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Lecture - 10 

Two and Three Dimensional Defects 
 

Welcome, today we are going to discuss in continuation to our earlier lectures, the defect 

in crystalline solids. Previously, we have already discussed two types of defects, two 

groups of defects impact; one was the point defects like vacancy in interstitials, Schottky 

defect, Frenkel defect and so on. And then, we have also discussed the one-dimensional 

defects that is or in other words line defects that like dislocations. 

We have also discussed different types of dislocations and their importance in describing 

or understanding the mechanical behavior of solids. Today, we are going to discuss the 

third group of third or fourth group of defects, which we called two-dimensional and 

three-dimensional defects. Earlier I just mentioned, we have discussed the zero 

dimensional and one-dimensional defects, now we will be going to discuss the two and 

three dimensional defects. 
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So, we start with the two dimensional defects, there are three types of two-dimensional 

defects. And the first one is called the twinning, the process of twinning and by that 

process, we actually generate defects like twin boundary. Second one is a grain boundary 



and the third one is stacking faults, sometimes they are also called surface defects 

because basically, two-dimensional forms of surface. 
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Well the twinning, all these defects are relative to the perfect lattice, this is a perfect 

lattice, in which the atoms are arranged in the particular geometric fashion. And the 

horizontal lines are actually the planes, we can imagine one set of particular set of 

planes; and there is no defect in this particular case, either point defects or line defects or 

two-dimensional defects because of, twinning. 

However, if there is a mechanical stress either internally generated or externally applied, 

depending on the nature of the crystal and it is energetic and energy equal to form 

different kinds of defects, a twinning (( )). 



(Refer Slide Time: 03:19) 

 

This is what we call a twinning; that means, a deformation, a kind of shear deformation; 

if we compare the earlier structure, the perfect lattice, and then goes to this twin crystal 

or twin planes, we find is a shear shear region, where this part of the crystal remains 

intact. This also have the same orientation, as it was originally present and however, in 

between we have a region a region where, the atoms are displaced atoms are displaced to 

some extend not very large distances. 

But we will see the atoms are arranged or displaced in a particular proportionate manner 

that means, this atom has moved smaller distance, this atom has moves from this 

distance, larger distance and so on. And this particular atom is moved from its original 

position, the larger distance, and they have a relationship between themselves. So, they 

again form a set of planes, they are not randomly distorted, not randomly displaced. But, 

they displaced in such a manner, they form of plane. 

So, this particular plane, which was a continuation plane with this, has now shifted 

downwards. And in between, a plane has come up, which having a different orientations, 

but it remains as a plane. So, it is a kind of cooperative movement of a set up atoms 

under a shear stress and they maintain certain orientation and relationship, they are not 

randomly displaced. But they have a particular nature of the displacements so that, they 

maintain the particular orientation, orientation among themselves. 



But that orientation is different from their original orientation, it also one can look at this, 

if you look this boundary, either this boundary or this boundary. Once again, one can 

imagine a plane there and if you look, take the atoms across this particular boundary you 

will find this part of the boundary, this part of the plane is mirror image of this plane. 

This plane is a mirror image of or the deformed plane is the mirror image of the original 

image across this boundary. 

So, all the planes, all the set of planes here, parallel planes forms a mirror image of 

themselves after the twinning has taken place and similarly, this is also another boundary 

where this is a mirror image of this one. So, twin boundary these are called the twin 

boundary and process is called twinning so, deformation there is displacement of this set 

of planes called compare to its original position. And so, there is a deformation 

mechanical deformation, displacement of the atoms. 

So, there is a plastic deformation so, this plastic this is also plastic deformation not an 

elastic deformation. So, this twinning is another mechanism just by just like dislocation 

mechanism, by which plastic deformation takes place. Twinning is also another 

deformation, it is a different mechanism, by which if deformation plastic deformation 

takes place of a crystal. And these are called twin boundaries and they are back basically 

planes, a set of vertical planes and these also another plane. 

