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Lecture - 14 

Solute Transfer Modeling - part 2 
 

Welcome to the part-2 of the Solute Transfer Modeling. This lesson will be on a micro 

scale modeling of the solute transfer and to visualize that, in the weldment I am just 

drawing you a schematic here. 
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So, this is the melt pool, and this a workpiece. And I am taking a longitudinal section; 

and as we have seen earlier longitudinal section will have the torch velocity in it; and the 

torch is moving in this direction. So, you have the melt pool shape like this, slightly 

trailing effect will be there because of the motion of the torch. And the front side is 

where the melting is happening; and on the back side is where is solidification is 

happening. 

And it is the micro scale or micro segregation that is happening at the solidification side 

that we are going to now try to understand; and the domain is not the work piece itself, 



but a small box that I have shown you here. This box can be replicated at every location 

on the backside to cover the entire solidified weld, and therefore, it is representative.  

And I have oriented the box in the direction of the maximum temperature gradient. The 

reason being that this solidification is always taking place anti-parallel to the maximum 

temperature gradient, and therefore, the heater to go this way then the solidification is 

going in the anti-parallel direction. So, therefore, I have drawn the box along the 

maximum temperature gradient direction. 

So, now you can see that I have drawn a box. So, for now on our domain is basically a 

small box, which we take it is as one-dimensional; and whatever is happening with in 

this box can be deemed as applicable within the fusion zone and these box are aligned 

and stacked to complete the entire fusion weld behind the torch. So, we will take two 

cases in this lesson; the first case is complete mixing, and that can be discussed as 

follows. 
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So, before we go there, we can actually just look at the velocity of solidification what we 

have going to use that is basically related to the angle that the interface between the melt 

pool and the work piece, namely the fusion zone is going to make with the horizontal and 



that angle theta can be used to relate V s with V torch. So, at a later point, when we come 

across what is a velocity here, we should not confuse it with the torch velocity, it is 

related to torch velocity, but not the same. And it is not also to be confused with a 

velocity of the liquid pool within the zone here; it is actually the velocity with which 

solidification is happening.  

And you can see that very close to the top, it will approach the torch velocity, but at the 

bottom it is 0. So, somewhere in between, it will take a trigonometric function like cost 

theta to change from 0 to 1, and you could actually determine at any location using this 

angle. So, we will keep that in mind when we need that value. 

So, complete mixing assumption is as follows. What we mean by that is within the 

region fully mixed liquid we have, and also fully mixed solid, this is not generally 

followed; reason being that normally the solid diffusivity in the solid region is about two 

or three orders of magnitude smaller than that in the liquid. And therefore, generally it is 

not possible to have well mixed here in both.  

However, we can actually take this assumption and proceed to do an analysis, because it 

is applicable for small dimensions. So, whenever the length scales are very small this can 

be taken ass applicable. So, we will look at those assumptions. What we mean by full 

mixed, so liquid and fully mixed solid is as follows there are no gradients; the solute 

concentration does not have any gradients, if it is full mixed. 
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And to go further, we will just also make the phase diagram for this alive for which we 

are doing this analysis, so that we will refer to the compositions. And we will take a 

simple you know dilute alloy to make this analysis easier. So, this is the phase diagram. 

And let us take the alloy which we are going to discuss as this, and starting alloy 

composition is C naught. And this temperature is the liquidus temperature this is solidest 

temperature.  

And we can say that the alloy C naught is going to start solidifying when the temperature 

starts going below T L; and it will complete solidification when it reaches T s. And 

which means that the solid fraction is going to start from 0 at T L, and it will be equal to 

1 at T s, so that is the meaning of this. And if this was C naught, then we would introduce 

what is called as a partition coefficient. Partition coefficient is nothing but the ratio of the 

solid to the liquid compositions. So, C s by C l is the partition coefficient k. So, as we 

have seen in the previous lesson partition coefficient, for example, in the case of 

aluminum copper alloy is about 0.14. 

So, you could think of that as value which says that if it is very different from one then 

this solid and liquid are having very different compositions; and if it is very close to 1, 

that means, solid and liquid have very close by composition, there is not much the 



separation solid that is happening. And this also means that you could now find out what 

would the value of this composition here, what is a first solid that will be coming out, 

and that can be found out from the same relationship. If the liquid composition is C 

naught, the first solid composition will be C naught k, k C naught.  

