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For the next few classes we are going to discuss very interesting subject in quantum

mechanics, which has gained a lot of importance in the recent times. And is expected to

be in focus for at least  a quite a few years from now, which is called as a quantum

computation.

(Refer Slide Time: 00:52)

In order to discuss quantum computation, we will look at it is a various prerequisites, and

its relevance to a number of things such as EPR paradox and so on. So, let us start with

some prerequisites of quantum computing. Let us call them as a P 1 so, the definition of

a quantum bit which is called as a qubit. Second one is that how qubits transform or

evolve? 

Third is, the effects of measurement. And the fourth one is how qubits combine together

into systems of qubits? So, these are the 4 prerequisites that we should we would be

talking about briefly, and their relevance to the subsequent topics we will see how that

comes about. So, let us talk about the first one that is a definition of a qubit.
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So, consider a 2 dimensional space. So, let phi 0 and phi 1 be the orthonormal basis for

this 2 dimensional space. So, a qubit is written as I said that is just the short form of a

quantum bit. It is sum a phi 0 plus b phi 1 with a constraint that a mod square plus b mod

square equal to 1. And a’s and b’s are complex coefficients ok.

So, usually  we write phi 0 as a taken as 0 and phi 1 is taken as 1.  There are other

notations such as the z component of a spin half particles so, sometimes these phi 0’s and

phi 1’s are also written as a phi 0 is up and a phi 1 is down and so on, ok. We will go

ahead with the 1 0 notation. Now you see that as opposed to a classical bit, which were

using a 0 and 1, we would have written simply 1 number.

However,  with  this  qubit  there  are  infinite  possibilities  of  writing  numbers  with

differently choosing the a and b or the a mod square and the b mod square, and each will

give rise to a new number. So, there are other things such as you know the voltage, the

excited voltage and the ground state voltage. Those were also taken sometimes as the

notations. So, a b they belong to the so, they belong to the complex space and satisfy the

normalization condition. Let us call it  as if we call this as 1, then this is called as 2

normalization condition 2, alright.
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So, let us go to the next one which is evolution of qubits. So, the evolution of a closed

quantum system is described by a unitary transformation. So, if I have a state psi it upon

operating it by a evolution operator becomes psi prime. And this operator is unitary in

the sense that the U dagger U is equal to 1. So, let us take an example of this say psi is

equal to a 0 plus b 1, just the way we have taken it. 

So, U can be chosen as 0 1 1 0, you can check that U dagger U equal to 1. So, psi prime

it is equal to U psi which is equal to 0 1 1 0 and a b. So, this becomes same as b a, which

is nothing but equal to b operating on or b on b multiplied by 0 and a multiplied by 1. So,

this unitary operator changes the original state psi from a 0 b 1. And the interchange their

coefficients so, that it becomes b 0 and a 1.
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See your second example. So, psi can be purely in the 0 state which means that I can

write it as 1 0 plus 0 1. And U can be taken as 1 by root 2 1 1 1 minus 1. In fact, one

should again check that U dagger U equal to an identity matrix. So, the evolved psi under

this operation of U is 1 1 1 minus 1 and 1 0. So, that becomes equal to 1 by root 2 1 1.

So, this is 1 by root 2 0 plus 1 by root 2 1. And so, basically we have started from a state

0 and landed up with a half  probability of having a 0 and 1 by evolving the system

through this operator u.

(Refer Slide Time: 11:09)



Third, so the quantum measurements are described by a collection of M alpha operators

measurement  operators.  So,  alpha  denotes  measurement  outcomes  that  may occur  in

experiments. For example, the probability that a particular result alpha, alpha occurs is

given by so, p alpha equal to the state, and M alpha dagger M alpha and the state. So, the

measurement operators M alpha should satisfy the completeness relation sum over alpha

psi M alpha dagger M alpha psi equal to 1, ok. And this happens because of the fact that

alpha p alpha is equal to 1, ok.