So, normally two different twin boundaries appear simultaneously, as a result you have a 

mirror image of the original planes. So, this is what we called the twin boundary and it 

takes place almost instantaneously. It is not a lot of time dependent process, it is 

basically takes place within a fraction of second so, this was the once again if can look at 

once again, it is a perfect lattice and then, immediately it changes to a twined region of 

the crystal. 
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So, that is what we call it twin boundary and that is the definition and there are crystals 

going back there are crystals in which, twin boundaries are quite predominant. And 

particularly, we have discussed earlier about the ferroelectric crystals no we discussed 

later this frankly speaking discussed later. We will see these twin boundary, they are 

quite predominant in some ferroelectric crystals and many of the hexagonal kind of 

crystals. 

The twinning boundary and twinning deformation is quite predominant well that is will 

not discuss much a lot it because, may be will come across the kind of the deformation at 

later stage, i will just introduce you and define what is twin boundary. The next type of 

surface defects or two-dimensional defects are known as the grain boundaries, in any 

polycrystalline material it is a combination of large number of single crystals and these 

single crystals are oriented in different directions. 

So, particularly until unless you take very special precautions, it is very difficult to 

prepare a single crystals, mostly ceramics are available in polycrystalline material. And 

therefore, the boundaries between two different single crystals within a solid, within a 

polycrystalline solid, it is actually called the grain boundaries. So, this is one grain, this 

is another grain and that is another grain so, you have boundaries and this boundaries are 

called grain boundaries and once again it is a two dimensional surface. 



And these boundary although we have drawn it in the form of a line, but actually their 

surfaces and they are not plain surfaces. One has to remember, they are not unlike twin 

boundaries, twin boundaries are plain surfaces, here grain boundaries are very irregular 

surfaces depending on, how the crystal have grown from its nucleation. And by 

nucleation and growth process, how the crystals are grown and finally, collided with the 

charger forming every irregular surface. 

So, these boundaries are called grain boundaries this is one grain and this is another grain 

and this another grain. The characteristics of these grains are, this grain having a 

particular orientation for example, these are the these at the particular planes having 

orientation in this direction. But, you can see the planes are oriented in a different 

direction whereas, in this there are other directions. So, the orientations in these crystals 

are different and that is how, the boundary is a defined. 

So, if it is a continuation of the same orientation then, the boundary would not have been 

there because, that is a change of orientation of the automatic arrange of the crystals that 

is why, there is a boundary. And sometimes, it is a combination of large number of 

dislocations, a large number of assembly of large number of dislocations can be give rise 

to this kind of a boundary. And there obviously, high energy site compare to the bulk of 

the crystal. 

These are the bulk of crystal, has grains, the grains of the lower energy internal energy 

whereas, the grain boundaries at defective sides. And therefore, they have a much larger 

energy per unit area so, this is what we called grain boundary. They are quite prominent 

and predominant in any polycrystalline material with ceramics, metals or any other alloy. 
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This is a typical microstructure, a schematic schematic of a typical microstructure of a 

poly crystalline ceramics in particular. As you know, ceramics are always prepared from 

ion powders and then, the assembly of those powders or the compact powders are heated 

to high temperature and then, the chemical bonds are formed or (( )) takes place and 

finally, there is the grain boundary formed. 

Now, to start with ceramics, what we called the green compacts or porous much larger 

pores. And slowly as we increase the temperature or (( )) or fire them at at at higher 

temperature, the porosity gets reduced, the grain to grain contacts, the solid to solid 

contact develops. And finally, you get a well developed grains, well developed single 

crystal grains. 

So, these are single crystal grains that we have seen earlier but, any poly crystalline 

material or particularly ceramics, the way we prepared it, it is supposed to contain some 

amount of pores. So, the dark spots here are actually the pores, the voids these are voids. 

There are two different types of voids, you have marked here, these are the lines or grain 

boundaries and in the boundary junctions triple points, these are called triple points. 

The inter boundary or inter granular pores are there so, these are the return pores or the 

remanant pores, which could not be removed even after (( )) originally limited scope 

temperature and time. So, these are inter granular pores, they are relatively large pores 

and normally, these inter granular pores are open pores what we call these open pores. 