And what will be the liquid composition of the last to solidified liquid that is by the time 

it comes to the end, the solid is having composition of C naught, so the liquid should 

then be C naught by C l is equal to k, so C l is C naught by k.  
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So, which means that I would just summarize first solid to form from a liquid of 

composition C naught is k C naught; and last liquid to solidify is having a composition C 

naught by k as we have seen from the phase diagram. So, these values are necessary. And 

at this point, what would be the f s - the fraction of solid; f s is actually 0, when you are 

starting to solidify. And here f s is 1, when you are finishing the solidification. So, these 

are written here, because they will help us in writing the limit. So we will now do the 

analysis by looking at the solidification of one box subject to the condition that is fully 

mixed. 



(Refer Slide Time: 07:54) 

 

So, let us just draw how the solid profile is going to look like. So, initially this is a box, 

and here I am putting the composition, and here the distance. And distance can be 

approximated to the fraction of solid also, because this is entire thing is initially liquid, 

so therefore, the position of the interface will tell you what is the fraction of the solid. 

So, let us say this liquid has a composition of C naught then the very first point when you 

are not at solidified; the composition profile is going to look like that.  

This is C naught; it is going to look flats because everywhere the liquids of this same 

composition. And the moment a small amount, let us say 5 percent of the liquid solidified 

that 5 percent is going to have a composition of k C naught, and k being 0.14 for 

aluminum copper, it means it is going to be a small value here and this much of solute 

has to them mix in the liquid. So, the solute when it is mixed will have the composition 

of the liquid going up.  

So, this will the profile of composition after some amount of let us say 5 percent of 

solidification has happened, the profile is not flat fully, it is two steps; one step here and 

then another here showing a slight increase, because this much of solute has to be 

dumped across the entire width of the box. 



And if you again solidify another 5 percent then what happens is that it would dump 

some more. And solidify 5 percent then and it can keep going like that. And what 

happens is that when we are assuming that this region is fully mixed, it means that within 

the solid this kind of steps are not allowed, there are fully mixed. So, therefore, we 

would just draw them all the way to end. So, every time the composition in solid is 

adjusting and this much of solute in this box, let us say this box is distributed on the 

other end, so that it can be balanced.  
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So, now to understand how the composition is going to vary when the solidification is 

going, we pose the problem as follows. What is the problem the problem is basically 

determine C s composition of the solid as a function of f s. And you can actually pose it 

as determine the composition of the liquid as a function of the liquid fraction whichever 

way because both are related. And we can then use this plot to determine that.  
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So, what we do is that to determine, we go from comparing situation at f s to f s plus d f s 

which means that let us say from 20 to 21 percent that kind of a small variation in the 

solid, and let us look at what will happens. So, I would just take two sets of lines. And I 

would exaggerate the d f s, so that is visible in the board and then show you how the 

profile should look like. So, let me just draw that for you; C naught is still flat and 

composition is here, and after some amount of solidification little bit, so that will be the 

one, which means that this value is f f, and this value f s plus d f s.  

And when the solidification has gone from f s to d f s that is 20 to 21 percent let us say 

how much the increase of the solute concentration has happened. So, which we means 

that gone from here to here, and this increase in the concentration of the solid can be 

thought of as d C s, so that this composition is C s. And this increase in the solid liquid 

composition can be seen as d C l, so that rest of it is C l. And these expressions will still 

be valid, the definition of partition coefficient and all those things are valid. 

Now we then perform solute balance which is basically to conserve the amount of solute 

that is there. And solute balance should then be written in such way that the area under 

the blue curve is equal to the area under the red curve. So, that is what is solute balance 

implies the area under the red and the blue plots is same that is when the solute 



conservation has taken place. So, let us then write expressions that would make that 

conservation possible and then we would write that expression here, so that we can make 

the derivation. Let me erase this part and then show you how that expression look like. 

So, the area under the blue curve can be written as two rectangles, this rectangle would 

then be C s into f s. 
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So, it would be C s f s plus, the rest of it is basically C l into 1 minus f s, this is the area 

under the blue. And the area under the red is going to be having the height slightly more 

and that would be written as C s plus d C s that is a slightly increased composition and 

that has solidified up to f plus d f s plus the area under the red curve here would be 

having height slightly increased, so C l plus d C l into the length has actually shrunk a 

little bit and that can be written as 1 minus f s minus d f. So, these two areas being same 

implies that when you multiple with the uniform cross sectional area then you are 

actually solute balance is being applied.  

