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Lecture - 10
Spherically Symmetric System and Applications to quantum dots

In the last discussion we have talked about the rotational invariance of systems and how

it  is  related  with  the conservation  of  angular  momentum.  So,  which  means that  any

system  that  preserves  rotational  symmetry  that  is,  it  is  invariant  under  rotational

transformation.  We are talking about space rotation, the angular momentum will be a

conserved quantity and the corresponding quantum numbers are good quantum numbers

and they can be used for writing down the wave function.
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Now, let us see some examples or rather applications of such spherically symmetric. As

it is called which are invariant under rotation, such systems and one of the systems that

we are going to talk about here is the quantum dot. So, the question is what are quantum

dots? So, let us say, the quantum dots which we shall denote by the abbreviation QD is a

conducting  island  of  size  that  is  comparable  to  the  Fermi  wavelength,  in  all  spatial

directions. And these are often called as artificial atoms.

This is a special term that is used. So, it is comparable to the atomic dimensions. I will

see, we will compare dimensions, but these are these QDs or the quantum dots are called



as artificial atoms. The sizes of course, are bigger; I mean in fact, order of magnitude

more. So, it is a 100 nanometer for a quantum dot, versus 0.1 nanometer for atoms. So,

there is straightaway 3 orders of magnitude bigger. The quantum dots are bigger, than

that  of  individual  atoms.  And in  atoms,  the  other  differences  are  that,  in  atoms the

attractive forces are exerted by the nuclei which contains of course, the protons while in

QD this is which means, the attractive forces is done by the background charges. We

shall explain more on this.
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And a very important property of the quantum dot is that, the number of charge carriers

or which are electrons here, by the ionization that is by knocking of electrons from the

outermost shell and while in QDs, that is quantum dots this is done by changing the

confinement potential. So, let us have a summary of the comparison between atoms and

quantum dots.  So,  let  us  make  a  table  and  also  let  us  talk  about  of  at  least  a  few

parameters, maybe couple of them for atoms and for QDs. So, one is level spacing.

 So, what we mean by level spacing is; the difference between the energy levels and in

atoms it is of the order of an electron volt 1 eV, whereas, this is of the order of a milli

electron volt which is of 3 to 4 orders of magnitude lower. And there is an ionization

energy, which is of the order of 10 electron volt, in hydrogen atom we know its 13.6

divided by n square electron volts so for n equal to 1 is 13.6 electron volt where this is

the again of the order of an meV a 0.1 meV. And so, basically the properties of important



thing is that the properties of QD are highly tunable. I am giving you a very sort of basic

introduction to quantum dots and plan to do some elementary calculations, to show a few

things which are relevant for studying quantum dots. And of course, they provides, they

provide  possibilities  to  place  interacting  particles,  into  a  small  volume.  So,  thereby

allowing  us  to  verify  fundamental  concepts  or  basically  the  quantum  mechanical

concepts  and  raising  new  applications  and  the  notable  one  of  them  is  a  quantum

computing.
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So, these are very preliminary introduction to quantum dots. Let us have some theoretical

or rather historical first let us have some historical overview of, how it was and when it

was synthesized and so on. So, QDs were first characterized in 1983 by L. Brus. And the

reference is Journal of a Chemical Physics and this is a volume- 79, page 5566 and a

1983, as a small semiconducting sphere in colloidal suspension.

So, when the radius of the sphere that is the semiconducting sphere, that we are talking

about becomes small and how small is of the order of order of few or as we said it is

about maybe 100 nm or few 100 nanometers a few to 100 nanometer. The Bohr radii, this

is important, the Bohr radii of the charge carriers become larger than the sphere. Thus,

the confinement of the charge carriers, inside a sphere causes, where energy to increase.

So, this is by enlarge the definition of quantum dot.



So, what happens is that, when you confine charge carriers within a small volume, it can

so, happen that the Bohr radii of this charge carriers, they actually spill out of the sphere.

So, then this would cause, an enhanced energy, when you are trying to confine the charge

carriers into such a in such a small volume. So, what is our plan is the following that we

wish to demonstrate this effect of confinement, by modeling the quantum dot as a finite

spherical shell, having a spherical symmetry.

