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So  we are  going to  look at  the  last  topic  in  the  Approximate  Methods in  Quantum

Mechanics and namely the WKB Approximation which is by the name Wenzel Kramers

and Brillouin approximation.

(Refer Slide Time: 00:35).

And this approximation is valid for slowly varying potential slowly and linearly varying

potential I mean the main requirement is that it has to be slowly varying. So, suppose

potential varies as something like this over a large distance. So, this is your V of x versus

x. So, this is x and this is V of x. So, it is that kind of a potential.

Now, let us assume that the particle has energies which has a value which is like this

represented by this E, now these are called as the turning points. So, we will call these

points as P and Q P and Q are turning points. So, V x is of course, a slowly varying

potential all right, and the particle has energy E. So, in the vicinity of this is a P the

particle  actually  slows down.  And it  so,  the velocity  of  the  particle  is  slow and the

particle has large velocities in this middle region and again it slows down and of course,

so here it is slow and then of course, it you know it comes and then it goes back.



So, these regions are called as so, if we draw two vertical lines and let them meet at this

x axis then this is called as the classically forbidden sorry this is called as a classically

allowed region. And the regions beyond this so, these are Classically Forbidden region

and this is Classically Forbidden as well all right.

So, this is the situation here, so we are talking about a potential  of this kind and we

certainly do not know the solution for this particular problem for the entire problem, but

even if  we do not know the solution for this  entire  problem at least  we can get the

asymptotic solutions. That is solutions for regions which are far away from this P and Q

which are called as the turning points we will just define turning points.

So, these Turning Points are defined as x 1 and x 2 and these turning points are defined

by where the total energy becomes same as the potential energy which means the kinetic

energy goes to 0. So, that is the definition of turning points. So, the particle will come

and  turn  from  these  two  points  of  course,  the  quantum  mechanical  particle  has  a

tunneling probability around these points as well. And so, we will get a dyeing solution

or rather evanescent wave in the classically forbidden region. And so, the other region

where the classically allowed region is where E is greater than E is greater than V of x

and that tells that. So, any x between so this is the classically allowed region.

And so, near the turning points the kinetic energy is small and, so, the particle spends a

significant amount of time close to the turning point and the motion gets slow and away

from the turning point the kinetic energy is large and the particle is said to be moving

with large velocities. And which can be understood quantum mechanically by calculating

the  probability  density. So,  the  probability  density  of  the  particle  being  close  to  the

turning points is large which means that the velocity is low.

And at a faraway regions that is somewhere the middle of this classically allowed region,

you will  get less probability  for the particle  to spend time there.  And as the particle

moves close to the turning point; then it gets reflected from these points P and Q which

are as I told you that they are called as a turning points. And as it is also mentioned that

this method is best suited for a slowly varying potential and if the potential is not slowly

varying that is if it is rapidly varying then of course, this method does not work.

So, let us get an analogy with optics that this is the behavior of light in a varying in a

medium where  the  refractive  index is  varying.  So,  if  the  refractive  index  varies  too



rapidly then of course, the light gets reflected and so, this is so and if it is a very gradual

variation then of course, the light really does not get reflected.
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So, in a slowly varying or rather we should write it as in a medium, which has slowly

varying refractive index; the situation is pretty similar under consideration for us in this

WKB approximation all right.

So,  this  is  the main idea of this  problem that  we are going to solve slowly varying

potential  and  in  terms  of  obtaining  what  are  called  as  connection  formula  which  is

applying the boundary conditions, and these are very special formula because usually we

have  seen  that  the  connection  formula  they  actually  connect  the  solutions  at  the

boundaries. So, just epsilon left to the boundary to epsilon right to the boundary within

the limit epsilon going to 0 the solution should match and, but here of course, there is no

such things. In fact, very close to the turning points the solutions fail miserably it is only

asymptotically that is far away from the turning point the solutions give good results.