Open pores means, they are through and through pores that means, there is a 

permeability from one end of the surface to another end of the surface, it is open. So, if 

you try to put some gasses are liquids, we can go through depending on the size. 

Whereas, there is another variety of pores, which is called closed pores or their intra 

granular pores. That means, these pores are within the grains, not at the corner junction 

of the grain boundaries. So, these are within the grains and these grains, these pores are 

normally called closed pores, these are called closed pores that means, they are not 

through and through pores and (( )) pores, they are closed from all the sides. 

So, these are the two different types of pores, we will see later that, these pores are also 

one kind of defects; one kind of defects but otherwise, these are the boundaries, these 

boundaries are the two dimensional defects in a polycrystalline material. 
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There are in addition to twin boundaries and grain boundaries, there is another type of 

defects, what we called is stacking fault. We have seen earlier that, the atomic 

arrangement or the atomic order, the way the atoms are arranged. Actually, you can 

consider a stacking of different layers of line layers of atoms, we have seen close packed 

layers A B C or A B A B packing or stacking. So, that remembering that FCC lattice for 

example, has a A B C A B C stacking. 



Whereas, hexagonal close pack or HCP has A B A B stacking but it is possible; it is 

possible that these stacking arrangement may not continue throughout the crystal. In 

some part of the crystal there may be some kind of mismatch, some kind of a distortion 

or deviation from this stacking. And A B C A B C stacking can change over to A B A B 

stacking so, within the same crystal it is not necessarily that all through you have similar 

stacking. 

It may have different kinds of stacking or the stacking sequence may change within a 

small region of the crystal, and that is what we call the stacking fault. Now, stacking 

fault may originate from different points (( )) it can originate from different regions, but 

one of the regions is, what we called formation of partial dislocations. Earlier we have 

discussed perfect dislocations having some Burger’s vector and that is the direction, in 

which the atoms move and distance by which, the atoms are moved that is defined as a 

Burger’s vector. 

So, all dislocations are basically defined by a Burger’s vector so, this is here decide line 

we have discussed earlier that dislocation is a line defect. So, this is can be represented 

by a perfect line like this so, this is a perfect dislocation, single dislocation having a 

Burger’s vector provided is in the edge dislocation, the Burger’s vector is perpendicular 

to the direction and the tangent to that line. 

And in this case, FCC lattice that a example we have taken and Burger’s vector in a FCC 

lattice is actually a by 2 1 1 1 1 1 0 direction. So, that is a close packed direction and a is 

a lattice parameter so, a by 2 1 1 0 direction is that, is what is called the Burger’s vector 

of the dislocation in FCC lattice. On a certain situations, it may happen this perfect 

dislocation, which is instead of continuing like this, they have separated out in two, what 

we called the partial dislocation. 

And this partial dislocations actually arranges because, the displacement changes, the 

Burger’s vectors get resolved in two different directions, one particular Burger’s vector 

like b, which is now becomes b 1 plus b 2. So, this is that Burger’s vector director this is 

like this whereas, this partial dislocations have a Burger’s vector like this. This is the 1 b 

1 and this is b 2 so, instead of the atoms moving from this position to this position 

according to this Burger’s vector, the atoms will move ultimately it will move to this 

position. 



But, it will move via a different route, it will first move to this position and that is with a 

Burger’s vector of b 1 and then, this moves to another final position from an intermediate 

position to this final position, by Burger’s vector of b 2. So, b becomes a combination b 

1 and b 2, although the ultimate result is same but, now because of the two different 

Burger’s vector we have 2 partial dislocations, what we called the partial dislocation. 

When all the atoms are moved from this place to this place, it forms 1 dislocation and 

when it moved from this place to this place another dislocation. So, the line perfect 

dislocation has been resolved in 2 different dislocations, one is two different partial 

dislocations and in between this region, between space between these two region is also 

atomic arrangements are there. And this atomic arrangement is different from the rest of 

the crystals outside, outside this boundary and this is, what we, we call, and what we see 

as stacking fault. 

So, this because of this partial dislocation because, the atoms are moved from a different 

position, which it was not supposed to be under normal condition. So, this has a different 

stacking compared to the outside so, this is the 2 Burger’s vectors b 1 and b 2, a by 6 1 2 

1direction and a by 6, 2 1 1 directions. So, these are the miller indices of the directions I 

hope you are aware of the (( )). 

