
Advanced Quantum Mechanics with Applications
Prof. Saurabh Basu

Department of Physics
Indian Institute of Technology, Guwahati

Lecture - 27
Summary of Approximation methods, Time dependent Perturbation Theory

Let us have a short  recap on the methods of the approximation techniques,  that we have

learned  and  some  of  the  features  of  that  are  so  just  small  summary  so  far.  The  first

approximate technique, that we have learnt is called a Time independent Perturbation Theory

and in short we have called it a TIPT ok. And, the features of that are Hamiltonian is given to

us, which can be split up into this two terms H 0 being the unperturbed Hamiltonian which is

completely known.
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So, H 0 psi n 0 it is equal to E n 0 psi n 0 is known and H prime is a perturbation term which

is smaller or much smaller than the unperturbed Hamiltonian. By that what we mean is that

the expectation value of the perturbation term, with respect to the unperturbed term is much

smaller than 1. And, if you are wondering that these expectation values are calculated with

respect to which states.

So, these are basically the eigenstates of the unperturbed Hamiltonian which is given here,

the psi n 0’s that we can now see here. So, this is the condition under which we have studied

the time independent perturbation theory and we have studied two variants namely the Non-



Degenerate  Perturbation  Theory  and the  Degenerate  Perturbation  Theory. The degenerate

perturbation theory looked a little more complicated; however, it is just a finite dimensional

problem and we have obtained a few salient features which are removal of degeneracy.

So, if there is a degenerate unperturbed states that in presence of the perturbation term which

could be an external field, electric field or magnetic field the degeneracy gets pleated and one

actually gets, sort of a closely spaced energy level which were otherwise non-which were

otherwise degenerate in the absence of a perturbation term. So, the splitting of degeneracy

and the also may be shift of the unperturbed levels. What we have seen very importantly is

that, the ground state is usually non-degenerate in all these systems, that is usually under

focus and other degeneracy only appears at excited states. 

So, as an example we have done Stark effect in which we have calculated the first order and

the second order energy correction to the ground state. And also, which of course the first

order gave 0, the second order of course gave a finite correction, which is gave rise to the

induced dipole moment of the hydrogen atom. The hydrogen atom, just to remind you is the

simplest atom in which there is a nucleus containing a proton and there is an electron in the

valance shell or the shell that is a surrounding the nucleus.
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So, that acquires an induced dipole moment of the second order and we could also calculate

the first order perturbation theory, for the first excited state of the hydrogen atom. So, these

were the two main results that we have obtained in the time independent perturbation theory.



Then we had gone ahead to discuss the variational theory and the hallmark feature of that is

that one has a Hamiltonian, which of course cannot be solved exactly. But, the additional

problem with this is that there is no split up of this form to be available for this case.

So, I cannot split it up; so, I do not know what is the unperturbed part and the perturbation

part  I  just  have  a  Hamiltonian.  So,  this  can  be  very  easily  understood that,  if  we  have

introduced sort of a field and we are not sure that the strength of the field and in which case

of  course,  we  cannot  call  this  H  prime  as  a  perturbation  and  separate  it  out  from  the

unperturbed Hamiltonian which is H 0. And, we have to solve still for H and so we seek a

solution of H psi to be equal to E psi. 

The way it is done is that, variational state is chosen with alpha as a tuneable parameter. We

have  discussed  that  how  one  can  actually  determine  alpha  by  extremizing  or  rather

minimising the energy, that is the definition of energy. And, this has to be extremized or

minimised with respect to alpha put that equal to 0, compute alpha put that back into the

wave function and that is the variational wave function. And, that wave function correspond

to an energy, that energy is called as a variational energy. 

Very importantly one gets upper bound to the exact energy which means that the variational

energy is always above or higher than the exact energy. And, I mean what kind of a bound we

have or rather how tight the bound is, upper bound is to be exact energy depends on the

quality of the wave function. And, in choosing the wave function one should keep in mind

about the boundary conditions.

Such as, you know particle in a box should have a wave function which should vanish at the

boundaries.  And,  if  we  do  not  respect  that  then  we  should  we  still  be  able  to  do  the

calculation. But, the estimate of the energy say for example, we are talking about the ground

state energy that we get would be quite wrong or it will be quite off from the exact energy.

