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Hello  everyone.  Welcome  to  this  material  characterization  course.  In  the  last  class  we  just

discussed about the properties of X-rays in terms of phase relations and then how this phase

relation  influences  the  diffraction  and  then  we  just  looked  at  little  bit  elaborately  how we

understand the Bragg's law and then how it explains the diffraction intensity and so on. And then

we have, let us recall that what we have discussed in the Bragg’s law. It is we just said that, it is

not that the diffraction intensity is coming from the first layer of the atomic plane and also the

subsequent planes which is underneath the surface also contribute to these diffraction intensities

through constructive interference. And then we have seen that how this contribution from each

atom in the planes below the surface and how the overall diffraction intensity is envisaged.

So, and subsequently we looked at writing this Bragg law in a different form and then how it can

be used to analyze the crystal system. And then we will continue in that line today. And before

that I would like you to make a brief a description on the reciprocal lattice. Formally we have not

introduced this concept so far but in the fundamentals of this course, I mean the lectures we

discuss little bit about this reciprocal lattice. However, we will be using this concept throughout

this course and not only this X-ray diffraction and also only now after this, we will discuss about

electron diffraction in transmission electron microscopy. There also we will use this extensively

and what I request you to do is you should go through for all the mathematical treatment of this

concept which is really out of the scope of this course. You should refer a physics of materials



which is also there in this NPTEL portal where you have a detailed mathematical treatment is

given.

And also, specifically there is a 10-hour course is being offered by Professor Pratap Haridoss,

where exclusively on the reciprocal lattice. What I request all of you to do is go through that

physics of materials lecture notes or videos as well as the 10-hour course exclusively on the

reciprocal lattice. Then if you follow this it will be very easy. In order to save time I am avoiding

all this basic mathematical relations but then I will briefly talk about it. 

In fact, we will be dealing with more practical aspects of this reciprocal lattice concept and we

will be actually seeing in practice how we can visualize a reciprocal lattice in reality. So, in our

course we will look at more the application part of it and not the basic mathematical part of it but

nevertheless I will keep on referring this concept and then I will try to make you understand as

much as possible in terms of physical phenomenon.

(Refer Slide Time: 04:17)

So, if you look at the suppose if you want to talk about electron scattering from atoms in a crystal

lattice, first we have to talk about the crystal lattice and this is how we define any unit cell, a

conversion is where you have this a, b, c; all are vectors and then the angle between them are α,

β,  .  So,  this  is  a called unit  cell  convention.  So, let  us consider a lattice to be located by a



reference atom at ‘O’ defining the origin of unit cell and the position the jth  of the unit cell by a

vector ‘r’ which we define normally r = uja + vvb + wjc , where a, b and c are unit vectors

defining the unit cell.

This is, I am saying because we will be referring this a vector, this is a vector in the real lattice

which we will be using it extensively in the X-ray diffraction intensity expressions as well as

when we talk about reciprocal lattice. So, this is the convention and it is a vector in a real lattice.

You have to remember that is very important.

(Refer Slide Time: 05:44)

And  excuse  me  what  is  reciprocal  lattice?  It  is  a  special  lattice  construction  to  aid  us  in

interpretation of the diffraction phenomena. So, this is the fundamental aspect of it and how this

lattice parameters are reciprocal unit vectors are defined which is a* = 1/Vc (b x c), b* = 1/Vc

(c x a) and c* = 1/Vc (a x b) where a* , b*and  c*  they are all reciprocal unit cell vectors where

a, b, c they are all real crystal unit cell parameters and VC is the crystal unit cell volume that is

VC = a . (b x c) = b . ( c x a ) = c . (a x b) . So, these are all be fundamental expressions

which you might have already studied are must have come across much before that.