We would then expand only your right hand side, because we can see some cancellation 

that is possible. So, we would then take only these terms and see. So, C s into f s plus f s 

into d C s plus C s into d f s plus d C s in to d f s. And then this again we will write it as 

plus C l into I intentionally keep 1 minus f s together, so that I can cancel it later on, and 



then plus d C l into 1 minus f s minus C l into d f s minus d C l into d f s. 

Now in this expression, we can note that we can start canceling of terms and then I will 

highlight them. So, this is same as here, so that can be canceled; and this is same as this 

that can cancel; and then you can also see some more things can be neglected. So, 

usually these double differences are extremely small numbers, because both are suppose 

to be small. So, I would then neglect those second order effects. So, those can also be 

dropped, which means that you can now write this balance with only the remaining four 

terms which can be collated. So, I will just bring them across and see how they look like. 

So, this implies, so zero is equal to so f s d C s C s d f s plus d C l into 1 minus f s minus 

C l into d f s. Now what we need to do is basically identify the terms that has same 

differential and being them together. So, they have the d f s as common. So, we just bring 

it to the right hand side. So, we write it as C l minus C s into d f s is equal to on the left 

hand side you have the T d C s and d C l that are together. So, we could use the definition 

of partition coefficient to write saying that implies d C s is equal to k into d C l, we can 

use it, so that we can change it. So, it can be written as f s plus d C l is d C s by k. So, 

this is the expression we have now arrived. So, now, you could at then make this little bit 

more simple by using the same expression. 
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So, you can already see that C s by C l is k which means that this can be simplified. 
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So, this can be written as C s by k, which means that I can take the C s out. So, I can 

write like that and here also I can make a simplification and that I would do by 

multiplying. 
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So, I would take the k fully down, and I put a k there. And then I can take the f s 

common, so that would be 1 minus 1 minus k l. So, this is how it is written. And now 

you can see that both sides have a denominator k, so I can ignore that. And you can see 

that when you want to integrate you normally should have the same variable along with 

the differential, and so which means this square bracket should be brought down here, 

this can be taken to the other side there. So, we will do that manipulation now, so that we 

can integrate. 

(Refer Slide Time: 19:40) 

 

So, let us just manipulate this. So, d f s by 1 minus 1 minus k f s, and 1 minus I have just 

still keep that here is equal to d C s by C s. So, now, for you could see that you have the 

same variables nicely grouped. So, we could integrate these. And you could start from f s 

is equal to 0 to f s is equal to f s; and at f is equal to 0, the solid composition is given by 

k C naught; and at f s is equal f s, the solid composition is given by the C s which means 

that we can now integrate and substitute these limits, and see how the expression is going 

to look like. And therefore, we can see that it comes as logarithm, and let us just 

substitute that it implies 1 minus k logarithm and the minus sign here, which means that I 

can swap the integrals signs, and therefore, 0 should be the first limit and therefore, it 

should be coming as 1 0 here.  



And then f s is the second limit 1 minus 1 minus k f s is equal to log. The first limit is 

still here it is log C s first limit is C s, second limit is k C naught. And you can see that 

the 1 minus k has been here it should be absorbed. So, you remove that fellow here, 

because it supposes to be one minus k as the multiplicative factor here. So, which means 

that if you exponentiation both, you start seeing how the expression look like and we 

would do that now. Which means that you would see that C s is equal to k C naught 

divided by 1 minus 1 minus k f s and C s by k is nothing but C l which means I can write 

it as C l is equal to C naught by this.  

So, this is an expression which tells you how C l is related by f s. You can also call it as 

C s related by f s, because you can write it as k C naught by 1 minus 1 minus k f s 

etcetera. And this relationship, the way we have written is looking like a function as you 

vary the liquid fraction how the concentration of the liquid is changing etcetera. Now in 

this form, it may not be recognizable immediately what it is, but we would just simply 

manipulate a little bit and show you what it means. 
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So, what does balance of solute mean is being demonstrated. So, what we do is that we 

will just take this expression and manipulate. So, you would have the expression C l into 

1 minus 1 minus k f s equal to C naught. So, I will write it as C l minus 1 minus k C l 



minus k C l into f s is equal to C naught; k C l is again C s. So, you write it as C s. So, 

then you can take this C naught there. So, you write a C l minus C naught is equal to C l 

minus C s into f s. It implies that f s is equal to C l minus C naught divided by C l minus 

C s. Now is this then clear what it is; for you to recognize this, I would just quickly draw 

the phase diagram and show you what we meant. 