(Refer Slide Time: 14:34)

So, take an example. Consider 2 M alphas so, call them as M 0 which is equal to 0 0 and

M 1 equal to 1 1. So, M 0 is equal to 1 0 1 0, it is equal to 1 0 0 0 and M 1 equal to 0 1 0

1 equal to 0 0 0 1, ok. So, one can check easily that M 0 dagger M 0 plus M 1 dagger M

1 equal to 1. And hence, they are complete. So, if I now choose a psi to be equal to a 0

and b 1; p 0 would require psi M 0 dagger M 0 psi, which is nothing but psi M 0 psi,

because you can check that M 0 dagger M 0 equal to M 0. And this thing becomes a star

and b star. And now I have a 1 0 0 0 and a b that typically gives equal to a star b star and

a 0 which gives a mod square.
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So, thus the probability of measuring 0 is a square. And one can similarly found find that

the probability of measuring one would be b square and so on, ok. So, let us look at the

4th one how p 4 a combination of qubits into system of qubits. So, the state space of a

composite physical system is the tensor product of the state spaces of the component

physical systems. By this what I mean is that so, let us write a psi composite it is equal to

the tensor product.

Take an example and psi 2 equal to C 0 plus d 1. So, the composite space is  psi  1

multiplied by psi 2, it is equal to psi 1 psi 2, which is equal to a C 0 0 plus a d 0 1 plus b

C 1 0 plus b d 1 1. So, that is the composite space. Let us now take on a concept called as

quantum entanglement.
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So, before we actually discuss quantum entanglement, let us look at the EPR paradox.

So, this is by Einstein Podosky and Rosen, who wrote a paper in 1935. The paper is

called can quantum mechanics be complete. And the reference of the paper is it  is in

physical review. It is volume is 47 pages 777 and it is in the year 1935. So, let us try to

understand what is it.

So, consider 2 spin half particles, 2 spin half particles. So, they have a priori all these 4

states equally probable. Up up, down down, and up down, and down up. So, these are

called  as  correlated,  and  with  50  percent  probability.  And  these  are  called  as  anti-

correlated. And again it should be 50 percent probability ok. So, what it means is that

because, this is spin half particles the z component of spins are up and down. So, if you

make a measurement of them, and then you would find them both to be in the up state,

both to be in the down state, the first one to be in up, second one to be in down and the

second one to be in down and the, the first one to be in down and the second one to be in

the up state.

So, either they are correlated or they are anti correlated, each having equal weightage or

possibility. And the correlated ones will enjoy a possibility of 50 percent, or and the anti-

correlated ones will enjoy a possibility of 50 percent. And this is what nearly one should

expect. But experiments do not say that the experiments say that that the spins are anti

correlated; that is,  if you get an up spin then you get a down spin with 100 percent



probability. So, that is somewhat strange, but it is true let us try to you know understand

this that what it means. I will take a 2 keys, 1 key being here and the other key is a

smaller. So, one is a bunch of keys the other is just a set of 2 keys. And I put them in my

both hands. And say a prime one does not know that which hand has which key.

Now, if you ask me to show my right hand, the right hand has this bunch of 2 keys that

we had just shown; which automatically mean my other hand has the bunch of keys or

rather the bunch which is a bigger bunch of keys. And the small, because now by making

a measurement of one hand, we automatically know that the measurement of the other

hand which has the other kind of key. And so, this is taken up as a faster than light

measurement.

Because, I did not have to do a measurement of my left hand which had that big bunch of

keys; it is automatically clear that since I had in my right hand the small bunch of keys

the bigger the other hand must be having the bigger bunch of keys. And this had Einstein

had difficulties  Einstein  and Podolsky had difficulties,  because  this  are  talked  about

faster than life, light faster than light measurements (Refer Time: 27:08).  And if the 2

hands or 2 these 2 objects are far apart, to the tune of you know several galaxies apart or

several light years apart, even then it is going to be true that the other hand or the other

possibility, even without making a measurement that it has this bigger bunch of keys.
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And this brings the notion of faster than light communications, ok. And let me box this,

and faster than light is completely disagreed by the special theory of relativity. Because

special  theory  of  relativity  by  Einstein  says,  that  light  is  the  supreme  speed  and  it

remains invariant in all frames. So, faster than light communications not possible and so,

there is a disagreement between quantum mechanics and special theory of relativity. 