So, these are the miller indices of the directions so, this is 1 1 1 1 1 0 direction, it has 

been resolved in 1 2 1 and 2 1 1 directions. So, because there are two partial dislocations 

the (( )) space is actually have a different stacking than the original A B C A B C 

stacking. So, this is what we call stacking fault so, a fault which spreads over a particular 

area. 
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This will be clear little in a different way, better way once again this perfect lattice of 1 1 

1 plane. These are the different layers of planes and this may be I think this will be clear 

in the next one like this. 
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So, the perfect lattice has a A B C A B C in this direction this is the perfect lattice here, 

on this side this is this part we can see there is some deformation has taken place on this 

part of the crystal. And the left part of the crystal there is a some changes whereas, this is 



the perfect crystal and if you have notice the stacking sequence, you will see there is A B 

C A B C A B C A B lattice. 

Now, you have a 2 dislocations, if you have remember the way we define dislocation the 

edge dislocation, here extra a is over there, another a is over there. And therefore, this are 

missing on this part of the crystal, as a result you will see this taking stacking has 

changed, in this part of the crystal stacking has changed. Instead of A B C A B C, which 

is on this side, on  this side we can notice it is A B C then, A C A C and then, again A B 

C. 

So, this part of the crystal we say, there is a stacking fault so, the atoms are not placed in 

the like positions as in the perfect crystal. But some of the atoms are missing because of, 

the formation of this dislocation and therefore, this part of the crystal has a stacking fault, 

rest of the things have a perfect crystal. So, within a perfect crystal there is a stacking 

problem or the stacking sequence gets changed and therefore, we call it a stacking fault. 

So, this is the third type of two dimensional defect, sometimes it is also called a volume 

defect. Because, it extends over some volume in a three dimensional, it can extend a 

three dimension. In some reference we will see stacking fault has been defined as a two 

dimensional, in some other case you will find they also defined as three dimensional 

defects. 
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So, these are the three different surface defects or two dimensional defects, we have 

mentioned earlier. Next, you come to three-dimensional or volume defects not surface 

defects but, the volume defects they are relatively simple to imagine. For example, voids 

and pores, inclusions or the second phase of course, provided the dimension, there is no 

particular critical dimension. But inclusions of the second phase either it may be 

impurity atom impurity phase or it may be a designed second phase. 

If the volume percent of the size of those individual phase region are very small, we can 

call them defects within a single phase region. Looking at the same microstructure, this 

is what we called void because, the pores the pores are nothing but, voids. So, the large 

avoids are there so obviously, is three-dimensional defects whether it is a inter granular 

or intra granular. Both of them have some volume and therefore, this pores are always 

the three dimensional defects. 

Inclusion, this can also a micro structure of this nature can also arise, if there is instead of 

pore, pore is in fact one can imagine as a pore as a second phase compact to if this 

becomes the first phase, this becomes second phase, a different material different kind of 

structure. In this case it is a void, instead of that this could be a different phase all 

together, a different phase in the sense having a different crystal structure, different 

compositions and so on. 

So, depending on the overall composition nominal composition of the material, there 

may be second phase. So, second phase of this nature, not pores second phase of this 

distribution can also we call a three dimensional defect. So, that is what we call about 

three dimensional defects and right we sorry the third one, is what we called disorder 

structure, disorder structure also is a three dimensional defects. 
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And the example of a disorder structure, a simple example of this, it is a of this nature, 

let us have a compound A and B whether A be one variety of atoms and B another 

variety of atoms. And it is a combination in which, sizeable fractions of A and B are 

present well since it is a B obviously, same number of A and same number of B will be 

present. If it is A to B, the ratio will be different but. in this case since 50 50 A and B so, 

these are A atoms and these are B atoms. 

Now they are occupying different sites, different lattice sites now, in this structure if you 

look at from the left side this also A B, this also A B same compound. But, the atomic 

arrangements are different, the relative position of the A and B are different, here we call 

it an order structure. All the a and b atoms are alternatively placed and that is an order 

order arrangement of A and B atoms because, lattice sites may be indistinguishable but, 

the atoms are distinguishable. 