(Refer Slide Time: 06:54)



Let us now go through some of the unique features of a reciprocal lattice. a* in the reciprocal

lattice is normal to the plane in the real lattice described by b and c. The dimensions in the

reciprocal lattice are fractions of those in the real crystal, where (hkl) describes a plane in real

crystal, it now describes a vector in the reciprocal space. Consequently the diffraction from a

plane  in a  real  crystal  can be treated  as  common vector  in  the reciprocal  lattice  feeding its

intensity into a point. Thus, a diffraction intensity point in a reciprocal space corresponds to a

plane (hkl) in the real crystal. 

You see these are all the some of the basic features of the reciprocal lattice. Infact we will be

talking about this, the reciprocal point in an in a real system, in a practical situation as a electron

diffraction pattern, well where we will try to interpret for its complete accountability. What it

means that we will do it detailed study. And what is said here is, in fact it is it is not just one

plane here, not necessarily one plane here. It could be a set of planes. It is always referred as a

set of (hkl) planes, which I mean for which correspond to each reciprocal lattice points. So, that

we will see it in a appropriate time.



(Refer Slide Time: 08:48)

We will also see some of the other relations. that a.b I mean a*.b = a*.c = b*.a = b* .c = c*.a=

c*.b = 0  . These  are  all  some basic  relations.  And very  importantly  now, we will  see the

uniquely characterize the reciprocal lattice as it relates to the real crystal lattice, we can define a

vector in the reciprocal lattice by 

r* = ghkl = ha* + kb* + lc*

So, this is a reciprocal lattice vector. So, you just compare this with the real. Do not confuse this

with the real lattice vector. This is a reciprocal lattice vector. It is also called a ‘g’ vector. We

will  see in  appropriate  time what  is  the meaning of  this  ‘g’  and how do we interpret  those

notations. So, right now you have you have to keep in mind how a vector in the real lattice is

represented  and  how  the  vector  in  a  reciprocal  lattice  is  represented  and  then  what  is  the

relationship mathematically.

(Refer Slide Time: 10:26)



And if you can see further, the dimensions in the reciprocal space are reciprocals to those in the

crystal and we observe |ghkl| = 1/|r| = 1/dhkl We can now express the diffraction condition in a

vectorial form K- K0 = λ/r = λghkl This is essentially a vector form of Laue condition and is

equivalent of the Bragg diffraction. Just for the completion I have brought this relation. This is a

I would say it is a vectorial form of a Bragg condition.

For example, Bragg law describes the diffraction in terms of scalar equation. What you see nλ =

2D sin θ is a scalar equation. We can also define the diffraction condition by a vector equation.

So, this is one of the forms. We will now see it in much more detail in two three slides later, how

this law a condition our vectorial form of representation of diffraction equation.



(Refer Slide Time: 11:52)

So, in the last class we just looked at a Bragg law and how it can be used in analyzing the crystal

system. There are few more points we will see about this Bragg law. So, Bragg's law contains a

great deal of useful information we can write sin θ = λ/ 2d. There are two things we have to

keep in mind. As λ increases, the scattering angle for a constructive interference θ also increases

for a fixed d. As d increases θ decreases for a fixed λ.

So, diffraction is a very sensitive measure of changes in the crystal structure parameters in the

crystal line materials. Hence (sin θ) / λ = 1/ 2d ,which shows that the angular function (sin

θ) / λ which is used to tabulate scattering factors and incoherent scattering intensities can be

related to the inter planar spacing of diffracting planes. 

So, the diffraction is very sensitive measure of changes in the crystal. So, this that is why this

particular parameter is used as an angular function to identify the changes in the crystal structure

which we will see in the subsequent slides.



(Refer Slide Time: 13:36)

Now, as I just mentioned before, what we have seen so far as a diffraction condition in terms of

Bragg law, I would say Bragg's law, it is in a scalar form. There we just try to use a parallel plane

one after the other. So, the all that we have showed in the form of animation is only the rays

which are subjected to constructive interference or a diffracting beam. But we have not seen a

diffraction condition for an individual atom, such as rows or a 2D or 3D lattice.

So, now we will get into that I mean discussion where we will  try to arrive at  a diffraction

condition in an one dimension, two dimension and then three dimension and see what is the

difference between, what we have seen in a in a Bragg's law condition and what we are going to

see in this discussion. So, look at the schematic. I have just drawn here a scatters. I would say it

is a repeat distance in a 1D lattice or rows of atoms.