So, let us take a one dimensional problem all right. So, how do we write Schrödinger

equation I am simplifying it getting once getting rid off one step you should write all

steps. So, this is d square side dx square plus a 2 m by h cross square E minus V of x psi

x  equal  to  zero.  So,  that  is  the  equation  that  we  are  all  familiar  with  it  is  a  one

dimensional time independent Schrödinger equation. This had to be solved so for V x

less than E which means that we are in the classically allowed region the total energy is



larger than the potential energy. So, this would be d 2 psi dx 2 plus a K square x psi x

equal to 0, where the K of x which now depends of course, on x as opposed to earlier

which  it  was  a  constant  E minus  V of  x  the x dependence  of  K comes from the x

dependence of V and of course, we know that if K x is a constant K of x is independent

of x then the solutions are simple and, but we still try to write down that solution. So, if

K of x is independent of x then the solution is that that psi of x goes as exponential plus

minus i K x, this is all known to you and these are well known solutions that you have

looked at these are the travelling waves free particle solutions and so on.

Now, of course, since K is varying slowly and I would highlight this word slowly I just

told you that the variation of K x is coming from V x so, if V x is a slow function of x, K

x is also a slow function of x. And now we may expect a solution of the form which are

psi of x psi of x is equal to. So, this is like exponential i u of x where u of x is nothing,

but a plus minus K of x, dx.

Now, since K is not a constant it is variable or rather it varies on the space variable x. So,

it has to be integrated over and we have not specified the limits of integration, but we

could do that the lower limit is not important or rather even the limits are not important

we simply can just put it there, but let us just for now put a limit there just is just any x

arbitrary x.
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So, at the lowest level, one can expect the solution to have the form psi 0 just to say that

it is a lowest level approximation, it is exponential plus minus i K x dx and with an upper

limit put there. So, that is the lowest level approximation.

So, if we name these equations as so, this is equation 1, this is equation 2; this is equation

3 and call this as equation 4. So, putting a 4 in say 2 or rather its put in actually 1 that is

the Schrödinger equation, one gets the Schrödinger equation now cast in the form of psi

0 and plus this is a K square x minus plus i by 2 d K dx psi 0 of x equal to 0.

Just let me tell you a priori that this is mathematically very intensive and I will have to

practice at least a few times in order to get a hang of things, but these are not too difficult

algebra these are simple algebra, but you would still have to practice it there are a few

change in variables and there are knowledge about the special functions that are required

for this.

So, this is the equation that is the Schrödinger equation for psi 0 if of course, d K dx is

neglected then we get the equation to the lowest order which is d d 2 psi naught dx 2 plus

K square psi naught equal to 0 this is what we have been looking at.

So, let us write for a better solution better means; better than the or rather than the zeroth

order solution. So, psi of x equal to some F of x and a psi naught of x where F of x either

you call it a slow slowly varying function or you can say that it is a monotonic function,

and a simple polynomial in x. So, call this as equation 5 and let us call this as equation 6.

So,  if  you  substitute  these  one  putting  6  in  1,  I  get  the  same  equation  that  is  the

Schrödinger equation, now written in terms of the variable F or the function F which is 1

over  2 K x d K x dx call  this  as  equation  number  7 now here  of  course,  we have

neglected d 2 f dx 2 and the rationale being that we want a simple polynomial in the

vicinity of in the vicinity of the psi naught and moreover it is a monotonic function, so it

does not have a curvature. So, these are the simple arguments that we can give in order to

neglect d 2 f dx 2.
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So, the solution of 7 can be written as F of x equal to 1 by root over K x. So, now with

this is only a trial solution one can check that with this dF dx becomes equal to 1 divided

by 2 K of x whole to the power 3 by 2 and the dK dx. So, you can write a 1 over F of x d

F dx equal to a K x to the power half 2 K x 3 by 2 and a d K dx and so, this half and this

3 by 2 will cancel and will give me a 1 over K x which is what is wanted. So, this is a

solution of so, thus 7 or rather 8 is a solution of 7.

So, we have gotten a solution for the Schrödinger equation in some form, and so this if

we write 8 and put it back into 6. So, just to your 6 is the equation that you have made an

unsearch for psi of x which is a polynomial f of x into the zeroth order solution.