So, the (( )) occupying the lattice sites that determines, what is the order, whether it is 

order state or in the disorder state. Here, the A and B atoms are not occupied in regular 

lattice site, they randomly distributed so, this is an disorder this is a disorder structure, 

disorder phenomenon where, this is in order phenomenon or order structure. So, this 

disorder is actually a defect compared to its normal thermodynamically equilibrium 

distribution, particularly at higher temperature. 



Particularly at higher temperature, the disorderness increases and there is random 

distribution so, this is also a kind of defect, which which actually occupies a particular 

volume. So, over the whole volume or a particular region of the solid, this kind of 

disorderness comes and sometimes, this disorder is also in order way. For example, in 

some kind of a layered structure material and we see later on the layer structure material, 

some layers, some crystallography layers or some atomic layers are actually disorder, 

others are ordered structures or remains ordered. 

So, disorderness may be restricted to a particular atomic planes or atomic volume or 

layers, two dimensional layers. So, that is also some kind of a disorder but here, we are 

considering the total volume. 
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Now, we can define some order parameters, that is basically that is basically extent of 

order disorderness is called ordered parameter, which is a major of the extent of the 

ordering or alpha, the fraction of alpha sites looking back to that structure. There are A 

atoms and B atoms and also, the lattice sites identified as alpha and beta sites. So, some 

are identified as alpha sites and some are identified as beta sites particularly, in an 

ordered structures. 

So, whether the alpha site is occupied normally, the normal circumstances as alpha will 

be occupied by A and beta site will be occupied by B. But if that does not happen then, 

the order parameter comes in, that is how, it has been defined S, the order parameters R 



alpha. R alpha is the fraction of a site, fraction of sites not the I think, it should be one 

minute these are fraction of sites occupied by the right atoms, that is A. 

Alpha should have been occupied all the time A atoms and beta should have been 

occupied by B atoms. So, an alpha R alpha is the fraction of sites occupied by the right 

right atoms or the A atoms and W alpha is the fraction of alpha sites occupied by the 

wrong atoms, that is what it says. So, if R alpha is the right atoms and W alpha becomes 

wrong atoms So, for complete order, R alpha equal to R beta equal to 1 and for complete 

disorder, R alpha equal to R beta equal to equal to half. 
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Well for a small degree of ordering, the temperature dependence of the ordering may be 

expressed in the following manner, which is a temperature dependence and this in 

exponential term and, there is a activation energy E D so the formation. So, here E D is 

the energy required to exchange the positions of a pair of atoms, A goes to the B sites 

and B goes to the A sites. And a energy requirement just like your point defects, 

formation of Frenkle defect or Frenkle pair or Schotty pair, would all you need certain 

activation energy. 

Similarly, this E D is the action energy for the disorderness so, that is how this parameter 

or the extent of disorderness actually dependent on the temperature by an exponential 

term like this. We normally assumed, that the E D is proportional to the order parameter 

S so, this E D is proportional to the order parameter, which we have defined earlier. And 



the proportionality constant is a constant E 0 so, there is a relationship there is a 

relationship between the order parameter and the temperature. 

And this order parameter remains more or less at one value, constant value till a 

transition temperature reaches, this is what we call the transition temperature, where 

suddenly this order gets changes to disorder structure or disorder structure comes back to 

the order structure. So, this is another kind of crystalline defects we crystalline defect we 

normally encounter in perfect crystals. So, that completes our discussion on the 

crystalline defects. 

We have earlier classes we have discussed about the point defects, next we have 

discussed about the line defects and in today’s class, we have also discuss the two 

dimensional or the surface defects and volume three dimensional defects, the volume 

defects. So, there are 4 varieties of crystalline defects zero dimensional, one dimensional, 

two dimensional and three dimensional so, that completes our discussion each on name 

of the course, different category different types of defects, each category has different 

types. 

