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So, let us recapitulate the variational calculations of the variational theory that we were

talking  about.  So,  what  we  did  is  that  we  apriori  did  not  know  how  to  split  the

Hamiltonian  into  unperturbed  and  a  perturbation  Hamiltonian.  So,  we  were  given  a

Hamiltonian whose exact solution is not known. And we had taken a variational wave

function, and so this is the variational wave function. 

And hence we went ahead and calculated this the variational energy with and called that

as E alpha. Now, this E alpha was minimized with respect to alpha, and determined alpha

was  determined.  Putting  it  back  into  psi  that  is  the  variational  state  that  we  have

obtained.

So, two comments are in order. One is that the trial wave function of the variational wave

function  is  of  course  chosen  with  the  boundary  conditions  kept  in  mind.  If  you

completely  disregard  the boundary  conditions,  the variational  calculation  can still  be



done. But, you will get a estimate of energy, which is much larger than the actual energy,

the real energy of the system or the exact energy of the system.

Now, the second point is exactly in that line that the variational calculation yields the

maximum or the upper bound to the lowest energy possible for that system. And we

mostly carry out the calculation for the ground state though it is not impossible. It is it

may be complicated, but not impossible to do the calculation for excited states. So, let us

tell the results of a few (Refer Time: 03:13) problems in the context of variational theory.
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Let us take the first problem. So, a guess such as psi of alpha, it is equal to a square

minus x square 1 plus alpha x square for x less than equal to a. Now, this is for a particle

in a box and it is 0 otherwise, so that is the problem that is chosen. Alpha is of course the

variational parameter. Now, look at it that the box is from 0 to a. So, at x equal to a, the

wave function is equal to 0. And of course at x equal to 0 x equal to minus a, again the

wave function is equal to 0. So, this is at the well is like this minus a to a. And this is the

0.

And for that the variational function is taken as this. I will not do the calculation, but you

can do it. You can you know that the Hamiltonian is written as minus h square by 2 m d 2

dx 2 plus V of x, which is equal to 0. So, it is simply the non-interacting problem, where

the particle  has mass m, and it  is  a confined within this  well.  You can calculate  the



energy which is equal to psi alpha H psi alpha. And then of course you can normalize the

wave function.

And then put a d E d alpha equal to 0. The exactly what we have said in the last slide, put

that equal to 0, and put alpha back into that. And an estimate of the ground state energy is

equal to so this is E 0 that is from the variational calculation its 1.23372 h cross square

by ma square that is the variational calculation. And the exact calculation is very very

close, it is 23370 h cross square by m a square. So, this is the exact. 

So,  you  see  that  the  wave  function  as  arbitrary  as  this,  which  simply  satisfies  the

boundary conditions that this is equal to 0 at x equal to plus a and x equal to minus a.

And  then  we  have  gone  ahead  and  calculated  the  variational  energy  the  variational

energy only differs from the exact energy in the 5th decimal place. So, it is that good,

because the wave function had followed the right or the correct boundary conditions.

(Refer Slide Time: 07:17)

So, let us look at this problem of helium atom; this is a famous problem in this context.

So, we are going to talk about helium atom, which consists of two electrons. And there is

a nucleus, and there is and also because there are two electrons. There is an electron-

electron interaction.

So, the Hamiltonian could be written as, it is minus h square by 2 m del 1 square. So, this

corresponds to electron 1, we can write the same mass for the electrons. So, it is minus h



square by 2 m del 2 square minus, now of course this is z is equal to 2. So, it is z e square

by r 1 that is the distance between the nucleus and the first electron. And then there is a z

e  square  by  r  2.  And  of  course,  there  is  also  term  which  is  the  electron-electron

interaction, and which could be written as simply equal to plus e square divided by r 1 2,

where r 1 2 is given by r 1 minus r 2.

So, this is the Hamiltonian for the helium atom. So, they are considered as this is for one

electron, this is for the other electron. This is the between the interaction between the

nucleus and the first electron, again the nucleus and the second electron, and that is the

interaction energy with between the first and the second electron. So, the wave function

let us take the wave function as, we can take it as alpha over pi a 0 whole cube, and then

exponential minus alpha r 1 plus r 2 by a 0.

Now, this is a fairly accurate equation rather the wave function, because you see the

ground state of the hydrogen atom has a simple exponential minus alpha r by a 0. There

is no theta or phi dependence. So, this is a fairly good wave function. And with this wave

function one gets the energy as minus 77.50 electron volt ok. And if I make a table of the

exact energy versus this variational  energy and also compare it  with the perturbation

energy, then that is so the exact is a minus 79.02 electron volt.