The repeat distance is described and the direction is described by the vector a1, and then you have

the incident X-rays S0, which is falling on this row and S is the scattered rays. We will say that it

is a deflected ray as well, provided it follows some condition. And in order if you look at the in

order to define S as a diffracted beam, we need to look at the condition whether it obeys the a

kind of diffraction, I mean a condition or whether it obeys a diffraction condition or whether it



facilitate the diffraction condition interms of its geometry. So, now what you can see here is, you

see, the atom A and B which scatters and then this is the θ and this is the θ from this side and this

is a perpendicular I have drawn for this line and this is a perpendicular drawn for this line. Now,

in order to be in the same phase of S and S0, they should have a path difference should be having

some certain conditions. What is that condition?

Suppose,  if  you look at  this  atom and then look at  this  ray after  scattering,  this  is  the path

difference. And similarly, if you look at this ray, which hits on the atom A and then it scatters

this way, and this length, this is the path length. So, there is a difference. These two rays are

having two different path length. So, mathematically if you see, what is this length? This length

is nothing but S0 . a1. Similarly, here this length is S . S0 . a1.

This is S0 is an incident wave vector and this is the lattice repeat distance that is also in vector

and this distance is S0 . a1. Similarly, this distance is S0 . a1. And that is how the path length

differs. So, now we have already seen that in order for the S rays, that is the scattered ray, to be

in the on the same phase of S0, the path length or path differences should be a integral multiple of

a wavelength. So, that is what we have written here.

S . a1 - S0 . a1 = ( S – S0) . a1 = hλ (1)

So you see that S . a1that is this minus S0 . a1,that is the path difference between these two should

be equal to an integral multiple of wavelength hλ. And equation (1) is a vector equation of cones

of scattering around the row. So, what actually we are seeing is, this there is a intensity cone

which is spread like this. So, this is an incident intensity and this is scattered intensity. Actually

this kind of a cone of intensity is generated or around the row.

And we will now see one example how this cone is related to the angle of incidence θ and then

how it changes with the angle and the wavelength and the inter-atomic distance and so on. So

now, you remember that this particular equation accounts for a diffraction in atoms lying in a

row. So, now we are just said that if this path differences are in the integral multiple of λ, then

these two waves, that is, incident wave as well as diffracted beam will be in the same phase and

then constructive interference takes place so the diffraction happens. So, this is a condition for

that. Now, we will look at one example to look at the effect of the angle.



(Refer Slide Time: 20:33)

Similar  schematic,  where  the  incident  angle  is  about  80.  And  then  let  us  assume  that  the

defection geometry for a row of scatter, this is a row of scattering row of scatter is 4 A0,  that is

irradiated with the 1.54 A0 X-ray beam. So now, you see that the value for λ is equal to I mean θ

is equal to 80, 56 and 19 corresponding to h=0, h=1 and h=2 and so on. And how this intensity

cone going to be different? You see that when the h=0, you can see that incident beam is almost

on the same direction of the diffracted beam. And as the value of the H increases, you can see

that the angle decreases. You can see that it is 56 and 19. And you can also see that, are the h=0,

the cone is completely opened up. You can you can assume that it is completely opened up and

as the h value increases, you can see that how the θ is decreasing. So, this is another one example

to visualize the How this the intensity cone varies with the different values of θ.



(Refer Slide Time: 22:36)

Now,  we  will  move  on  to  the  two-dimension.  So,  diffraction  from  a  net  that  means  two

dimension  which  defined  by  rows  a1  and  a2.  Another  condition  is  added  to  the  previous

condition. That is, the 

(S – S0) . a2 = kλ (2)

that is, a path difference is also should also be equivalent to multiple I mean multiple of integral

multiple of λ; kλ where k is an integer. A second series of cones is created around the second

row of atoms. The intersections of the cones give lines of maximum intensity.