So, we have all discuss and they have they are influence we have earlier seen how point 

defects influence the electrical properties and then, we have the line defects influence the 

mechanical properties. Also the two dimensional defects like twin defects, twining 

related to the mechanical property and then, grain boundaries. Grain boundaries are 

integral part of polycrystalline materials and they have a very, very important effect. 

So, for as various different properties are concerned, we will see whether it is mechanical 

property, whether it is electrical property, whether it is high temperature properties, all of 

them are controlled by this kind of defects. Having discussed all these and completed our 

discussion on crystal structures earlier, let us go to some question answer session at the 

end of this. 
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I taken some questions here and also discuss their answers given here, some are 

descriptive questions, couple of them are mathematical or numerical questions. The first 

question is, why do the cations in general, you have seen earlier that, with the atomic 

arrangement of any oxide or compound actually contains atom, cations and anion right. 

So, the question is, why do the cations in general have smaller size than the anions, we 

have also seen why i am discussing this question. 

We have seen the size is very very important role to play in determining the crystals 

structures so, the answer to this question is very simple, the net positive charge, cations 

means positive charge. Charge of the cations results from the removal of the outer orbital 

electrons, either the outer orbitals or the next inner orbital particularly, transition metals 

are rarers so, outer either outermost or the next outermost orbital electrons are removed. 

Whereas, the anions are created by addition of extra electrons of the outer orbit. So, the 

ionic size of the cations in general, is smaller than the anions, that is a normal thing but, 

there are maybe exceptions in there. We have seen in crystal structures that, in some 

cases the cations and anions more or less of the same size but generally cations are 

smaller than the anions are the reason is, in one case you are removing the outer 

electrons, in another case you are actually adding the outer electrons because, this is true 

for primarily for the ionic crystals. 



The second question is, explain the importance of the ratio of the ionic radii in 

determining the crystal structures that is what I assume, mentioning just now. Because 

ionic radii of atoms are the ions the cation either the cation or the anions that actually, 

determines the exact arrangement of the atoms. And therefore that leads to the symmetric 

and various crystal systems, and the description of the crystal structures so, it is the 

coordination number. 

So, it also determine the co ordination number of the cations and the anions that, 

determines the crystal structure right. This in turn, is determine by the radius ratio of the 

cation to that of the anion, it is a that is a very important role of the coordination number, 

either of the cation or the anion in determine the crystallographic symmetry. And this co 

ordination number is determine again by the radius ratio, what is the ratio of the crystal 

of the cation to that of the anion. And therefore, ionic radii or the ionic size is very 

important role to play in determining the crystal structures. 
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The third question is, how does the coordination number is determine by ionic radius 

ratio, it has the important role no doubt but, how exactly it is determined. That is what 

you have do, one has to remember these limits, the answer to this question is the anions 

being larger in size forms the basics skeleton of the atomic arrangement. So, since atoms 

of the anions are larger, they actually form the skeleton, they come they cannot come 

closer, too closer to complete to form the complete compacts structures. 



But they touch each other earlier, if you are talking if you consider the equilibrium 

distance of separation then, the anions will touch each other earlier than the cations. So 

therefore, the anions being larger in size forms the skeleton whereas, cations even after 

the touching each other or coming to the closest at position, they have some voids. They 

form a voids and those voids are sufficient for the cations to be accommodated there and 

that those are the interstitial sites. 

So, the exact coordination number or the exact polyhedra surrounding a cation is 

determine by the cation to anion ratio, this is r c by r a and this is the coordination 

number. So, if this is between 0 and 0.225, this becomes a 3 fold coordination, if it is 

between 0.225 to 0.414, it forms 4 fold coordination. Then it still larger that means, the 

cation size is larger relatively larger to the anion, then it goes to the 8 fold 6 fold 

coordination then, 8 fold coordination. 

And when it is exactly 1, both are equal it forms a 12 fold coordination so, that is the 

situation, that is why the cation to anion ratio is so important for determination or 

consideration of crystal structures. 
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The fourth question is, so that, the radius ratio range for the 4 fold coordination of a 

cation is 0.225 that means, if it is between 0.225 and 0.414, that we have seen earlier 

that, we have listed earlier. But we have to we have to justify why this number comes, 

this is the next question how do that justify the d s. If the r c by r a ratio is between 



0.2254 and 0.415 0.414, it becomes the tetrahedral coordination or the 4 fold 

coordination and that comes from the geometric basic solid geometric. 