At a given fraction, if this was C l, and this was C s, and this is C naught, then what we 

have written is C l minus C naught that is this distance divided by the total distance 

Lever rule. So, lever rule is nothing but balance of solute, under the assumption that you 

have got complete mixing in the liquid and in the solid region. So, there is absolutely no 

special phenomenon behind this equation Lever rule, it is actually giving you the 

function of the liquid composition as a function of the solid fraction or liquid fraction. 

And under the situation that is fully mixed in both solid and liquid, you retrieve the 

Lever rule. So, this is one thing that we can bring from the relationships that we have 

drawn. 

And when is it applicable, whenever the complete miscibility is there in the liquid, which 

is generally not possible in a fast process such as welding that is reason why Lever rule is 

not applicable most of the time to understand what would be the composition variations 

that are happening at micro scale. And we now see that it is originated because of 

assumptions that we started off. So, we can now modify this equation to relax at least one 

of those assumptions; and the first assumption that we would like to relax is the 

composition equilibration within the solid, because solid normally has very poor 

diffusivity.  

So, you can reduce the amount of mixing in the solid by simply setting it to zero, and 

then look at it we would just take a short break. And we will come back to this derivation 

and see how this equation would change if we make that relaxation. So, let us get started 

back from the previous part on the second part of the solute transfer modeling which is 

applicable for the micro scale redistribution of solute because of the solidification of 

fusion weld meant. So, here we have seen that in the previous part, we have derived 

essentially a Lever rule by assuming complete mixing in the solid and liquid region.  



And we have seen that it is applicable only when we have got very close while 

conditions for equilibrium to be set; and for a fast process such as welding, it may not be 

applicable. And we will relax one of the conditions to make it bit closer to the reality by 

saying that we will use complete mixing in the liquid, but no mixing at all in the solid 

which means that you would have a situation of variation in the composition as follows. 
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So, a schematically the way we have draw earlier, we would do the same thing here. So, 

this is nothing but the distance r d f s. And what would happen is that initially we are 

saying the composition is taken as some C naught; and because of a small amount of 

solid that would form initial composition can be k C naught. And the plot would look 

like that because this much of solute has to be then distributed in the liquid. And the next 

delta of solidification would intend that it should be like that; and then further on, it 

should go like that. 

Unlike, in the previous section, where we said that the entire solid is also having fully 

mixing, so that the composition is made as flat; in this case, we will not do that; we will 

say that there is no diffusion in the solid which means that the profile of composition 

variation in the solid will just stay frozen as we have given. So, a step-by-step profile 

like this, if you take the middle points would show that it is actually an increasing plot.  



So, we can then redraw this profile by making it smooth as follows. So, if this was the 

case C naught C as a function of distance, then the profile would look like this, this is k 

C naught. And what we are trying to then balance is when the liquid fraction is going 

from f s to f s plus d f s. And let us then draw them like this. This is f s plus d f s and the 

composition has gone from C s to C s plus d C s, C l to C l plus d C l by a small change 

in the solid fraction that has solidified. 

And the solid composition is not getting equilibrated it is some arbitrary curve that is 

depended upon the process conditions. So, we will not bother about the nature of that 

curve to do the solute balance. The solute balance requires that the area under the white 

line and the blue line should be equal. And we see that some of them are constant 

common to both. So, this area is common to both, and this area is common to both. So, 

which means that you can actually look at only two regions, and then make them equal; 

and I am shading them here.  