So, this is where you have to be a little bit careful. We are now talking about intersections of

cones from the two different rows. First, we talked about a single row. Now, we talked about at

two dimension that means, one more row is added and then where that repeat distance is a2 and

this also is going to produce a cone of radiation for a given θ, around each scatter that is here

lattice positions, you can say or atoms, whatever it may be.

Each one is going to produce a cone around it and these two cones are going to intersect. So, all

the cones are going to intersect and that they are going to form a line of maximum intensity.



Finally, a lattice is created by addition of a third row that is, one more dimension where the path

difference necessarily to be

(S - S0) . a3 = Iλ (3)

which  is  another  dimension.  So,  this  is  again  has  to  be  satisfied  for  the  diffraction  to  be

occurring.

Now, common intersections are points of reciprocal lattice. So, now we talked about one point

and from there we talked about a line of maximum intensity and then now the line has become a

point of intersection where we will  have a maximum intensity.  That is  where the reciprocal

lattice point comes.  All these equations (1), (2), (3) are known as the Laue equation.  Please

understand, in the Bragg diffraction schematic, we were talking about only a parallel plane and

then we said that the diffraction intensity comes from each of the rows or in fact all the atoms

which are in phase or in other ways contributing to the constructive interference then account for

the diffraction intensity.  But in a Lava equation,  it  is in a vectorial  form of I mean concept

mathematically, where we talk about an individual atom where in the form of a row or a 2D

lattice as well as 3D lattice and then how each one is contributing to the diffraction or I would

say that the each of the equation derives a condition for the diffraction to take place.

So, there is a difference between the concept discussed in a Bragg's law or a condition for a

diffraction through Bragg equation as well as conditions for the diffraction to take place through

a Laue equation.  So, in fact Laue equation is much more general and you can talk about an

individual scatters in the 2D or 3D lattice.



(Refer Slide Time: 26:52)

Now, we will try to relate this reciprocal space I mean as well as the Bragg law. Look at this

schematic. I have just drawn a cross-section of a solid sphere. that is why the inside of the circle

is shaded. That means a cross section of the sphere, where inside you are seeing that at a plane

and then this is incident ray and this is a diffracted ray and then you have the 2θ angle is shown

like this. And let us now look at the remarks. Relation of reciprocal space to Bragg's law. How

we can relate to the Bragg law.

The Bragg law is related to reciprocal space through Ewald sphere. Another concept, similar to

reciprocal concept for a diffraction. It in an Ewald sphere. So, what you are now seeing on the

schematic is, a cross-section of Ewald sphere. So, that is what you are seeing. Let us see ‘A’ is

the physical situation where the incident waves in the S0 scatter of hkl planes in the direction S.

‘B’ is the situation in the reciprocal space.

So, this is a real space like you have S0 and S and what you are seeing is an actual condition for

the diffraction through an Ewald sphere. You see that, let us assume this as A and this is B and

this is O. From the geometry, we will be able to derive some expression based on which the

diffraction condition can be arrived. So, suppose if you define this AO vectors S0 / λ and AB

vector S / λ and you can look at this is called a diffraction vector (S - S0)/ λ by this relation.



You see that, the Ewald sphere radius is 1/ λ. So, that is something which you have to remember.

The Ewald sphere radius is 1/ λ and then now we will see how this geometry can be related to a

diffraction. So, from the figure (b), AO = 1/ λ and sin θ = (BO/ 2) / AO . So, let us see

what is that. So, this is the triangle we are talking about. So, this is BO. So, BO/2 for sin θ ,we

can write like this.