This is our next consideration, it is known that for thermodynamically stable 

configuration, there has to be a direct contact between the central cation and the 

surrounding anions, forming a regular polyhedron. The cation cation must touch the 

surrounding polyhedron surrounding anions, if it is smaller than the interstitial sites, it is 

not a stable chain, it is not a stable configuration. It can be slightly larger so that, the 

anions can be pushed apart a little bit then also its stable beyond but, beyond certain 

point once again is not stable, it goes to next higher coordination that we have discussed 

in earlier classes. 

So, this is what we are trying to do it is a try to consider or try to mention here, it is 

known that the thermodynamically stable configuration, there (( )) thermodynamically 

stable configuration, there has to be a direct contact between the central cation. But the 

interstitial cation and the surrounding anions forming a regular polyhedron, the lower 

limit for the 4 fold coordination corresponds to the radius ratio of regular tetrahedron, 

radius ratio of tetrahedron, radius ratio of of a regular tetrahedron of the anions and the 

cations at the interstitial position in contact with all the anions. 

So, it just touches the cations when the anions are in the tetrahedral configuration, on the 

other hand the highest limit of the 4 fold coordination corresponds to a octahedron of a 

similar nature. Then, the geometries of these configuration are given below. I am just 

going to the next slide so, from 4 fold the tetrahedron that is the lower limit, higher limit 

is, when the atoms anions are little pushed apart. But you have still the tetrahedron is 

valid, which is, where the atom anions are not touching themselves, there is no contact 

between the anions they are pushed apart because, cation is slightly larger but, the limit 

is until unless is goes to a regular octahedron so, the up to that point the 4 fold 

coordination is stable. 
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This is what a kind of cut a few of the three dimensional picture tetrahedron, here is on 

the corners of each tetrahedron each corner of the tetrahedron is occupied by a anion. 

And you have a small cation at the center of the octahedron of the tetrahedron so, that is 

a (( )) of the three dimensional three dimensional structure, a tetrahedron. So, there are 4 

atoms, 4 anions and the center we have a small cation so, you want to find out what is the 

critical size of this small cation. 

Whereas, the other limit is octahedron, this is the lower limit of the 4 fold coordination 

and the higher limit of the 4 fold coordination is an octahedron, where you have a square 

by pyramid. That means, the one particular atom is not shown here but there are 4 anions 

on the horizontal plane, same plane and then, another anion in the top, another one in the 

bottom. So, that forms a 6 anions 6 anions and then, that the center of the bipyramid will 

have a small interstitial site, which has to be occupied by a cation. So, these are the two 

three-dimensional pictures, they are not drawn very regularly but, I hope the illustration 

is understand away. 
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Now, here we are taking some sections here we taking some sections, this is for the 

tetrahedron now, for the first this is the base of the section, base of the pyramid. They are 

the tetrahedron and this is a vertical plane, the vertical (( )) or vertical section of this 

same pyramid. Now, if r a, r a is the radius of the anion here it is large ions then, this is 

of course 2 r a, this is touching along this line. So, at the base and the distance between 

this and that, that is the center median of this regular isosceles triangle is 2 by 3, not 

isosceles triangle is equilateral triangle of course, 2 by root 3 r a. 

So, these distance is two-third of this distance so, it find this is 2 by root 3 by r a and if 

we take the vertical line, the details are given in the next slide how it is been calculated, 

is quite simple. The basic solid geometry consideration this is your 2 by root 3 r a, this 

distance and this is a vertical line, this is the vertical section. That is this is the apex, 

these are the 2 base 3 base anions and this is one of the base ions and that apex ions, this 

is the highest point. 

