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Friends, welcome to the 29th Lecture on Advanced Steel Design course, in this lecture we are

going to learn how to derive the Stability Functions under axial compression. Friends, in the

last lecture we discussed about the derivation of a stiffness method using stiffness method of

a standard fixed beam and we understood that a standard fixed beam has got 4 kinematic

degrees of freedom as marked on the screen.

We have used a specific sign convention that anticlockwise moments and rotations are

positive, displacements upward shear and displacements upward are positive. Similarly, along

x axis displacement and forces will be positive, we have used this n convention and we have

derived a stiffness matrix of 4 by 4; obviously, we neglected axial deformation.
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And we derive the stiffness matrix as you see on the screen, we have the labels p q r s and p q

r s these labels have a specific order. Please see this order rotation, if this is my end of the𝑗𝑡ℎ

member this is my end of the member along the length of the member is my x axis y axis𝑘𝑡ℎ

is anticlockwise 90 to x axis.

Therefore, the degrees of freedom are labelled in such a manner rotation at end, rotation at𝑗𝑡ℎ

end, displacement along positive y at end and displacement along positive y at end.𝑘𝑡ℎ 𝑗𝑡ℎ 𝑘𝑡ℎ

So, p q r s this is the order.

So, we have written this order here and we know this is going to be , k represents the𝑘
𝑝𝑝

element of this matrix, 𝑘
𝑝𝑝
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𝑟𝑞

, 𝑘
𝑟𝑟

, 𝑘
𝑟𝑠

, 𝑘
𝑠𝑝

, 𝑘
𝑠𝑞
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, 𝑘
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.

While writing this subscripts of these elements of the stiffness matrix the first subscript refers

the row and second subscript refers the column, that is a standard practice what we do in

representing the equations or mathematical formulae in a matrix form.

So, this is a 4 by 4 matrix, yesterday we learnt that these 4 coefficients are named as rotation

coefficients and these 4 coefficients are termed as translational coefficients. And we derived



this the remaining coefficients as a function of this is not. For example, I am just revising 𝑘
𝑟𝑝

is sum of these two by l. So, I can say and so on and so forth.𝑘
𝑟𝑝

=
𝑘

𝑝𝑝
+𝑘

𝑞𝑝

𝑙( )
So, we have got all the 16 coefficients learnt and understood for a standard fixed beam

neglecting axial deformation is it not? Having said this, we will follow the same analogy, but

now we will derive the stability functions under axial compression, it means I am going to

apply an axial compressive force to the same fixed beam module and derive the matrix in the

same order as we have derived earlier.

Let us see how we are going to do that.

(Refer Slide Time: 05:41)

So, now, I am going to say consider a beam element both ends fixed. Let us consider the

element this is my element and let us mark the axis we know this is my x axis, my y axis

measured anticlockwise ninety and this A and E is considered to be constant along the length

of the member it is a prismatic section.

So, let us mark the degrees of freedom for this they are all restrained let us mark them in red

colour. So, this is , this is and this we know is and this we know is .θ
𝑝

θ
𝑞

δ
𝑟

δ
𝑠

In addition to this I am going to apply an axial force at both the ends. Let me mark this𝑝
𝑎

𝑥
𝑚

slightly in a different colour. So, that it does not get confused this is let me also mark this𝑦
𝑚



here this is , m represents the member and this is my force which is axial. So, there is𝑦
𝑚

𝑥
𝑚

no confusion in this and the length of the member is let say is an member, it is an𝑙
𝑖

𝑖𝑡ℎ 𝑖𝑡ℎ

member and we know that this is my end, this is my end that is how we have marked.𝑗𝑡ℎ 𝑘𝑡ℎ

Now, this is the figure of a fixed beam under axial compressive load. Friends, please

understand when you derive the stiffness matrix there was no load applied, stiffness matrix is

of course, independent of any load, but now in this case I am going to derive the stability

function. Therefore, we already learnt stability is that function or that capacity or that ability

of the structure to perform its intended function up to the critical load for which it is

designed.