So, to say and incorporate both confinement and interaction effects coulomb interaction

between the charge carriers alright. So, this is we are talking about a semiconducting

specimen  or  a  material.  And,  now  we  are  going  to  talk  about  a  very  small

semiconducting material which is in the form of a drop or a sphere or a spherical object

and in which charges are enclosed or confined, ok.
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So, what happens in large semiconductors, the Hamiltonian is written as. So, H equal to

minus h square h cross square by 2 mh square del h square minus h square by 2 me

square. So, H the subscript H refers to hole and the subscript e refers to electron. So, we

are  talking  about  mixed  semiconductor,  where  both  types  of  charge  carriers  are

prominent and there is also an electron hole interaction term which is given by re minus

rh, which are the coordinates of the electron and the hole with regard to some a chosen

axis and epsilon is the dielectric constant.



So, let  us just  write  this.  So,  this  is  kinetic  energy of hole,  this  is  kinetic  energy of

electron  and  this  is  coulomb  energy  (Refer  slide:  16:30)  energy  and  epsilon  is  the

dielectric constant. So, this a generic Hamiltonian, that will hold for any semiconductors

and we are talking about not a nano size semiconductor, but a large semiconductor. Now

what happens, when you confine them, is the that, there will be an additional potential

coming in both for electrons and holes and that the potential, we are free to model it, as

say a spherical potential or rather a potential, that exists within a spherical region and the

outside it is zero.

So,  in  a  small  size  crystal  this  Hamiltonian  this,  the  above  Hamiltonian  has  to  be

modified to include confinement and interaction effects. So, that tells us that, we have to

write it again, we will have this kinetic energy term which is which was there earlier and

minus e square over epsilon. So, it is r e minus r h and then, some potential  for the

electrons  and  the  holes.  So,  we can  model  the  quantum dot  in  a  fashion,  that  in  a

quantum dot, V e and V h, are zero inside the dot and has a finite value outside. This

finite value can be taken as some V 0 and of course, it is up to us to consider, what is a

what can be a realistic value for V0. 

For  example,  if  we  take  the  limit  V0  going  to  infinity.  then  of  course,  the  energy

spectrum is the free particle  energy spectrum which is  given by En equal  to h cross

square pi square n square by 2 m R square, where R is the radius of the dot. However,

there is a problem with this taking the potential to go to a very large value all value or

infinity is that it overestimates the band gap of a of a quantum dot.
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So, V 0 going to infinity overestimates. There is a finite V 0 is preferable. So, we take a

finite V 0. So, once again to remind you that the potential inside the spherical dot is 0

and the potential outside is V 0 which is a constant, which could be taken same for both

the electrons and the holes. And, these V 0 would be taken as a finite value and not

infinity, and also the coulomb term goes as the that goes as a e square over epsilon R and

never the less.

I mean whether you take V 0 to be large or V 0 to be some finite value, the confinement

term which is basically the coming from the V 0 term. So, we will call it a confinement

term. So, the confinement term goes as this one over R square, as we just said. So, this is

for of course, infinite potential, but never the less we can take a value for V 0 and we can

convince ourselves that the confinement potential goes as 1 over R square versus 1 over

R for electrostatic term which is just the coulomb term.

So, which means that as R goes to 0, the confinement term dominates which is 1 over R

square. So, that dominates as R goes to 0, compared to the electrostatic term which is one

over R which goes as one over R, ok. So, what we will do is that we will take this as the

confinement term as the original Hamiltonian, and take the coulomb term. So, take the

original Hamiltonian or rather the unperturbed Hamiltonian, let us write the unperturbed

Hamiltonian  as  the  unperturbed  Hamiltonian  and  the  electrostatic  term  as  the

perturbation.
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So, this is our roughly our plans, for the handling or doing a mathematical formalism for

the quantum dot. Owing to the spherical geometry there is no dependence of course, of

the. So, dependence of the wave function on angular variables. So, they are independent

of the angular variable's theta and phi and. So, the H 0 the unperturbed Hamiltonian H 0 ,

becomes equal to minus h square by 2 m and del square, either for electron or for hole,

either for electron or hole, and plus V r now of course, V r can be taken as a V 0 which is

same for all values of r.

So,  if  we  write  down the  del  square  operator,  which  is  the  Laplacian  in  the  radial

coordinates. This you will find in any formula book or even find at the back page of

cover page of graphics, towards the back cover and you would be able to write this. So,

in principle your delta square contains a delta r square and delta theta phi square. But

since they are not here or rather  they do not depend on the wave function does not

depend upon theta and phi. So, we can put that equal to 0. So, this del r square has a form

which we are going to write here. So, this h square by 2 m, and so this m can be electron

mass or the hole mass, and also can be the band mass of each of these particles which we

are not making a distinction at this moment.