The variational has just said to this calculation I am skipping for now, but most likely we

will be doing it in a tutorial problem. So, it is minus 77.50 electron volt. The perturbation

theory on the other hand with this last term as the perturbation yields a minus 74.83

electron volt, which is far away from the actual exact energy. 
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Let us now talk about the some specific cases again. Let us talk about the hydrogen

atom, which is most familiar to you. So, the ground state of the hydrogen atom, so we

will  use  variational  theory  for  the  hydrogen  atom  and  so  you  know  that  the  wave

function the ground state wave function, which is which corresponds to 1 0 0, which we

call let us say we call it a psi g, which is equal to 1 by pi a 0 cube whole to the power

half and exponential minus r by a 0 that is a ground state energy or ground state wave

function.

So, so where a 0 equal to h cross square by m e square, m is the electronic mass, and e is

the charge of the electron. And this gives that the E 0 is equal to minus e square by 2 a 0

which of course has a value, which is e 4 m divided by 2 h cross square, there is some

spurious lines coming. And this has a value, which as all of you know that it is equal to

minus 13.6 electron volt.  And now suppose we take this  wave function a variational

wave function as a psi alpha equal to 1 by root over pi alpha cube exponential minus r by

alpha.

Now, this is fairly exact. So, let us see that even with a fairly exact variational state what

kind of energy do we land up with. So, h is nothing but by 2 m del square minus e square

over  r.  So,  the  kinetic  energy  term.  So,  this  is  equal  to  the  kinetic  energy  plus  the

potential energy. So, the kinetic energy term is written as 1 by pi alpha cube, and then

minus h square over 2 m, and then 4 pi r square d r exponential minus r by alpha. And



then of course we have a d 2 d r 2 plus a 2 by r d d r and exponential minus r by alpha, so

that  is  the calculation for this  for the kinetic  energy expectation  value of the kinetic

energy.

Now, see that we have not written the theta and the phi dependence in del square term.

And the reason being the ground state energy does not depend upon theta and phi. So, we

have simply written down the del square for the r operator. And this can be as I said that

it can be integrated by gamma function integral, which you should keep in mind. So, this

looks like let me write it down with a different color. 

So, it is a r to the power n exponential minus alpha r d r is equal to n factorial divided by

alpha to the power n plus 1. So, when you do that this thing gives you a result, which is

equal to h cross square by 2 m alpha square, so that is the kinetic energy.

(Refer Slide Time: 16:06)

And the potential energy is simply equal to minus e square over r, so that is equal to so

that is equal to minus e square divided by pi alpha cube and the 4 pi r d r and exponential

minus 2 r by alpha. And again this is another gamma function integral, which gives a

minus e square over alpha. Now, by minimizing the energy, so this your total energy is of

course equal to E equal to what is we write, so V. 

So, your total energy is equal to T plus V. And d rather this is the Hamiltonian, and this is

equal to the energy, which is E alpha. So, d E alpha d alpha equal to del alpha or we can



there is simply one variational parameter. So, we can simply write it as d d alpha of h

cross square by 2 m alpha square minus e square over alpha and then put that equal to 0.

So, this gives a value of alpha that is equal to h cross square divided by m e square and

that of course gives us the exact result, that one should get which is what is quoted here.

So, this gives of course the exact energy that we are familiar with.

(Refer Slide Time: 18:24)

And then we can we can also take a variational wave function to be of this form. So, now

take a variational wave function of a different form with is a completely different form

actually. It is a 2 by pi alpha square this already is normalized. So, one does not have to

worry about this. So, this is equal to r square by alpha square is very strange.

In fact, it should not be taken as the ground state wave function for the hydrogen atom,

because it  is  Gaussian.  And Gaussian only goes to 0 be at  infinity  at  plus or minus

infinity. However, this we know that the wave function has to go to 0 within a certain

distance from the radius of the atom or maybe the Bohr radius. So, this is not a good

choice of the wave function, but as we said that we can still calculate this.

So, we have again the minus h square by 2 m, so that is the kinetic energy let us write

down the kinetic energy term. So, the kinetic energy is with this variational term, which

is 2 over pi alpha square and there are two of them, so this becomes a cube. And there is

a minus h square by 2 m, and there is a 4 pi r square d r and exponential r square by



alpha square. Then you have that term which is d 2 d r 2 plus 2 by r d d r by exponential

minus r square by alpha square.