So, I am applying the axial load which is in compression, I am going to compress this beam

from either ends. Please note very carefully here; the element or the module does not have

axial degree of freedom, the axial degree of freedom is neglect. Please note that I have only 4

degrees of freedom p q r s. Similarly, what we had in the fixing there is no change in that.

(Refer Slide Time: 10:02)

Having said this let us now derive what is called rotation functions, as earlier we derived

what is called rotational coefficients, now I am talking about stability function therefore, I

have rotation functions.



So, now to get this rotation function I must apply a unit rotation let us see that, I am taking

the beam fix both the ends the beam is now subjected to and unit rotation . So, it is theθ
𝑝

same algorithm what we did in the beam earlier that is why I explained the beam analysis

first.

Now, let us mark the axial force present in the section, is it not? This was new in the earlier

beam analysis this was not there, let us also mark the degrees of freedom, let us say. I will not

mark the degrees I will mark the forces. So, what I am going to say this is my force , this𝑘
𝑝𝑝

is my force and this is and this is k. Let us write this here.𝑘
𝑞𝑝

𝑘
𝑟𝑝

𝑘
𝑞𝑝
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Let us write this here, let us mark exactly this here so, and . What are these𝑘
𝑝𝑝

𝑘
𝑟𝑝

𝑘
𝑠𝑝

𝑘
𝑟𝑝

𝑘
𝑠𝑝

etcetera? They are all forces when the system is subjected to unit displacement. So, they are

actually similar to stiffness coefficients can also put a superscript i, saying that this is for the

member, but that is redundant when it will it may cause additional confusion. So, I am𝑖𝑡ℎ

avoiding that and of course, we know this is the length of the member .𝐿
𝑖

𝑘
𝑟𝑝

=
(𝑘

𝑝𝑝
+𝑘

𝑞𝑝
)

𝐿
𝑖

𝑘
𝑠𝑝

=− 𝑘
𝑟𝑝



𝐸𝐼 𝑑2𝑦

𝑑𝑥2 = 𝑀

=− 𝑃
𝑎

𝑦( ) − 𝑘
𝑝𝑝

+ 𝑘
𝑟𝑝

(𝑥)

𝐸𝐼 𝑑2𝑦

𝑑𝑥2 =− 𝑃
𝑎
𝑦 − 𝑘

𝑝𝑝
+ 𝑘

𝑟𝑝
(𝑥)

𝐸𝐼 𝑑2𝑦

𝑑𝑥2 =− 𝑃
𝑎
𝑦 − 𝑘

𝑝𝑝
+

𝑘
𝑝𝑝

+𝑘
𝑞𝑝

𝐿
𝑖

( )𝑥

So, now this figure indicates unit rotation at end of the fixed beam, subjected to axial𝑗𝑡ℎ

combustion correct. So, now, when you do this, this is start developing moments and shear at

both ends of the member both and ends. So, now, this has an unbalanced moment𝑗𝑡ℎ 𝑘𝑡ℎ

anticlockwise which will be plus .𝑘
𝑝𝑝

𝑘
𝑞𝑝

So, can I now say will be actually equal to this unbalanced moment by l or l I, because𝑘
𝑟𝑝

there is going to form a couple when I say this is a couple. So, this will be upward this will be

downward. So, can I say now is same as , but with a negative sign. So, I will call this𝑘
𝑠𝑝

𝑘
𝑟𝑝

equation as 1.

I hope there is no confusion at this stage, is it not same identical analysis what we discussed

for the fixed beam, I am just following the same algorithm. So, it is easy for us to do it. Now,

what I do I draw a free body diagram under the influence of this by cutting a section

somewhere here let us see and draw free body diagram let me do that.