In most of the situations that we have seen we have done it on the known problems I were the

very  well-known problems where,  variational  theory  has  been  applied  and with  a  lot  of

success are the hall effect, the fractional quantum hall effect by Laughlin, the wave function

is  a  variational  wave  function.  And,  as  well  the  BCS  wave  function  to  solve

superconductivity is also has a variational parameter and the whole formalism was carried out

variationally. And one obtained an expression for the superconducting transition temperature

which has a good agreement with experiments.
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So, other than that we have done a third method which is called as a WKB approximation and

this WKB approximation is a, it goes by the name Wentzel Kramer's and Brillouin and it is

applicable for slowly varying potential. So, it is a potential that very slowly and the particle is

coming from here. So, this particle has energy E and of course, the energy of the particles of

this is V as a function of x. So, there is a linear variation that we have shown and of course,

the region that is left to or the to the right to the straight line that is the region which is here is

the region that is here is a classically forming region. 

Because,  here the  total  energy is  less than the potential  energy and that  makes  a kinetic

energy to be negative  which means the momentum to be imaginary  which is  certainly  a

classically  forbidden region. And, we have shown that the solutions that one obtains,  are

asymptotically correct which means that the solutions are good far away from the, these are

called turning points where a classical practical would turn back and will reverse its motion.

So, solutions are good away from the turning points or far away rather far away from the

turning points and which means that solutions are bad very close to the turning points. And,

we have arrived at  what are called as the connection  formula by matching the boundary

conditions asymptotically. And, these connection formula they are found to be unidirectional

which means that some solutions can be from the left, can be matched with those of right.

But, the same solutions cannot be matched at the turning points from right to left and there

some other solutions which can be from the left to the right, can be matched from left to the



right which cannot be matched from the right to the left and so on.

So,  from  these  a  connection  formula  we  have  obtained  what  are  called  as  the  Bohr

Sommerfeld Quantisation condition, which is just the closed integral of a pdq which is equal

to some n h. And this h is of course, the Plank's constant and this was instrumental in deriving

a lot of conditions or rather quantisation conditions. One of them we have seen is that the

Bohr’s, formula of that the angular momentum is quantized in multiples of H over 2 pi, that

could be derived where p and q are of course, the generalised momentum and the coordinates

respectively. And so, these are some of the features of the WKB connection formulas. 
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Let us now talk about time dependent perturbation theory and the reason that we need to do

this after the time independent perturbation theory is, it is one of the approximation methods

in which we will see transitions of a particles or transition of say electrons or photons from

one level to another, maybe from a ground state to an excited state or decay from an excited

state to a ground state. And these are very important in the context of lasers in which we will

learn how to calculate the Einstein's a b coefficient and so on. 

So, just to make this point clear once again in time independent perturbation theory we had

no transitions. We had so, those transitions are forbidden and it is only shifting of energy

levels or the unperturbed eigenstates and the eigen energies, that could occur. Here there will

be transitions from one level to another in presence of a time dependent perturbation. 



So, once again just to make things clear, that we have this problem to be completely well

known, let us write it as phi n and it is a E n 0 phi n; understand that phi n is the unperturbed

eigenstates and E n 0 are the unperturbed energies ok. And, we have to solve problem in

which I have the full Hamiltonian looking like this, but now this H prime depends on time.

So, as if there is a sinusoidal field that we are driving the system with so, H prime is a time

dependent quantity. 

So, we have to solve now an equation which is i h cross del psi t del t and we have a H 0 plus

a H prime t and a psi of t. So, let psi of t be so, let us make this an such that psi of t is like can

be split into or rather it is a function of both r and t. So, this is not only t but it is a function of

r and t. So, make it very clear, this r is in general of vector we are we could write it as a

vector r. So, this is a vector and t are the time and r could be x y z, the vector r could be

consisting of three Cartesian coordinates or three spherical polar coordinates such as r theta

and phi and so on. 

So, this certainly can be split into a term which is phi of r and a g of t, because the space and

time would not mix. So, we can write this as that now if you put H prime t equal to 0 just to

find out, what the time evolution of the unperturbed eigenstates are. So, we put this equal to 0

and then put this into so, let us call this as equation may be 1, equation 2 and 3. So, putting 3

in and if you call it a 4, putting 3 and 4 that is also making H prime to be equal to 0 in to one

gets an equation which is fairly simple, it is i h cross del del t of a phi of r, we could write n

here phi n of r.