And of course the theta and phi integrals have been done, and it is here in this 4 pi factor.

So, the phi integral gives a 2 pi and the theta integral gives a 2, so that becomes a 4 pi.

So, this if you calculate, it becomes equal to 3 h cross square by 2 m alpha square as I

said that there is a simple integral, which is should try and do it. And all of them fall into

this gamma function integral category, and then you can do it without a problem.

So, and then this V that is equal to minus e square, and then there is a 2 divided by pi

alpha square and cube, and then there is a 4 pi r square d r exponential minus 2 r square

by alpha square. And then there is a 1 over r that is coming from the form of the wave

function, and it form of the interaction term all right. 

So, if you perform this integral, this integral gives rise to minus e square by alpha and 2

root 2 divided by root pi again by taking a d E d alpha. So, the total energy is given by is

T plus V. And so then the if we take this a d E d alpha, and put that equal to 0, one gets

alpha equal to 3 root pi h cross square divided by 2 root 2 m e square.

(Refer Slide Time: 22:46)

And with that the so this gives us that the energy the ground state energy is that is a

variational energy. So, this is given by minus 4 by 3 pi and m e 4 divided by h cross

square, and that comes out as 0.85 E 0. So, even with the wave function which does not



obey the symmetry of the actual ground state wave function for a hydrogen atom, we still

get accurate value to 85 percent of the actual value. So, we are only off by 15 percent ok.

So, what it means is that we get a value which is 15 percent higher than the 13.6 electron

volt, so even with a Gaussian wave function.

So, important thing is that that when the symmetry says that wave function should have a

form, which is exponential  minus r by or exponential  minus r. We have taken it as a

Gaussian,  and  then  we  are  only  off  by  15  percent,  which  means  that  variational

calculation at times works very well. 

(Refer Slide Time: 25:20)

Let me give another example that we know that the particle in a box has a wave function,

which is like 1 by root over a sin n pi x by a or cosine n pi x by a. And one can actually

take this one as well that it is a to the power alpha minus x to the power alpha. And then

also we get the variational energy as let us call that as E var, which is equal to 1.00298 E

0. So, even with a polynomial function such as this the variational energy comes out to

be fairly accurate, and it is extremely close to the actual energy. 

So, the one important point is that that there is no hard and fast rule that what is a good

wave function, in order to get a good bound on the or a very tight bound on the upper on

the ground state energy. However, it should at least satisfy the boundary conditions that

the wave function is supposed to satisfy. And in fact if you look at the quantum Hall

effect rather the fractional quantum Hall effect, the wave function written by Laughlin.



Actually had (Refer Time: 27:10) all the other known wave functions at that time and

clearly turned out to be a winner and deserved a noble prize for that. So, there are of

course one has to be lucky. However, it also should obey the boundary conditions, that is

supposed to obey. 

(Refer Slide Time: 27:41)

Let me let me now go to another case. And give an example for the excited states. So, the

excited state of hydrogen atom is the first excited states, so to say is of the form that we

have r and exponential minus r by a 0 that is the exact one that I am talking about. And of

course, there are Y 1 m is the form. And of course the energy of that is and energy is

equal to minus e square by 8 a 0, which comes out to be minus 3.4 electron volt, so that

is the known ground state energy.

Let us write down a normalized variational state as the following, remember that we had

shown this the ground state has a is corresponds to the s state, which is l equal to 0 and

has a spherical symmetry. However, the excited states correspond to l not equal to 0, and

the spherical symmetry is broken, and they look like a dumble, and which is that theta

dependence theta and phi dependences are taken care of by this Y 1 m.

It is actually really the theta dependence,  the phi dependence only comes through an

exponential plus minus i m phi, which comes as a phase the theta dependence of course

comes from the Legendre polynomials anyway. So, this is we can take a variational state

as follows. There is no necessity for you to start with a normalized wave function, but in



any case you have to normalize it. So, I am writing down the normalized a variational

wave function. It is r r my r by alpha and then Y 1 m, where m for l equal to 1 m can be

minus 1 0 or plus 1.