I draw a free body diagram fixed beam one end fixed I have applied a rotation an donut

engine and this is unity it is subjected to an axial force it is having end moment𝑃
𝑎

𝑘
𝑝𝑝

because free body diagram is a true representation of all the internal external forces acting on

the segment considered. So, this is going to be .𝑘
𝑟𝑝

Now, at this stage I have a balance force to counteract this let us say that is at a distance y𝑃
𝑎

from the axis of the member and it also has a moment which is yeah, I should say this figure

represents free body diagram under axial compression and unit rotation at end.𝑗𝑡ℎ

Now, we also have the classical differential equation to represent this which we discussed.

So, I will copy this figure or write it I write it here itself. So, now, I say with reference to this



figure free body diagram I can say is yeah and this𝐸𝐼 𝑑2𝑦

𝑑𝑥2

. I am considering a section at a distance x from here.𝑀 =− 𝑃
𝑎

𝑦( ) − 𝑘
𝑝𝑝

+ 𝑘
𝑟𝑝

(𝑥)

𝐸𝐼 𝑑2𝑦

𝑑𝑥2 =− 𝑃
𝑎
𝑦 − 𝑘

𝑝𝑝
+ 𝑘

𝑟𝑝
(𝑥)

𝐸𝐼 𝑑2𝑦

𝑑𝑥2 =− 𝑃
𝑎
𝑦 − 𝑘

𝑝𝑝
+

𝑘
𝑝𝑝

+𝑘
𝑞𝑝

𝐿
𝑖

( )𝑥

(Refer Slide Time: 18:56)

𝑃
𝑎

= ϕ
𝑖
𝑃

𝐸

𝑃
𝐸

= π2𝐸𝐼

𝐿2  𝑓𝑜𝑟 𝑛 = 1

𝑃
𝑎

=
π2Φ

𝑖
𝐸𝐼

𝐿
𝑖
2  𝑓𝑜𝑟 𝑛 = 1

In the above equation, let us express the axial load that is as a function of Euler load ,𝑃
𝑎

𝑃
𝐸

you may ask me a question why are you doing this? Because answer is we are aiming to

derive the stability function, stability function is related to Euler load. So, therefore, let be𝑃
𝑎

expressed as some function of call this equation number 4.𝑃
𝐸



We already know that for n equals 1, hence will be for n equals 1 can I𝑃
𝐸

= π2𝐸𝐼

𝐿2 𝑃
𝑎

π2Φ
𝑖
𝐸𝐼

𝐿
𝑖

 

have this as equation number 5. So, friends, it is a very important observation you want to

make here. Please note that, buckling is occurring in the plane where unit rotation is applied,

you may ask me a question, suddenly how I have introduced the term buckling? Friends, look

at this figure this is a beam or a column element subjected to axial compression.

Under axial compression column will buckle and that is one of the failure mode, we already

discussed that in the previous lecture in detail is not it. So, I will not no more call this as

bending this is not happening because of any lateral load or gravity load, the profile what is

shown on the screen is happening purely because of buckling and it is happening on the same

plane where unit rotation is given, is that.

Then you may ask me a question, sir, why we are estimating buckling when rotation is given?

That is very good; we are estimating that load which is going to cause failure. So, we are

expressing that load of as a function of Euler’s load, if that load exceeds Euler’s load it𝑃
𝑎

𝑃
𝑎

will fail and that failure will be called as buckling failure, that is what Euler stated, is it not?

So, I am using the same logic I am expressing it.

So, therefore, I am calling this as buckling and let us remember that this is happening on the

same plane where unit rotation is applied. What is this plane to be very clear; it is 𝑥
𝑚

𝑦
𝑚

plane, is it not see here, it is this is and this is that is the board, is it not? It is𝑥
𝑚

𝑦
𝑚

happening in the same plane. Therefore, let us modify equation 3 in this understanding,

because we have substituted, we have got in equation 3. is expressed in a different𝑃
𝑎

𝑃
𝑎

form in equation 5. So, let us substitute equation 5 and update equation 3.
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𝐸𝐼 𝑑2𝑦