So, that is those eigenstates that we have talked about and g of t. So, g of t is the temporal

part which takes into account the time dependence and phi n of r, takes into account the

special dependence and this is equal to H 0 phi n of r and g of t. For the moment, I am doing

way without the with the ket notation, but simply writing it as an algebraic quantity here. So,

that is my 5, that is equation 5 and we of course know that so this would give me a phi n of r

and i h cross g dot t it is equal to E n 0. 
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So, that is let us not write it with the bracket, E n 0 phi n r and the g t and since phi and 0 is

not equal to 0. So, we can write this as i h g t by t g t which is equal to E n 0 that gives us a

solution g of t equal to exponential minus i E n 0 t by h cross. So, that immediately brings us

to the psi  of t,  which is  the full  wave function,  this  is  equal  to  a sum over  n C n of t,

exponential minus E n 0 t over h cross and a phi n 0 sorry phi n, because we have written it as

phi n 0. If you want to put the ket here, they mean the same thing. So, this is the important

part that for a Hamiltonian, that is independent of time. The time evolution of the eigenstates

can be expressed like this. 

So, there is a sum over n and C n t’s are the coefficients which depend only on time and the

basis vectors or rather the phi n’s they do not depend upon time. And, there is a stationary

state  evolution  that  is  the  mod psi  square  is  independent  of  time  for  all  time,  when the

Hamiltonian does not depend upon time. So, the probability density is independent of time

and these are called as stationary states and if of course, our H prime of t remains 0 at all

times.

Now, we are going to bring in the H prime t, if H prime t is 0 for all times then C n of t is

independent of t. However, this thing now can be put into so, let us call this as equation 5 and

we are going to put it in 2. So, equation 5 and putting a 5 into 2, one gets summation over n i

h cross C n t with a dot, just mind these dots carefully because this dots maybe sometimes

invisible; let us just show me show you once. So, there is a dot here there is a dot here g dot t.



And so, is a dot here C n, dot t so, this and exponential minus i E n 0 t over h cross equal to

sum over n H 0 plus H prime t and C n t. And, so there is the term that we have missed here

should not miss that. So, there is a E n 0 C n of t because, you have to differentiate this,

keeping this  as constant  which is  the first  term and differentiate  this,  keeping this  as the

constant which is the second term. So, that is the those are the two terms that will be there.

So, this is and there is of course, a phi n of r and there is a C n t exponential minus i E n

naught t by h cross and a phi n of r. So, that is the question that one has to solve and this tells

us that so, if we transferred the C n t’s into one side or do a bit of simplification by assuming

that the first equation which went unnumbered. So, let us call that as equation 0. So, if you

use equation 0 and simplify this this becomes equal to i h cross C n dot t exponential minus i

E n naught t by h cross. And, the C n t is been transferred to the other side and this is equal to

a H prime of t C n of t and exponential minus E n naught t over h cross and then the phi of

course, cancel from both sides.

So, that is the equation that one has, let us call that as equation 6 and this equation see one

thing in equation 6 is that C n dot includes a power of H prime, because there is a H prime on

the side. So, if C n prime or C n dot can be expanded in powers of H prime. So, one will

always get the same power of H prime that is there on both sides of equation 8 or equation 6.
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In order to simplify this further let us take an inner product with phi n phi m and use the

orthogonality relation. And then of course, again divide by exponential and hence, divide by



exponential minus i E m 0 t by h cross one arrives at the and of course, use i h cross C m dot t

it is equal to sum over n C n t and exponential i E m 0 minus E n 0 t by h cross and now there

is a phi m H prime phi n ok.

So, it is very clear that m is not equal to n here and m and n actually corresponds to two

different states and that is what we are interested in that whether, this can cause a transition

from one state to another. This is the matrix element which is been computed between two

orthogonal states phi m and phi n. And so, we have been able to strip off the left-hand side

from a summation and the summation is entirely on this on the right-hand side over n. So, the

m index is free, m is coming from the energies as well as the matrix elements and so on. 