So, then this becomes equal to psi of x which is just a slightly better approximation than

the zeroth order approximation it is equal to 1 by root over of kx exponential plus minus

i K x dx. So, what is the difference the difference is that that if you had a zeroth order

approximation  then  the  amplitude  would  have  been  a  constant  here  the  amplitude

depends on x and its  of course,  has also the K in the denominator  which of course,

creates  a  problem that  if  that  denominator  blows  up as  K goes  to  0  which  is  what

happens in the vicinity of the turning points ok.

So, this is because of this it is also called as the Phase integral method all right. So, what

is  what  are  the  solutions  now we can write  down this  as  equation  9 and hence  the

solution we can write down a full solution as C 1 divided by K x exponential i K x d x



with an upper limit here plus a C 2 divided by root over K x exponential minus K x dx

because the phase is integrated over that is why it is called as a Phase integral method.

So, that is the most general solution so far. So, that is the one order better than or one

level better than the solution that we had earlier proposed.

Now, this is for the classically allowed region this is what we had said that we lets write

down this for V x less than E now we can go to the V x greater than E.

(Refer Slide Time: 25:27).

So,  this  is  number  2  this  is  the  classically  forbidden.  If  you wish  let  us  write  also

classically allowed, this is of course, classically forbidden for the simple reason that we

are talking about the kinetic energy being negative.

So, this one will give me just proceeding as earlier. So, this is D 1 root over K prime x

exponential x K prime x dx plus D 2 divided by a K prime x exponential x K prime

minus K prime x dx. So, that is the solution for this call it 10 and this is our 11 and a K

prime is of course, given by all right. So, we could have written down the.

So, there is a solution of is a solution of d 2 psi dx 2 minus K prime square x psi of x

with equal to 0. So, let us call this as number 12 and where K prime x equal to 2 m by h

cross square V of x minus E root over of that. So, that is my equation number 13.



So, my equations are 10 and 11 are, so Equations 10 and 11 are solutions to the first

approximation I  will  put  it  in  quote unquote which means;  one level  better  than the

zeroth order approximation for a slowly varying potential all right.

So, but these are fine this writing them down formally it is fine, but; however, you would

see that there are some problems in trying to connect the solutions on both sides of the

barrier and this is what could bring us to what are called as the connection formula, let us

try to analyze these things a little more details.

(Refer Slide Time: 29:12).

So, let us write graphically so, this is the solution. So, this is what the left curvature is, so

this is the energy and this is of course, x equal to this is x equal to a and.

So, this is I am taking a thin layer which is in the immediate vicinity of the turning point.

So, this is my E and this is will be called as region 1 and this will be called as region 2.

And let us call this figure as figure 1 and that same figure I would draw it on the other

side where it looks like this. So, then again the energy is like this.

So, let me look at the other end of the potential  which is given by this the curve of

another slope the other slope.
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So, again we have this turning point at x equal to a and we also take two vertical lines in

the vicinity of the turning point and.

So, we have already told that this point x equal to a is called as the turning point, look at

the solutions that we have written down they had a 1 by root over k x in the denominator

root over k prime x in the denominator both of them vanish as v becomes equal to e. So,

in which case, these solutions are not valid in the vicinity of these turning points. So,

they are the solutions that we have obtained are valid solutions away from the turning

points away means far away from the turning point. So, let us just write far away from

the turning points.

So, let us also demarcate these regions 1 and 2 here and regions 1 and 2 here so, we call

the left region as region 1 and the right region as region 2 all right.
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So,  in  the  neighborhood  of  the  turning  points,  the  potential  energy  variation  is

approximately linear. So, near x equal to a which are the turning points, we can write 2 m

by h cross square E minus V of x which is nothing, but the k square is minus alpha x

minus a.

So, if you look at the left figure then we have alpha is less than 0 and in the right figure

alpha is greater than 0. So, these are the respective slopes of the potential energy profile

as we have drawn.