(Refer Slide Time: 30:26)

BO/ 2 divided by AO so that BO can be written as (2 sin θ) / λ and then since BO = |S – S0| /

λ by λ which is nothing but this distance. Which is which can be rewritten like this | (S – S0) /

λ | = 2 sin θ / λ   . From Bragg law (2 sin θ) / λ can be written as 1 / d. So, the relation to the

reciprocal lattice is as follows. The vector O to B is a reciprocal lattice vector r*
hkl which has the

magnitude 1/ d. When a reciprocal lattice point lies on the surface of the Ewald sphere, Bragg's

law is satisfied and a defector beam passes through the point. So, now you write the reciprocal

lattice vector

 r*
hkl = (S – S0) / λ = hb1 + kb2 + lb3 

 the  vector  |S  –  S0|  /  λ  is  called  a  diffraction  vector,  which  is  nothing but  r*
hkl in  a

reciprocal lattice space. The diffraction angle 2θhkl is the angle in the space between the beam



incident on the crystal and the diffracted beam that passes through the hkl diffraction peak. So,

you have to remember this how this is related to a diffraction condition through this diagram.

(Refer Slide Time: 32:35)

So, what it says is this is the diffraction vector S, which is nothing but r*
hkl in a reciprocal space.

So,  whenever  this  point  hits  on  the  surface  of  this  sphere,  then  the  diffraction  condition  is

satisfied and that is what is stated here.



(Refer Slide Time: 33:02)

(Refer Slide Time: 33:11)

And now in order to visualize this concept little more we will look at some more a schematic.

What we are seeing here is, in a schematic (a) and (b) a relation of reciprocal space to the Ewald

sphere here. (a) is the incident beam is in 100 direction. suppose this is the S0. The S0 is in the



100 direction. So, the Ewald sphere intersects the red markers in Ewald sphere which intersects

210 and 2-10 reciprocal lattice points, that is here as well as here. That means these two peaks

will diffract. these two reciprocal points are diffracting set of planes.

And what we are seeing in the schematic (b) is now the crystal has been rotated to 45°. So, the

crystal has been rotated to 45°, then what happens is, the Ewald sphere now intersects 200 and 1-

20 reciprocal lattice points. You can see that 1-20 and 200 reciprocal points which are coming on

the intersecting the Ewald sphere. So, between these two rotations, no other points are possible

for the diffraction. That is what it means.

So, if you look at the diffraction spots 2-1 0 and 210 after rotating to 45°, you have a new plane

200 or 1-20. And between these two rotations there are no other possibilities for the diffraction.

That is what it means. So, this is one way of interpreting the whole sphere concept. And what is

this schematic shows? This is also a set of Ewald sphere but it says the limiting sphere. What do

you mean by limiting sphere? The limiting sphere is the locus of the farthest point of the Ewald

sphere  when  rotated  in  all  orientation.  So,  right  now  we  have  seen  that  rotating  into  two

directions and suppose if you rotate another 45°another 45° another 45°, what are all the points

will  intersect  in  the reciprocal  lattice?  That  is  this  is  the reciprocal  lattice,  where all  it  will

intersect.  That is a maximum possible planes which will  contribute to the diffraction are the

planes maximum number of planes that will intersect the Ewald sphere that is called limiting

sphere.

So, that is what shown here in a in a plane of b1 and b2 lattice and this defines the limiting sphere

like this. And another very interesting example I would like to show



(Refer Slide Time: 36:40)

where the Ewald sphere for molybdenum copper and chromium Kα radiations. In analyzing the

simple face centered cubic structure with the cell parameter 4A0. Suppose if you use one of this

radiation, for example, let us use a chromium radiation. So, which is 1/λ of chromium which

forms the Ewald sphere around these lattice points I mean reciprocal lattice points which have

only 110, 310, 200. Since your reciprocal I mean your Ewald sphere radius is 1/λ  which is a

function  of  a  wavelength  of  a  given  radiation,  it  can  explore  the  possibility  of  finding  the

reciprocal planes only in a limited number, that is 110, 310 and 200 type. Suppose if you use a

copper radiation, then our radius increases, then you are a Ewald sphere becomes little bigger

and now you see in addition to their 110 and 310 and 200 planes you are able to examine 510,

420, 220 etc.

So, as the λ changes you are able to incorporate large number of reciprocal lattice points, that

means you are able to get into atomic planes more atomic planes which are satisfying the Bragg

conditions. So, the one last one is a molybdenum radiation. You see that it covers quite a bit of

reciprocal points. That means it forms a huge sphere Ewald sphere which will interest which will

intersect through many reciprocal points including large number of planes.