𝑑𝑥2 =−
π2Φ

𝑖
𝐸𝐼

𝐿
𝑖
2 (𝑦) − 𝑘

𝑝𝑝
+

𝑘
𝑝𝑝

+𝑘
𝑞𝑝

𝐿
𝑖

( )(𝑥)

𝑑2𝑦

𝑑𝑥2 =−
π2Φ

𝑖

𝐿
𝑖
2 𝑦( ) − 1

𝐸𝐼 𝑘
𝑝𝑝

+ 1
𝐸𝐼

𝑘
𝑝𝑝

+𝑘
𝑞𝑝

𝐿
𝑖

( )𝑥

𝑑2𝑦

𝑑𝑥2 +
π2Φ

𝑖

𝐿
𝑖
2 𝑦( ) = 1

𝐸𝐼 𝑘
𝑝𝑝

+ 𝑘
𝑞𝑝

𝑥
𝐿

𝑖
( ) − 𝑘

𝑝𝑝
⎡⎢⎣

⎤⎥⎦

So, let us update equation 3 after substitution. So, that becomes

,we call this equation as 6.𝐸𝐼 𝑑2𝑦

𝑑𝑥2 =−
π2Φ

𝑖
𝐸𝐼

𝐿
𝑖
2 (𝑦) − 𝑘

𝑝𝑝
+

𝑘
𝑝𝑝

+𝑘
𝑞𝑝

𝐿
𝑖

( )(𝑥)

Now, I will divide this equation 6 by E I and rearrange the terms, divide equation 6 by E I and

rearrange the terms let us do that. So, if you do that I will get this equation now which is

𝑑2𝑦

𝑑𝑥2 =−
π2Φ

𝑖

𝐿
𝑖
2 𝑦( ) − 1

𝐸𝐼 𝑘
𝑝𝑝

+ 1
𝐸𝐼

𝑘
𝑝𝑝

+𝑘
𝑞𝑝

𝐿
𝑖

( )𝑥.

Let me rearrange it further we will call this as𝑑2𝑦

𝑑𝑥2 +
π2Φ

𝑖

𝐿
𝑖
2 𝑦( ) = 1

𝐸𝐼 𝑘
𝑝𝑝

+ 𝑘
𝑞𝑝

𝑥
𝐿

𝑖
( ) − 𝑘

𝑝𝑝
⎡⎢⎣

⎤⎥⎦

equation 7 a and this as 7 b.
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𝑦 = 𝐴 sin 𝑠𝑖𝑛 
α

𝑖
𝑥

𝐿
𝑖

( ) + 𝐵 cos 𝑐𝑜𝑠 
α

𝑖
𝑥

𝐿
𝑖

( ) +
𝐿

𝑖
2

α
𝑖
2  𝑘

𝑝𝑝
+ 𝑘

𝑞𝑝( ) 𝑥
𝐿

𝑖
− 𝑘

𝑝𝑝( )  

α
𝑖

= π ϕ
𝑖

𝐼)𝐵𝐶: @𝑥 = 0, 𝑦 = 0,  𝑤𝑒 𝑔𝑒𝑡 𝐵 =
𝐿

𝑖
2

α
𝑖
2𝐸𝐼

𝑘
𝑞𝑝

𝐼𝐼)𝐵𝐶: @𝑥 = 𝐿
𝑖
, 𝑦 = 0,  𝑤𝑒 𝑔𝑒𝑡  0 = 𝐴 sin 𝑠𝑖𝑛 α

𝑖
 + 𝐵 cos 𝑐𝑜𝑠 α

𝑖
 +

𝐿
𝑖
2

α
𝑖
2𝐸𝐼

𝑘
𝑞𝑝

Now, look at this equation 7 b it is a second order differential equation where right hand side

is not equal to 0. So, this will have two solutions one is a complementary function are there is

a particular integral. So, the solution of equation 7 b will have two components.

Namely; complementary function and particular solution is a standard procedure which you

will have, described well in many mathematic books on differential equations. So, we will

not cover that discussion at this moment in this lecture, but I request you to go through

additionally some material to learn this.