Now, what could happen is that, if for some reason we take this as delta n k, will tell you just

in a while that, why we are taking it as a delta function delta n k. If we take it then this is a

sum over n and there is a delta n k H prime m n and exponential i omega m k t, where omega

m k is equal E m 0 minus E k 0 divided by h cross. And H prime m n is nothing but the

matrix elements phi m H prime phi n. And so, if this is true then this is equal to your I h cross

C m dot t and so C m dot t is equal to. So, we are now making an approximation of at the first

order where the 0th order, because as I said that if this is first order then this has to be 0th

order and does not include the effect of H prime, because there is already an H prime that is

there in this matrix element.

So, this at the first order so, this is at the first order, So, this is equal to 1 by i h cross H prime

m k exponential omega m k t. So, that is your first order coefficient that or the time derivative

of the coefficient. And, if I simply want the coefficient itself because that is related to the

probability density, I need to integrate it. I am putting the integration limit now from minus

infinity to t and make this H prime m k which was always a function of t which was not

written here it is a function of t.

So, this is a function of t I put a t prime, t prime for a dummy variable it is actually the same

as t. So, that is a time and a dt prime and I am putting the limit from minus infinity to t, as if

the perturbation is switched on at minus infinity and it is switched off only at t ok. Let us

make this discuss a little more concrete and we will also explain that why at the 0th order, we

have written this C n of t as the delta n k which is independent of time. But, let me box this

because this is one of the important working formula of this or the mod square of this is

actually the working formula. A few details about the perturbation ok.
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So, let us make it little simpler. So, H prime t equal to 0 for t less than 0 or I do not need so, it

is t less than 0 and t greater than equal to t 0. So, it is only switched on at t equal to 0 and

switched off at t 0. So, the perturbation is switched on for time t 0. So, what is then the C m

1, this 1 as I said correspond to the first order perturbation theory t 0 it is equal to 1 by h cross

0 to t 0 H prime m k t prime exponential i omega m k t prime dt prime. And of course, C m 1

t equal to C m 1 t 0 for all time for t greater than t 0; we can also make this as just t greater

than t 0. So, that is so, the perturbation is of course, switched on in this time interval. 
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So, let us now see this delta n k and how it comes that is the 0th order. So, at 0th order for t

less than 0, the system is assumed to be in phi k. And so, of all the coefficients C n t only C k

t survives and not only this survives C k t is equal to C k 0 for all t ok. Because, that is

independent of time, because your H prime is equal to 0. So, this is for t less than equal to 0,

at t equal to 0 keep this in mind, at t equal to 0 the perturbation is switched on. So, at t equal

to  0  H  prime  is  switched  on  and  rises  discontinuously  to  a  finite  value,  it  rises

discontinuously to a finite value to H 0. 

So,  this  is  H  0  at  time  0  and  then  it  could  have  a  time  variation,  but  at  least  it  rises

discontinuously at that value at t equal to 0, because we said that it is switched on at t equal to

0 and then switched off at t equal to t 0. Now, since H prime t remains finite, the solution of

Schrodinger equation, that is the eigenstates are smooth, smooth means continuous. So, if the

eigenstates are continuous the amplitudes the C n at t equal to 0 has to match with the phi k

and hence, this has to be delta n k such that, C n, phi n becomes equal to phi k at t equal 0.

So, basically C n 0 phi n has to be equal to phi k. So, which means that this has to be equal to

delta n k and that was the reason that at 0th order we have plugged in delta n k in place of the

coefficient C n at 0 alright.
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So,  after  this  we  will  talk  about  the  transition  probability  of  for  a  time  dependent

perturbation. But, before that let us do one example problem is quite interesting in its own

sense. It says a hydrogen atom in short I will write it as a H atom in its ground state is



subjected to an electric field which is switched on and off such that, basically the form of the

or rather the time dependence of the electric field is as follows.

So, its electric field which is equal to sum E 0 exponential t square over tau square where t is

much greater than tau; so, the question is what is the probability that the H atom so, it was

initially in its ground state. So, remember that our ground state in the previous discussion was

k the state phi k. So, that is the phi k and so, this lands up in 210 state. So, 210 means n equal

to 2, l equal to 1 and m equal to 0. So, that is the first excited state and so, this is the question

that what is the probability the transition probability from, for the hydrogen atom or rather the

electron in the hydrogen atom to make a transition from the ground state which is 100 to a

state which is 210.

So,  what  is  the  form of  the  perturbation  here?  It  is  H prime  of  t  its  equal  to  e  E 0  z

exponential t square by tau square. This is like the Stark effect that we have seen. So, z is

equal to r cos theta where we simply had the e capital E z, because the way the perturbation

was time independent, here the perturbation depends on time. 