And so, if we substitute these form into the Schrödinger equation, that is this form let us

call this as equation 15 in continuation with our earlier notations. So, we have putting 15

into 1 we have a d 2 psi d x 2 minus alpha x minus a psi of x equal to 0. So, this is just

like  a  linear  potential  and the  solutions  are  called  as  the  AIRY functions  which  are

written as AI and BI. And that is so, these are exact solutions are available, but let us just

get them a little more in a familiar form and.
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So, let us have a variable transform in which we write z equal to alpha to the power 1 by

3 x minus a and so, d 2 psi dz 2 its equal to a del del z of del psi del z or we can simply

write it as del 2 psi del z 2, this and this is equal to del del z of del psi del x and del x del

z.

And this is nothing, but equal to del 2 psi del z del x and del x del z plus a del psi del x

del 2 x del z 2 from the given condition del x del z is simply equal to alpha to the power

minus 1 third and del 2. So, this is minus one third not half pardon me for this. So, del 2

x del z 2 equal to 0. So, the second term is equal to 0 and the first term only contributes,

and if you do this simplification or this variable transform. 

Then we get this equation as d 2 psi z i I am skipping one step which you can fill it up

and, this is equal to minus z psi z equal to 0 and this is the linear potential. So, this is a

Schrödinger equation for a linear potential call this equation number 16 where of course,

you should remember this z equal to alpha to the power 3 x minus a as written at the top

of this slide ok.

So, we have to now write down the solutions in terms of the airy functions; however, the

airy  functions  are  less  lesser  known functions  than the Bessel  function.  So,  we will

establish also a relationship between the Bessel functions and the airy functions.
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So, at this moment we are a priori introducing on an ad hoc basis this Airy functions, but

later on they will be shown to be the solutions of this equation 16 and Bessel functions

you  must  have  already  seen  in  the  context  of  either  electrodynamics  or  quantum

mechanics say particle in a spherical box.

So, this is your equation that you want to solve dz square minus z psi z equal to 0. So, let

us first look at z greater than 0 which also means that x is greater than a. So, that is the

lets do another transformation, psi of z equal to root over z phi z. So, then this if you

substitute this equation 17 into 16 then, we get a differential equation which is equal to in

terms of phi its nothing, but just rewriting the Schrödinger equation this and minus z

cube plus 1 by 4 phi of z equal to 0.

So, again we make another transformation introduce a variable  called as xi which is

equal  to 2 third z to the power 3 by 2 and that,  lets  us or arrive at  this  differential

equation plus as xi d phi d xi minus xi square plus 1 over 9 phi of xi equal to 0.
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So, this is called as the modified Bessel function and the solutions are I to the power I for

1 third and this is I of minus 1 third xi. And so, the solution is obtained as psi z equal to

root over z I plus minus 1 third xi which is also equal to z to the power half I plus minus

1 third 2 third xi to the power 3 by two. So, that is the solution for z greater than 0.

Now, what happens for z less than 0 once again we shall do this transformation that we

will call a eta equal to minus 1 over z. So, the d to psi d eta 2 plus eta psi of eta equal to 0

is the solution which we can write it as we can write down these equation numbers of

course, so, these are. So, this is 18 and this is 19 this is 20 and this is 21. So, this is equal

to  22,  22  and  now  making  another  transformation  that  psi  of  eta.  So,  all  these

transformations are making sure that we are trying to simplify the situation as much as

possible.

And introduce another variable called as zeta which is equal to 2 third eta to the power 3

by 2 now we are doing it for z less than 0, and that gives a differential equation with this

for phi in terms of these zeta, which is this is not this is that zeta and plus zeta d phi d

zeta plus zeta square minus 1 by 9 phi of this is not xi, but it is zeta this is equal to 0. So,

this is called as the Bessel function and the solutions are J plus minus 1 third.
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So, the solutions are written as psi of z which is equal to z to the power half J plus minus

1 third and 2 third, now it is a mod z to the power 3 by 2 and this is equation number 26.

So, we can write down the solutions so, the summary of these solutions are psi of z equal

to root over of z C 1 I minus 1 third zeta plus C 2 I 1 third zeta, that is equation number

27. So, this is for z greater than 0 and there is the other solution is psi of z is root over z

plus C 3 J minus 1 third zeta plus a C 4 J 1 third zeta. So, this is zeta and this is equation

28 and this is for z less than 0.