So, therefore, now the solution y will be equal to this is𝐴 sin 𝑠𝑖𝑛 
α

𝑖
𝑥

𝐿
𝑖

( ) + 𝐵 cos 𝑐𝑜𝑠 
α

𝑖
𝑥

𝐿
𝑖

( )  

the complementary function then the particular solution comes + ,
𝐿

𝑖
2

α
𝑖
2  𝑘

𝑝𝑝
+ 𝑘

𝑞𝑝( ) 𝑥
𝐿

𝑖
− 𝑘

𝑝𝑝( )



we call equation number 8 the standard solution which can be easily understood from

ordinary differential equation textbooks.

We will also say where which is introduced here in the above equation is , whereα
𝑖

π ϕ
𝑖

ϕ
𝑖
 

already is here we have derived we have defined that. Here is actually the number or the ratio

between the axial force supply and the Euler’s load that is what we have said in equation 4.

We will call this as 8 a for example, this is 8 b for our understanding. Now, this equation 8 a

has got 2 differential equation coefficients that is a and b we need to find so; obviously, we

need to apply the boundary conditions. Let us apply the boundary condition first boundary

condition at x equals 0, y is 0, that is what it is? See, this figure at x equals 0, y 0, is it not,

that is this point.

So, if you apply that condition, we get B because this term go away this term becomes unity,

this term goes away and you get this which is negative. So, can I say B is going to be equal to

, can I say that. Let us apply the second boundary condition, what is that condition, 
𝐿

𝑖
2

α
𝑖
2𝐸𝐼

𝑘
𝑞𝑝

at x is equal to l i again y is 0 see the original beam at x is equal to l that is here, again y is 0,

is it not?

So, let us apply that condition here. So, if you apply that condition, we will get 0 equals

, because and gets cancelled because x is equal𝐴 sin 𝑠𝑖𝑛 α
𝑖
 + 𝐵 cos 𝑐𝑜𝑠 α

𝑖
 +

𝐿
𝑖
2

α
𝑖
2𝐸𝐼

𝑘
𝑞𝑝

𝐿
𝑖

𝑥
𝑖

to l is a condition this is what I get. We already have the value for B, let us substitute that

here.
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−
𝐿

𝑖
2

α
𝑖
2𝐸𝐼

𝑘
𝑞𝑝( ) = 𝐴 sin 𝑠𝑖𝑛 α

𝑖( ) + 𝐵 cos 𝑐𝑜𝑠 α
𝑖( ) 

−
𝐿

𝑖
2

α
𝑖
2𝐸𝐼

𝑘
𝑞𝑝( ) − 𝐵 cos 𝑐𝑜𝑠 α

𝑖( ) = 𝐴 sin 𝑠𝑖𝑛 α
𝑖( ) 

−
𝐿

𝑖
2

α
𝑖
2𝐸𝐼

𝑘
𝑞𝑝( ) −

𝐿
𝑖
2

α
𝑖
2𝐸𝐼

cos 𝑘
𝑝𝑝

𝑐𝑜𝑠 α
𝑖( ) = 𝐴 sin 𝑠𝑖𝑛 α

𝑖( ) 

−
𝐿

𝑖
2

α
𝑖
2𝐸𝐼

𝑘
𝑞𝑝

+cos𝑘
𝑝𝑝

𝑐𝑜𝑠 α
𝑖( ) 

sin𝑠𝑖𝑛 α
𝑖( ) 

⎡⎢⎣
⎤⎥⎦

= 𝐴 

Now, substituting for B and simplifying,−
𝐿

𝑖
2

α
𝑖
2𝐸𝐼

𝑘
𝑞𝑝( ) = 𝐴 sin 𝑠𝑖𝑛 α

𝑖( ) + 𝐵 cos 𝑐𝑜𝑠 α
𝑖( ) 

