV much smaller than KT, the function which is 

exponential –v delta GV upon KT can simply be approximated by this.  

(Refer Slide Time: 22:00) 

 

If I substitute this now this approximation into this my rate of growth dr by dt then can be 

approximated as lambda mu exponential – delta GD upon KT. 

And we substitute this expression to this. And one would get the term v upon KT times delta GV. 

So what this is telling us is that for small undercooling the growth rate is directly proportional to 

the driving force delta GV. Now what could happen when the driving force is very large. Here 

this was the situation where the driving force is small. What would be the situation when the 

driving force is large, what does that mean that means that v delta GV is much larger than KT. 

If this happens then what about the term exponential –v delta GV upon KT, well exponential –v 

delta GV upon KT sets there is a negative exponent. This is going to be much much smaller than 

1. And if this is much smaller than 1, this term for large driving force that this could be neglected 

and hence the rate of growth then becomes simply lambda mu exponential – delta GD upon KT. 



This is the situation for large driving force and of course in between there will be whole range of 

growth rates in between which would simply be given by this expression.  
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Now what can we conclude out of all this that we have done, that if we have interface controlled 

growth than one thing is clear that at a given temperature the growth rate will be a constant. We 

can assume the growth rate to be a constant. 

But growth rate itself is going to change with temperature or change with undercooling. But if 

we were to model the rate of or the kinetics of the overall phase transformation. Then and if we 

knew that we had interface control growth then in that situation we can simply assume the 

growth rate to be a constant. So this is one kind of of a controlling mechanism for growth of a 

stable nucleus. 

Now this is likely to happen in systems where single components system where there is no 

diffusion involved or in those systems where diffusion is very fast. But for some reason the 

atomic jump across the interface is difficult which means delta GD is very large. And it can 

happen, then in that case also one would get interface controlled growth. Even though there 

would be diffusion involved.  

But the diffusion process is much faster or you can say the atomic jump across the interface is 

much smaller and hence in that situation we would have interface control growth and we can say 



that the growth rate would be a constant for given undercooling. Now this was all that I wanted 

to discuss regarding interface control growth and thh in the next lecture let us look at diffusion 

controlled growth. 
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And this is quite important and we would also find that the growth rate will no if we have 

diffusion control then growth rate will no longer be a constant. It itself is going to vary with time. 

So with this I will stop here and will continue in the next lecture. 

 