So, this is the situation so far, that we have been trying to solve this equation and this in

presence of a linear potential or a slowly varying potential now it has become a linear

potential because as you come closer to the turning point whatever may be the variation

if you come very close it looks like linear potential, and this is what we have obtained.

So, far in terms of the modified Bessel function and the Bessel function.

Now, there are airy functions which are simply called as so, these are Airy functions, and

these airy functions are written in terms of the Bessel functions and the modified Bessel

functions, which are in this form a minus I minus 1 third minus 1 third xi minus I 1 third

xi z greater than 0 and there is a B i z or this is equal to so, B i will just. So, that is for z

greater than 0 and it is again the A i z that is equal to 1 third z to the power so this is not

1 third this is really half.



So, this is half and J minus 1 third xi minus J 1 third for z less than 0 and similarly a Bi z

which is equal to 1 by root 3 z to the power half and there is a I minus 1 third xi minus I

1 third xi with a plus sign here which is for z greater than 0 and this is equal to B i z this

is 1 by root 3 z to the power half and there is a J J minus 1 third xi minus J 1 third xi this

is for z less than 0.
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So, just a bit graphically we are so, this is equal to so, this is; so, this is my A i. So, this is

x greater i mean x this way and so these are. So, this is your Ai function and the Bi

function looks like so this is the Bi function and so on.

So, we can start from the to get the asymptotic forms of these Ai and Bi we could start

from the Bessel functions and look at their asymptotic behavior rather we would write

down straight away the asymptotic behaviors of this. And so, that tells us that the A i z

that goes as 1 by 2 root pi z to the power minus 4 exponential minus xi for z going to

plus infinity.

This is 1 by root over pi mod z to the power minus 4 a sin xi plus pi by 4 for z going to

minus infinity. So, that is the behavior of the airy functions for the arguments to be in

that region which is shown, there and a B i z has this 1 by root pi z to the power minus 4

z to the power minus 1 by 4 e to the power xi for z going to plus infinity and it goes to 1

by root pi mod z going to minus 1 by 4 cosine of xi plus pi by 4 for z going to minus

infinity.



So, this means that the airy functions the Ai the first kind these are called airy functions

of first kind these are called airy functions of second kind and they have these asymptotic

behaviors which the for z going to infinity the airy functions of the first kind goes as

exponential minus xi the other has a 4 x xi z going to minus infinity it has a sin or it sin

vary sinusoidally whereas, for the Bi function for z going to infinity it goes as e to the

power xi and for the other one it goes as cosine.
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So, if we write down finally, the equation which we had obtained in terms of the z. So,

this is our equation whose solutions we have we could have written it down simply, but

we wanted to still introduce this Bessel functions which are. So, finally, these are these

airy functions, so with a and b as the coefficients it is z. So, a and b are the so, this is the

final solutions of this slowly varying potential a and b are amplitudes which are needed

to be obtained from the boundary condition.

Now, this boundary condition is a little tricky for the simple reason that we will just

explain. So, now, this psi of z that goes as a Ai z which goes as a by 2 root pi z to the

power minus just look at this the last slide for z going to plus infinity and it goes as a by

root pi mod z whole to the power minus 1 by 4 sin of xi plus pi by 4 for z going to minus

infinity.

So, the solution is that that 1 by 2 z to the power minus half exponential minus xi it goes

over to z to the power minus 1 by 4 sin of xi plus pi by 4. So, this is coming from the airy



function of the first kind where we have put b equal to 0 b equal to 0 is that because of

the square integrability of the wave function because bi diverges for. So, this term is

increasing. So, we have just put the coefficient of that equal to 0 because otherwise you

will land up with this problem of the square integrability of the wave function mod psi

square dx integrated over all space will not be equal to 1 and the.

So, this basically what I we are trying to say is that this is the solution in region 2 and

this is the solution in region 1 and this solution in region 2 should go to solution in

region 1 and the other way around that is solution of region 1 is connected by to the

solution of region 2 by the same formula is not allowed for the simple reason is that, as

you change as you trying to go from region 1 to region 2 this could cause a change in the

phase of the sin and you know the sin will  if  it  changes  its  phase by a pi  by 2 psi

becomes cosine, and cosine is not connected to an exponentially dying solution which

are we are going to see cosine is actually related to the exponentially growing solution.