.Let us do this. So, . we will name these−
𝐿

𝑖
2

α
𝑖
2𝐸𝐼

𝑘
𝑞𝑝( ) − 𝐵 cos 𝑐𝑜𝑠 α

𝑖( ) = 𝐴 sin 𝑠𝑖𝑛 α
𝑖( ) 

equations we will call this as 9 a, this is 9 b, this is 9 c, this is 9 d. So, now I can say

, can I say that?−
𝐿

𝑖
2

α
𝑖
2𝐸𝐼

𝑘
𝑞𝑝( ) −

𝐿
𝑖
2

α
𝑖
2𝐸𝐼

cos 𝑘
𝑝𝑝

𝑐𝑜𝑠 α
𝑖( ) = 𝐴 sin 𝑠𝑖𝑛 α

𝑖( ) 

;𝐴 =−
𝐿

𝑖
2

α
𝑖
2𝐸𝐼

𝑘
𝑞𝑝

+cos𝑘
𝑝𝑝

𝑐𝑜𝑠 α
𝑖( ) 

sin𝑠𝑖𝑛 α
𝑖( ) 

⎡⎢⎣
⎤⎥⎦
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−
𝐿

𝑖
2

α
𝑖
2𝐸𝐼

𝑘
𝑞𝑝

csc 𝑐𝑠𝑐 (α
𝑖
) + 𝑘

𝑝𝑝
cot 𝑐𝑜𝑡 (α

𝑖
)  [ ] = 𝐴 

𝑦 = 𝐴 sin 𝑠𝑖𝑛 
α

𝑖
𝑥

𝐿
𝑖

( ) + 𝐵 cos 𝑐𝑜𝑠 
α

𝑖
𝑥

𝐿
𝑖

( ) +
𝐿

𝑖
2

α
𝑖
2𝐸𝐼

 𝑘
𝑝𝑝

+ 𝑘
𝑞𝑝( ) 𝑥

𝐿
𝑖

− 𝑘
𝑝𝑝( )

α
𝑖
2𝐸𝐼

𝐿
𝑖
2 𝑦( ) =− 𝑘

𝑝𝑝
cot 𝑐𝑜𝑡 (α

𝑖
) + 𝑘

𝑞𝑝
csc 𝑐𝑠𝑐 (α

𝑖
) [ ] sin 𝑠𝑖𝑛 

α
𝑖
𝑥

𝐿
𝑖

( ) + 𝑘
𝑝𝑝

cos 𝑐𝑜𝑠 
α

𝑖
𝑥

𝐿
𝑖

( ) +  𝑘
𝑝𝑝

+ 𝑘
𝑞𝑝( ) 𝑥

𝐿
𝑖

−(
So, which means . So, let me call this as 9−

𝐿
𝑖
2

α
𝑖
2𝐸𝐼

𝑘
𝑞𝑝

csc 𝑐𝑠𝑐 (α
𝑖
) + 𝑘

𝑝𝑝
cot 𝑐𝑜𝑡 (α

𝑖
)  [ ] = 𝐴 

f. So, I have the value for A I have the value for B also see B is available here, A is available

here. So, substituting for A and B in the original solution we get, what do we get? Please

check that, what do we get? Where is the original solution? This is the original solution I

have, this is the original solution I have. So, let us rearrange the terms, let us I think you can

even copy this let us try to copy this.

Let us remove this marking you know the number also which is equal to because you knowα
𝑖

A has a multiplier , if you look at B it also has a multiplier and this term also has aα
𝑖
2

multiplier. So, if I keep all this common out and take it to the left hand side this will become