Now, since t is far greater than tau which is the denominator we can set the integration limit

from minus infinity to plus infinity. So, we have to calculate a C 210, I am writing it as

infinity it is actually t 0, but since t 0 the time for which it switched on is very large. So, this

is equal to 1 over i h cross minus infinity to plus infinity d t prime exponential i 210 minus

100 which is the known quantity of course, because this has a minus 3.4 electron volt energy

and this has an energy minus 13.6 electron volt. 

So, this divided by that and then exponential minus t prime square by tau square and I have to

calculate H prime between 210 state and 100 state, which is known thing I will skip that for

now and write it as simply equal to a phi 210 H prime which is a nothing, but z. So, here it is

z, z is the r cos theta. So, given the wave function, this is what we have seen how to calculate

this  in  the  Stark  effect  picture  and  this  is  from minus  infinity  to  plus  infinity  dt  prime

exponential i omega., Let us just call it as omega, because t prime and exponential t prime

square by tau square. And so, where omega equal to this E 210 minus E 100 divided by h

cross o h is of course, that minus13.6 plus 3.4 electron volt by h cross.

Now, this I this part I leave it to you to work out, because that is just going to be a number

and this is a phi 210 z a phi 100. And, it is a tau root over of pi that is the integral that comes,

and exponential  minus omega square tau square over a 4 and of course, there is bit  of a



problem because it shows that, so the probability of transition is given by P equal to C 210

this infinity square. 
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So, when tau goes to infinity that is the time constant goes to infinity P goes to 0. So, the

physical meaning is that when the perturbation is switched on adiabatically, then the atom

adjusts adiabatically and does not make a transition. So, this is the transition probability for

such a such an event to occur.
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So, let us carry on with what is called as the Fermi’s golden rule and how to apply this time



dependent perturbation theory for a harmonically given system. So, let us assume that we

have a harmonic perturbation of the form H prime m k. So, now just to make matters clear m

is an excited state and k is the ground state just for a specific case and this is equal to A m k.

So, in our last problem this was like our A m k. So, this is that matrix element which does not

depend on time and there is a time dependence that is so, this is that A m k and this is the time

dependent part, here it is harmonic ok.

So, as if there is field that is switched on a harmonic field that is switched on and A m k is of

course, time independent and we want to find C m 1 t and k is the ground state and m is the

excited state ok. So, if this is the case then C m 1 t it is equal to 1 by i h cross A m k and say it

is switched on again from 0 to t 0, it is a dt prime exponential i t prime. So, this is a i omega

m k t  prime and the sign I  am going to  write  it  as  exponential  i  omega t  prime minus

exponential  minus  i  omega  t  prime  divided  by  2  i.  And,  so  this  is  if  you  do  a  bit  of

simplification then this becomes equal to t 0 and a dt prime exponential i t prime omega plus

omega m k, minus exponential i t prime omega minus omega or rather omega m k minus

omega one should write it symmetrically.

So, let us write it symmetrically, it is a omega m k plus omega and it is omega m k minus

omega and divide this 2 i has been taken into account. So, if I do this integral it comes out as

just a little it of simplification it comes out as, 2 h cross and then exponential i t 0 omega m k

plus omega minus 1, divided by omega m k plus omega and exponential i t naught omega m

k minus omega minus 1 divided by omega m k minus omega. And, we want to stop here for

now and just to mention that these terms are called as the anti-resonant term. The first one

inside the square bracket is called as the anti-resonant term and the second one is called as the

resonant term.

The first  term is related to the absorption.  So, that the perturbation actually  carries away

energy whereas, in the second term which is called as a resonant term which is of important

to us, mainly important to us that actually pumps in energy to the system which leads to

emission.  So, these are emission and absorption,  the spectra or the spectrum, that we are

interested in they would contribute respectively to these energies. As we said that we are

mostly interested in the resonant term and only one will contribute at a time, under certain

circumstances which is what we are going to see. Now, if it happens that the final state falls

into a continuum of energies then we cannot very sharply define the transition probability for

a final state. 



So, then we will have talk about the probability density and that probability will come out by

integrating over the final density of states. And, this is known as the Fermi’s golden rule, this

is what we are going to do just immediately afterwards.