Again the kinetic energy is given by h cross square by 2 m alpha square, I am not writing

any longer the forms etcetera. But, they are of course had to be done in order to do it. So,

this is a V, which gives a minus z e square, so z is equal to of course so 1. So, let us just

write minus e square over alpha 2 alpha rather. So, when we do a d E d alpha, this is

equal to del del alpha of h cross square by 2 m alpha square minus e square by 2 alpha,

which when put equal to 0 or this is only one variational parameter.

There is no need for writing and del alpha, but so it is a d d alpha. This gives of course

alpha equal to h cross square by 2 z, again z is not required. So, this is equal to m e

square, and the minimum energy because of this so that is a variational energy comes out

as e square m by 8 h cross square. So, this is the exact result as expected. The reason is

that we have started with the exact wave function ok, so that is. 

(Refer Slide Time: 32:26)

Let us just write that caveat that we had just spoken that there is no way to justify a judge

rather how close one can get to the true result. The only thing can be done is to try a

family  of  wave  functions  that  satisfy  the  correct  boundary  conditions.  Once  again

Laughlin’s wave function for fractional quantum Hall effect turned out to be a winner.

So, this was in 1983, and basically he was awarded Nobel Prize for that ok.
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Let me end this discussion with a particularly important one that why not a full variation,

and why a particular choice of the wave function. What we mean is that we can take the

Hamiltonian. And take a wave function which satisfies the Schrodinger equation. And do

a variation of the entire wave function of the family of wave functions not just choose

one of them. And then minimize the energy with respect  to the wave function not a

particular variational parameter. And that would be much more accurate, but it turns out

that that does not get us anywhere. In fact, we have brought to square one because of this

following reason.

So,  here our variational  wave function  is  a  functional  of psi  and psi  star  remember,

because psi in general a complex quantity. Psi and psi star are linearly independent. So,

this is the H the expectation value of H, which is nothing but a d x psi star H psi, and

then we which is also written as psi H psi. So, E variational functional of psi and psi star.

Here of course psi and psi star are independent parameters ok.

And we can consider an arbitrary variation with respect to psi star, I would it could be psi

also, but just taking it with respect to psi star. So, this would give and demand that the

variational energy is stationary. So, this is equal to 0 equal to delta E variational, and that

is equal to d x delta psi star H psi, which gives H psi equal to 0 does not make sense,

because this is the equation that we want to solve.
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So,  one  way  to  get  around  the  difficulty  is  that  one  can  Lagrange’s  undetermined

multiplier, so that is called as lambda. So, now the variational energy is a functional of

psi, psi star and that lambda. And that lambda is that enters, it is a psi star H psi minus

lambda, and then there is a d x psi star psi minus 1. So, this is a functional of psi, psi star,

and lambda; the stationary condition, now with respect to lambda and not with respect to

psi or psi star. So, delta E variational, it is equal to d x delta psi H psi minus lambda.

So, so let me just explain this a little more clearly ok. So, if you take this stationary

condition with respect to lambda, then the terms in the parenthesis that is this bracket

would vanish. So, the properly normalized so for a properly normalized wave function

there is an additional effect, which is the stationary condition with respect to psi star also

changes, so that tells that delta E variational its equal to d x delta psi star H psi minus

lambda d x delta psi star psi equal to 0, so that tells that for delta psi star to be stationary.

We get H psi equal to lambda psi. And in fact this is the one that we wanted to solve.

This equation is same as the Schrodinger equation with the identification that the lambda

is same as the energy. And we wanted to solve this, but this entire the variation with

respect to the full psi or psi star leads to an equation that we are interested to solve,

which means that we are back to where we were earlier. And hence, the utility of the

variational method that is for a given a wave function with a single or you know even a



number of variational parameters, but at least one class of them will have to be treated at

one point of time.

If you are dissatisfied with that wave function, you can take another wave function, and

can go ahead and do the calculation and see that whether that yields tighter bound to the

ground state energy or the minimum energy exact energy that is possible. And as we said

that it can also be done for the excited state energies provided you apply the correct

boundary conditions. 

And so this variational method in general is very powerful. And as we have said that in

the a context of fractional quantum Hall effect, which could not have been solved using a

perturbation theory or it is not a there is no perturbative solution corresponding to that.

And same with BCS theory, these are  non-perturbative  problems.  So, the variational

theories came to the rescue. 

And once one writes down a correct variational wave function, it is always possible to

get good bound on the ground state energy. And as we said earlier that it could the energy

obtained from a variational calculation could never be below the actual energy. However,

it will give the amount that it is close to will be dependent on the choice of the wave

function.