.𝑦 = 𝐴 sin 𝑠𝑖𝑛 
α

𝑖
𝑥

𝐿
𝑖

( ) + 𝐵 cos 𝑐𝑜𝑠 
α

𝑖
𝑥

𝐿
𝑖

( ) +
𝐿

𝑖
2

α
𝑖
2𝐸𝐼

 𝑘
𝑝𝑝

+ 𝑘
𝑞𝑝( ) 𝑥

𝐿
𝑖

− 𝑘
𝑝𝑝( )
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α
𝑖
2𝐸𝐼

𝐿
𝑖
2

𝑑𝑦
𝑑𝑥( ) =−

α
𝑖

𝐿
𝑖

𝑘
𝑝𝑝

cot 𝑐𝑜𝑡 (α
𝑖
) + 𝑘

𝑞𝑝
csc 𝑐𝑠𝑐 (α

𝑖
) [ ] −

α
𝑖

𝐿
𝑖
𝑘

𝑝𝑝
sin 𝑠𝑖𝑛 

α
𝑖
𝑥

𝐿
𝑖

( ) +  𝑘
𝑝𝑝

+ 𝑘
𝑞𝑝( ) 1

𝐿
𝑖

( )
α

𝑖
2𝐸𝐼

𝐿
𝑖
2

𝑑𝑦
𝑑𝑥( ) = 𝑘

𝑝𝑝
 1 − α

𝑖
sin 𝑠𝑖𝑛 

α
𝑖
𝑥

𝐿
𝑖

( ) − α
𝑖
cot 𝑐𝑜𝑡 (α

𝑖
) cos 𝑐𝑜𝑠 

α
𝑖
𝑥

𝐿
𝑖

( ) ⎡⎢⎣
⎤⎥⎦

+ 𝑘
𝑞𝑝

1 − csc 𝑐𝑠𝑐 (α
𝑖
) cos 𝑐𝑜𝑠 

α(⎡⎢⎣

Differentiating with respect to x equation 10 we get equation 11.

So, we have 2 equations now for the displacement and for the slope is slope is it not. So,𝑑𝑦
𝑑𝑥( )

let us rearrange this term this equation in a closed form which will now become
α

𝑖
2𝐸𝐼

𝐿
𝑖
2

𝑑𝑦
𝑑𝑥( )

will be equal to because there are many terms let us group them all.𝑘
𝑝𝑝

So, term here, there is a term here, let us group them which will become times of𝑘
𝑝𝑝

𝑘
𝑝𝑝

𝑘
𝑝𝑝

 

.1 − α
𝑖
sin 𝑠𝑖𝑛 

α
𝑖
𝑥

𝐿
𝑖

( ) − α
𝑖
cot 𝑐𝑜𝑡 (α

𝑖
) cos 𝑐𝑜𝑠 

α
𝑖
𝑥

𝐿
𝑖

( ) ⎡⎢⎣
⎤⎥⎦

Let us talk about of , you may wonder why we are𝑘
𝑞𝑝

1 − csc 𝑐𝑠𝑐 (α
𝑖
) cos 𝑐𝑜𝑠 

α
𝑖
𝑥

𝐿
𝑖

( ) ⎡⎢⎣
⎤⎥⎦

arranging the equation 11 in this order. Please understand, I want to obtain and𝑘
𝑝𝑝

 𝑘
𝑞𝑝

ultimately that is how we already derived the rotation coefficients for the fixed beam when

we do the stiffness analysis, is it not? So, you want to group it in that order, we are trying to



do that let us call this as equation 11 a because equation 11 and 11 a are only rearranging of

terms with some simplification.
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So, friends we look at the summary what we discussed in this lecture. In this lecture we are

learning to derive the stability function for beam under axial compression. We have followed

identically the same procedure with which we derive the stiffness matrix of a fixed beam.

But in this case, we applied axial compressive force and deriving the stability function.𝑃
𝑎

So, while doing so, we made a simplification of expressing this particular as a function of

Euler load. Why we did that, because we wanted to assess stability and Euler’s load will help

you to give stability because I can quickly compare with and say whether the member𝑃
𝑎

𝑃
𝐸

is stable or unstable. We already learnt it in the previous lecture how to define stability in

Euler’s criterion. Therefore, we are trying to use this relationship and derive the stability

functions.

We will continue this derivation and do this stability functions in the coming lectures.

Thank you have a good day.