So, this is the reason that it is a connection formula it is called as a connection formula

and it is purely unidirectional all right.

So, let us look at the other case.
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Now, try to connect solutions from region 1 to region 2. So, this was actually from region

2 to region 1 that is what you see. So, we can we can write it since we know so, region 2

to region 1 and now we are trying to connect it from region 1 to region 2 we will put a



equal to 0 and we will right psi z equal to b Bi z that is the airy function of the second

kind and just to remind you that, this B i z it goes as 1 by root over pi z to the power

minus 1 over 4 exponential of xi for z going to plus infinity and this is equal to 1 by root

over of pi z going to minus this cosine of xi plus pi by 4 and z going to minus infinity.

So, now I will connect this as the other connection formula and cosine of xi plus pi by 4,

this is in region 1 should connect to z to the power minus 1 by 4 exponential xi. So, this

is in region 2 this is called as the Connection formula.

So, this is the second connection formula so, let us call it as a first connection formula.

And this is the second connection formula. So, just to go over it, again that the recipe for

connecting solutions from region 2. So, if you look at the region 2 so, region 2 is actually

the classically forbidden region. So, region 2 is actually the classically forbidden region

where e is less than V of x and region, 1 is the classically allowed region where e is

greater than V of x of course, that is the situation changes when you are talking about the

two sides of the barrier.

So, in any case these are the connection formulas that are or these are the boundary

conditions that are used; now these boundary conditions are distinctly different than the

boundary conditions that we have seen for all these other problems. The last thing that

we would do in this regard is that we will derive.
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The Bohr Sommerfeld quantization condition using the connection formula; so, we draw

this picture once again and we call it. So, we have let us say we have this varying like

this where we have the energy is like this. So, this is the energy and this is my x 1 this is

my x 2 this is my region 1 and this is my region 2, that is the energy so, this. So, this is a

xi 2 a this is a xi 1 a. So, this is region 1 and this is again xi 2 B and this is xi 1 B and so

on. So, these are points A and B and these are x 1 and x 2. So, let us define some new

parameters xi 1 a equal to x 1 to x k of x dx.

So, this is between x 2 greater than x greater than x 1 xi 1 xi 2 a rather, xi 2 a equal to a k

prime x these are the phases that we have seen x less than x 1 x 2 some x 1. So, this is x

1 x 2 x 1 and this is x 1 to x which is x is some arbitrary variable. So, xi 2 B this is equal

to x 2 x 2 and dx k of x and a xi 2 B equal to x 2 to x k prime of x dx for x greater than x

2 and this is of course, x 1 less than x less than x 2.

So, these are my new variables and what we are trying to do is the following.
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So,  at  A we  have  these  going  to  the  connection  formula  will  have  a  2  k  prime  x

exponential minus xi 2 a it is connected with 1 by k of x cosine of xi 1 a minus pi by 2 or

pi by 4 sorry this is pi by 4 and at any point r. So, that is inside the region. So, the wave

function is like C 1divided by root over K of at r cosine of x 1 to xr and Kx dx that is the

phase multip[lied]- minus pi by 4 called this one as alpha. So, this is equal to C 1 root

over K of r cosine alpha.



Similarly, at B the connection says that it is a k prime x exponential minus xi 2 B xi 2 B

it goes as 1 by root over k of x cosine of xi 1 B minus pi by 4. So, at any arbitrary point r

psi of r is equal to some C 2 divided by K of r cosine of x r to x 2 K of x dx minus pi by

4 and, this one we are going to cast it in the form of alpha. So, let us call this as beta.
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And Cos of beta equal to cosine of xr; so, just rewriting the Cos beta term as a pi by 4

plus x 2 divided by x r and a K x dx. So, see that we have just used the fact that the Cos

of minus theta equal to Cos theta because Cos is an even function.