Because of this solidification happening by making the solidification go from f s to f s 

plus d d f s, it has changed only this much; that means, if this hatched region is equal to 

that hatched region then the solid balance is maintained. And while maintaining that we 

will also see a lesson from the previous class that the product of d f s and d C s are 

negligible. So, this corner which is basically like a triangle is can be now neglected, 

because f s C and d f s, and d C s are very small. So, we would just pretend that these 

two are essentially rectangles, and look at their balance. 
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So, solute balance would require this So, the vertical rectangle this part is basically the 

width is d f s; and the height is nothing but the liquid composition minus solid 

composition, which is C s minus C l, that is the area. And the horizontal rectangle here 

would then have the width which is nothing but 1 minus f s minus d f s into the height; 

height is nothing but d C l. Again we see that d f s and d C l are getting multiplied here, 

we can ignore that. So, we could write this simply like this; d f s into this is the height 

difference is C l minus C s, because you are approximating the double differential 

products as negligible.  

And we can then bring the quantities on either side to see how they express themselves. 

So, you could write it as d f s by 1 minus f s is equal d C l by C l minus C s. And we can 

also see that C l minus C s can be made as a function of C l itself. So, you could take C s 

as k C l. And if you take the C l as common, so you could write it as C l into 1 minus k 

and that 1 minus k can be absorbed here. So, you have that equation. 

So, this has to be then integrated to see how the variation of C l with f s is going to be. 

So, you would then put that integrals and initial condition, you can say at f s is equal to 

0, what would be the C l is equal to C naught. And when f s is equal to f s, C l is equal to 

C l. So, you can then immediately see that you can integrate, and it would look like this 1 



minus k into log 1 minus f s. And the integral signs have to be swapped, those 0 will be 

here and f s will be down because of the minus sign here and is equal to the next sign 

will be log and C l the top will be C l bottom will be C naught. 
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So, which means that 1 minus k into log 1 by 1 minus f s is equal to log C l by C naught. 

So which means that you can take this as an exponent here, so log 1 by 1 minus f s raise 

to the power of 1 minus k is equal to C l minus C naught then you can exponentiate both 

sides to remove the log. And then you can bring the C naught here, so that you can see 

that the expression is given as C l is equal to C naught by 1 minus f s raise power of 1 

minus k. So, this is expression, I will just write it again C l is equal to C naught by 1 

minus f s raise power of 1 minus k.  

This expression goes by the name Scheils’ equation. So, it is different from Lever rule 

where you do not have the exponentiation; Scheils’ equation you have an exponentiation. 

And you can see that for values that are of partition coefficient like 1.14 then basically 

this is a positive power and 1 minus f s would mean that the liquid composition is rapidly 

rising above C naught as the solidification is coming to end. 

And how we can apply the Scheils; equation to derive the eutectic fraction when you 



have, for example, towards the end of the solidification even though you are expecting 

detective to form for the alloy composition that you have chosen that can be used. And 

the way you do it to find out is just substitute for C l, the eutectic composition and find 

out what would the f s. 
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So, we could do that very simply here, I would just illustrate here. If C u eutectic was 

known then you can C naught and what was supposed to found out eutectic fraction 

which is the liquid fraction this is f s is solid. So, you can say f eutectic is nothing but f l 

base the power of 1 minus k. So, you have the initial composition, you have the eutectic 

composition, you have the partition coefficient, so find this and then you get what would 

be the eutectic fraction remaining during welding, in case the welding is happening 

under the regime, where the Scheils’ equation is applicable, which is actually quite 

reasonable to expect.  

And you would see that you would get a reasonable value for eutectic fraction, even 

though the phase diagram does not give you the eutectic at all and it is also know in the 

experiments that alloy compositions which are slightly you know ahead the limit - the 

solidification limit, I would just draw them here. 



So, for compositions like this you do not expect any eutectic to form, but then if it where 

any welding situations, you would have eutectic to form. And normally equilibrium 

predicts that only this kind of a composition will have eutectic, and these should not 

have, but then you would see that eutectic can be absorbed immersed on such alloys and 

how much it will absorbed can be given by the Schiels’ equation. We can actually see the 

behavior of Schiels’ equation through couple of exercises in the tutorial that I would be 

putting up in the course website. 

And with that, I will close the second part of the micro scale solute transfer at this 

juncture. And in the next lesson, we will see how we can actually relax one more 

condition that we have set here namely the fully mixed region in the liquid. We can relax 

even that and then see how the solidify aggregation can help us in understanding how the 

solute distribution will be happening at micro scale and also how it will affect the micro 

structure.  

With that, we will close this lesson.  

Thank you. 