So, there is this is what the Ewald sphere concept is readily visualized. So, what you are now

seeing is the black spot is as I said it is a reciprocal lattice point. And then we will also look at

this similar electron diffraction pattern and then again, we will come back with the Ewald sphere

concepts to understand little more on the diffraction phenomenon. But to start with this is very

nice example and schematic to understand the relation between the Bragg's law and reciprocal

lattice and Ewald sphere.

So, the Ewald sphere actually links the Bragg law and the reciprocal lattice. That way we can

consider. it is a very nice concept to appreciate the diffraction phenomena.

(Refer Slide Time: 40:08)

 Now, we will  move on to intensities  of diffracted beam. At the end of the day, if  you are

interested in analyzing the crystal with X-ray diffraction, we are interested in intensities. And we

will account for the intensity expressions and then we will see what are all the parameters which

will influence the diffraction intensities, when it when it happens with the amorphous material,

when it happens with the crystalline material or a single crystal or a poly crystal and so on. So,

the intensities are important and their quantification is important but we should know what all

the parameters which will control the diffraction intensities of X-rays. So, we will begin our



discussion with this. Let us look at the two I mean crystal structures simple crystal structures.

What you are seeing in the schematic (a) is a base centered unit cell and (b) is the body centered

unit cell. The positions of the atoms in the unit cell affect the intensities but not the direction of

the diffracted beings.

So, to prove this concept, how the positions of the atoms in the unit cell is going to affect the

diffracted beam, we are going to illustrate through these two examples. One is a base centered

unit cell another is a body centered cell. And if you assume that X-rays are coming and then

diffracting through both the unit cells and then you will get the corresponding ray diagram like

this (a) and then (b). I would like you to look at this ray diagram carefully. The Ray 11 ’ and 22’

and the distances c and these two diagrams we have already seen on the in the previous classes.

You will recall when I talked about the importance of 200 planes. For example, if you see that

what is the path difference between these two 11’ and 22’ ? They are out of phase by a one

wavelength or I would say that the path difference AB + BC is equal to some h λ something like

that.

So, but if you come to this unit cell the situation is slightly different. Suppose, if you assume that

these two planes diffract the X-ray and then their face differences is about 1 * λ, here it is exactly

half of that phase difference. For example, because we have the other plane which is inserted in

between. So, the 3E3’ ray will have the phase difference exactly half of the the previous one.

So, that means, this phase difference is going to completely annul the intensities of the X rays

diffracted by this ray 11’ as well as 2B2’. So, that means you are not going to get the intensities

from 100 plane at all. So, I hope you get this idea. This has been already I had told you and the

phase difference I also separately discussed, how you have to visualize the phase difference and

how they annul each other or they contribute to the constructive interference.

So, in this type of a crystal,  where you have this the path difference or the phase difference

exactly half of this unit cell, they are going to lose the intensity from 100. So, that is what we are

concluding.



(Refer Slide Time: 45:22)

This example shows how a simple rearrangement of atoms within the unit cell can eliminate a

reflection completely. The intensity of a diffracted beam is changed not necessarily to 0 but any

change in the atomic positions and conversely the atomic positions can be determined only by

the observation of diffraction intensities. So, the aim is to establish the exact relation between

atomic position and the intensity.

The problem is complex because of the many variables involved. And the relationship must be

developed step by step by considering how X-rays are scattered by an electron, then by an atom

and  finally  by  all  the  atoms  in  the  unit  cell.  So,  we  would  look  at  the  how the  diffracted

intensities are changing by step by step first by scattering by the electron then by the madam and

then by unit. Then we will look at the whole expression for the X-ray intensities diffracted by a

crystal.

So, we will continue to look at this diffraction phenomenon and then we will in the next class we

will start with the X-rays which when they are scattered by an electron, what are all the physical

phenomenon we will go through. Those things we will look at in the next class. Thank you.
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