So, this can be a slightly modified in the form of a pi by 4 plus x 1 to xr k of x dx plus x

2 to x 1 k of x dx this is just simply writing down the x 2 to x r by splitting it into 2

terms, and this is nothing, but equal to cosine of alpha plus pi by 2 minus x 1 to x 2 Kx

dx and this is nothing, but equal to cosine of alpha minus eta. So, cosine beta is cosine

alpha minus eta where eta equal to x 1 to x 2 k dx minus a pi by 2.

So, this is nothing, but equal to cosine alpha cosine eta plus a sin alpha sin eta. So, at a

general point the wave function is C 1 equal to so, it is so, psi of r. So, psi of r equal to C

2 divided by k of r cosine alpha, cosine eta plus a sin alpha sin eta and. So, this wave

function has to be equal to this wave function that we have written down.
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So, C 1 so, equating the coefficient C 1 equal to C 2 cosine eta and 0 equal to C 2 sin eta

since C 2 is not equal to 0. Then a sin eta has to be equal to 0 which is equal to sin n pi

for n equal to 0, 1, 2 and so on, sin n pi.

So, that tells that eta equal to n pi equal to x 1 to x 2 K dx minus pi by 2 and I can

multiply by h cross and then it becomes x 1 to x 2 h cross K dx which is equal to n plus

half h cross pi, where h cross is equal to h over 2 pi. Now I can write this down equal to

p dx x one to x 2 equal to n plus half h cross pi which a little bit of algebra it shows that

it is 2 p dx x 1 to x 2 this is equal to n plus half h simply h. So, this can be written as x 1

to x 2 p of x dx plus x 2 to x 1 p of x dx which is equal to 2 x 1 to x 2 p of x dx which is

nothing, but equal to a closed integral of p p of x dx.

So, that tells that the left hand side of this equation the condition that we have gotten

from here is equal to closed integral of px dx.
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So, that is the Bohr Sommerfeld quantization condition that a p x dx is equal to n plus

half h and for n to be large this is simply equal to P x dx equal to n h and this is the we

will call it BS QC which is called as the Bohr Sommerfeld quantization condition.

So, just give one simple example the example; is that the in a certain system the theta is

like a sawtooth wave as a function of t. So, this is theta of t that is the angular variable

and the r simply is just a constant at a value. So, d theta dt equal to omega and dr dt equal

to 0.
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So, that tells that my P now its x dx we just simply write it as pq dq, where Q is the

canonical coordinate and P is the canonical momentum which are nothing, but equal to ld

theta which is equal to l l is a constant here d theta from the full range which is 0 to 2 pi

which is equal to 2 pi l. So, P q dq is nothing, but equal to nh which is equal to 2 pi l. So,

l becomes equal to nh by 2 pi, which is equal to nh cross and this is called as the Bohr’s

quantization.

So,  this  is  one of the Bohr’s postulate  where he said that  the angular  momentum is

quantized in terms of h cross and those are the allowed orbits in which the electrons are

allowed to move around the nucleus where they do not emit electromagnetic radiation

and they are called as the stationary orbits.

So, just to go back rerun the whole thing again there is a lot of mathematics that we have

done, but what we have finally, said is that for a slowly varying potential the solutions

that you write down fails miserably close to the turning points because the amplitudes

are proportional to 1 over k x or 1 over root over Kx where k is the wave vector, which is

obtained  from this  energy and the  potential  energy relation  the  total  energy and the

potential profile relation and.

But these are good solutions away from the turning points, if they are good solutions

away from the turning point there has to be a way to connect the solutions into the from

the classically forbidden region to the classically allowed region, that gives us one very

important factor that you cannot do this arbitrarily that is connect the two solutions and

write it as equality, it has to be done with care that sometimes you can go from region 2

to region 1 via 1 relation.

But to come back from region 1 to region 2 you will write another relation, and these are

called as the connection formula this connection formula have important  applications

where  one  can  actually  compute  what  is  called  as  a  Bohr Sommerfeld  Quantization

condition we have showed a simple case where we recover the Bohrs postulate starting

from the quantization condition, which are which are of course, the byproduct or artifact

of the connection formula.