So, then these distance is 2 by third r a 2 by root 3 r a and this is the height from this 

right angle triangle. One can find out this height is 2 by 2 into root 2 by root 3 r a and 

this is three fourth three fourth of this total distance. So, this height is actually root 3 by 

root 2 r a, three-fourth of this and this is nothing but r c plus r a. r c is the diamond radius 

of the cation and this is the radius of the anion, so this distance is equal to this one. 
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So, in the, this is what the details of the calculation for the tetrahedron particularly, the 

distance from the corner to the center of the triangle. Center of the triangle means 

basically the median, along the median. And so, this is already shown there in the 

diagram. Height of the tetrahedron will be this one, from the right angle triangle so called 

Pythagorus theorem and the distance of the apex to the centroid is three fourth of the 

height. 

And that is already shown there and we will find this one, from  this one to this one, 

three fourth of this value is this one and then, will be equal to r c by r a. And then, once 

again looking at this values will see r c by r a equal to root 3 by root 2 minus 1, which is 

nothing but, 0.225 so, the critical this critical radius ratio for the tetrahedron is 0.225. 

And similarly, of course this calculus is much simpler, the consideration of the analysis 

is much is quite simply in this case. 

For the this is the base this is the base of the bipyramid here so, these are touching along 

this corner, if this is 2 r a this will be equal to root 2 root 2 r a. And that will be equal to 2 

r a plus r c, this distance 2 r a plus r c is the this distance so, so 2 r c by r a equal to root 2 

into 2 r a and that gives rise to r c by r a is root 2 minus 1,0.414. So, the radius ratio limit 

for 4 fold coordination is 0.225 for the tetrahedron and 0.414 for the octahedron. 



Similarly, one can find out the other radius ratio limits, which at presented earlier in 

connection to another question. So, we have derived this particular limit, one can very 

simply derive the other limits in the same consideration of the geometric. 
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My last question, which I want to discuss is related the point defect; the question reads 

like this, the crystalline ferrous oxide F e x O; we have discussed earlier that it is (( )) 

oxide, which you can represented at F e x O is found to be have the lattice parameter of 

430 pm is picometers or 4.3 angstroms and density of 5.72 gram per center meter cube. 

What is the value of x, this again not a very difficult question to answer, it is known that 

F e x O crystallizers in sodium. 

This is very important, this is must be known F e x O crystallizes in the sodium chloride 

rocks salt type structure, and there are 4 molecules in a units cell. These information 

must be known for most of the structures, how many what is the crystal type, type of the 

crystal and how many molecules are there in 1 unit cell, that is very important 

requirement, which must be remember as much as possible. You will see in a spinal 

structure there are 8 molecules in a unit cell, there are many others where there are only 

1 molecule per unit cell. 

So, the volume of the unit cell because, the lattice parameter has been given; and this is a 

cubic cell, cubic structure FCC kind of structure; so this is 430 cube and that is nothing 

but, 79.5 into 10 to the power of minus 24 centimeter cube, that was picometer and this 



is, if you convert them, it will come to 10 to the minus 4 minus 24 centimeter cube. 

Molecular weight F e x O so, 56 is the atomic weight so, 56 x plus 16 and so, the weight 

of the unit cell is 4 multiplied by that into the Avogadro’s number so, that becomes 

gram. 

So, this is the weight of the unit cell and that is the volume of the unit cell so, density is 

simple. So, that is what is 5.72 equal to 224 x from here plus 64, 4 into 16, 64 and this is 

equal to 6.02 into 10 to the power 23 into this 79.5 into 10 to the power of 24 minus this. 

I think there is a mistake over there, this 6.02 must go no here is the mistake, it should be 

divided by divided by the Avogadro number, it is not multiplied by the Avogadro 

number. 

So, that then it becomes like this so, anyway if you can change this it is a simple thing, if 

there is a mistake if there is a mistake you can rectify it and it will be ultimately the x 

will come from this equation, x will come as 0.936 0.936. So, x becomes F e 0.936 O so, 

that is how that is in principle you can find out from the density and the the lattice 

parameter what is the value of non stochometry, I am sorry there is a little mistakes here 

please correct it. So, that completes basically our discussion on the crystalline defects, 

already we have discuss the crystal structures and also, we have discuss few questions 

and their respective answers. So, with this we come to the end of this discussion, and. 

Thank you very much for your attention. 