And, so this is equal to one over r square del del r of r square del psi del r plus v zero psi

of r equal to e psi of r, that's the time independent Schrodinger equation in the for the

radial part. And if you simplify this becomes equal to2 by r del psi del r plus del2 psi del



r 2 its equal to 2 m with the minus sign E minus V 0 divided by h cross square psi of r.

So,  I  am not  going  into  the  solution,  but  this  you will  find  it  a  number  of  places,

including the hydrogen atom or even the spherical oscillator 3D oscillator. 

So, the psi, there are two solutions one is inside the wave function. So, psi a inside the

inside the quantum dot, that is A sin Kr by Kr this called as a Bessel function for r less

than R and this is equal to. So, this is psi in inside the dot inside QD and psi out r its

equal to a B with a minus sign K’ r, divided by K’ r, for r greater than R, and this is

outside the quantum dot ok. So, these are the wave functions of this particular problem.

(Refer Slide Time: 28:56)

So, K becomes equal to root over 2m E, by h cross square and K’ becomes equal to 2m

E, minus V 0 divided by h cross square. So, the boundary conditions there of course, two

boundary conditions namely the Dirichlet  and the normal boundary conditions, which

talk about the continuity of psi and d psi d x at the boundaries boundary means. So, we

have to match the boundary conditions at the dot. 

So, this is the periphery of the dot. So, you have to match the boundary conditions at the

dot and those two boundary conditions that Dirichlet and the normal boundary conditions

can be actually combined to write it as one by psi in r at small r equal to R and its d psi in

R d r. So, it is a d psi in d r computed at R and it is a 1 by psi out of r d psi out. So, these

are combining the two boundary conditions one can write this.



So, if your call this as equation 1, let us write it with a different color. So, that its visible

to you. So, its equation 1 equation 2 and this boundary condition is say equation 3 then

we can write down. So, substituting 1 and 2 in 3ah then we have 1 by. So, this is 1 over R

with a minus sign plus K cos Kr and equal to minus 1 plus K’R by R. So, this is. So,

there is. 

So, basically there is also a relationship between. So, let us call this as equation 4, this is

equation 4, from which equation is that. So, this is let us we haven't name this equation,

but this is the equation star. So, from star from equations star we get a relation between K

and K’, which gives the K’ equal to K square minus V0 m h cross square, and now call

this as equation 5 for our reference and also put 5 in 4, and if we do that we will get an

equation which is KR cot KR and equal to minus root over R square K square plus V

square m by h cross square.

Now, this solving this will give us the value of K and hence, we will get energy from this

equation number star, and that's the eigen function for the Hamiltonian and of course, we

have found out the eigenvalues by solving the differential equation. So, if we can do that,

that is solve for K then we will get the energy eigen functions. And somehow as that is

slightly difficult to do because you see this equation. Let us call it equation number 6

contains K in both the sides and that too one is inside the argument of a cot function and

the other is inside a square root.
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So, this is called as the transcendental equation and it cannot be solved analytically, but

has to be solved either numerically or graphically. So, I will show the graphical solution

of this. So, what I will do is that, I will plot, both these sides separately and show you a

schematic solution. So, these are these cot functions and that is that. So, these are the

solution. So, this is K and these are two different sides. So, this is the left side. So, let us

call it by L. So, this is L and this is R.

So, that meeting points of L and R will give me the solutions, which are given by these

values of K. So, these are the allowed values discrete values of K in. So, let us I mean K

in means K, so this is the K1, K2 and K3, that are allowed values and this will give me

the energies. So, that way, we are able to solve the problem for you know the modeled

quantum dot. The way we have modeled it; however, we still have to incorporate the

coulomb term.

So,  in  order  to  include  coulomb  interaction  perturbatively;  so,  we  write  down  a

perturbation term, which looks like this H' which is equal to e square divided by re minus

rh, and the first order energy correction is given by delta E at the first order is equal to psi

H' psi if you use psi to be equal to psi in which is equal to jl Kr which is a Bessel

function. We can actually solve this for the first order energy correction; however, this

has no simple analytic closed solution. So, we drop further calculation with this. now of

course, the perturbation, becomes less significant as the dots grow larger. 

In fact, the quantum effects start starts to diminish, as the size of the quantum dot starts

growing larger. So, the confinement effect is the dominating effect here, this is what we

have been trying to say. So, finally summarizing, a quantum dot is basically there are

charges which are in a highly confined geometry and in this particular case we have

taken the geometry, to be a spherical in shape. And this is called, that is why it is called

as a spherical dot. 