So,  what  Einstein  proposed  is  that  there  must  be  some  hidden  variables,  which  are

facilitating this faster than light communications. And they wrote down this paper which

I have referred to here the and which essentially  ask this  question that  what  are the

hidden variables and so on. So, there are hidden variables which are needed in order to

explain this faster than light measurement or communications. However, Rosen did not

agree to it, and he still said that there are no hidden variables and quantum mechanics is

complete. How does this bring us this issue of quantum entanglement let us see.

(Refer Slide Time: 30:00)

So, quantum entanglement is the entanglement between two particles or two objects just

like the 2 keys that you have seen; such that their properties are always correlated. So, to

explain entanglement,  let  us examine the creation and destruction of an EPR pair  of

qubits, just like the 2 keys that we had just said. So, let us take a qubit.

Qubit psi 1 in state 0 consider an evolution operator U such that U equal to 1 by root 2 1

1 1 minus 1. It is of course, an unitary operator, it is also written as by H which is called

as a Hadamard operators operator. So, I operate the evolution operator of course, this



unitary  operator  U  dagger  U  has  to  be  equal  to  1.  So,  this  one  psi  1  which  gives

something or this is equal to H of psi 1 which tells it gives that it is equal to 0 plus 1. Just

do a bit of digression and tell you the properties of this Hadamard operator.

(Refer Slide Time: 33:27)

So, H the way it is written H or U, it is a 1 by root 2 sigma x plus sigma z. H square

equal to 1, H sigma x H is equal to sigma z. H sigma z H is equal to sigma x. Also that it

can be considered up to an overall phase as a rotation operator, which rotates a state by

theta equal to pi about an axis, which is n cap equal to 1 by root 2 n x cap plus n z cap.

That rotates x to z and vice versa. 

So, that r n theta equal to cos theta by 2 plus i n cap dot sigma sine theta by 2 which for

theta equal to pi or theta by 2 equal to pi by 2; it becomes equal to I by root root sigma x

plus sigma z and this is nothing but i H. So, apart from that phase factor i, which can be

taken as exponential i pi is the same as this rotation operator. Now let us come back to

our discussion original discussion.
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Take another qubit  also in the 0 state.  The joint  state space probability  vector is  the

tensor product of the 2, which is what we have learnt. It is like this, this is how the tensor

product is taken, one can write in a slightly shorthand notation like this. And it is 1 by

root 2 1 0 0 plus 0 0 1 plus 1 1 0 plus 0 1 1.

Now, define a new unitary transformation. Call it as C not which is equal to 1 0 0 0, 0 1 0

0, 0 0 0 1, 0 0 1 0. And operate on this the tensor space, but before that check that C not

square is equal to 1. Now you apply C not to the combined system; that is a psi 1 prime

psi 2. And so, this becomes psi 1 prime psi 2, and this is like a prime of that we will write

it with the double prime. It is a C not and the psi 1 prime psi 2, ok. So, that psi 1 prime

psi 2 state is now operated by this C not which is a unitary operator.
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So, this is then psi 1 prime psi 2, this equal to 1 0 0 0, 0 1 0 0, 0 0 0 1, 0 0 1 0, then this 1

by root 2 0 0 1 by root 2. So, this is equal to 1 by root 2 0 0 plus 1 1, ok. And now if you

actually look at this qubit this combined qubit, this thing, this state cannot be represented

as alpha 0 0 plus alpha 1 1. And a tensor product of beta 0 0 and beta 1 1 for any

complex number numbers alpha 0 beta 0 alpha 1 beta 1. So, what does it mean?
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That means, analyze the state of the individual qubit in the system. Because the states

state of each individual qubit, we cannot state with the individual, because the excuse me



here states of the combined qubit are entangled. So, if we make a measurement, if we

make a measurement of the first qubit, the state of the other qubit is determined by the

outcome by the outcome of the measurement of the first one. So, there is so, thus there is

a perfect anti correlation hat that exists. We will elaborate more on this.


